IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
This complements existing functionality of setting variables
through 'systemctl set-environment', the kernel command line,
and through normal environment variables for systemd in session
mode.
- This changes all logind cgroup objects to use slice objects rather
than fixed croup locations.
- logind can now collect minimal information about running
VMs/containers. As fixed cgroup locations can no longer be used we
need an entity that keeps track of machine cgroups in whatever slice
they might be located. Since logind already keeps track of users,
sessions and seats this is a trivial addition.
- nspawn will now register with logind and pass various bits of metadata
along. A new option "--slice=" has been added to place the container
in a specific slice.
- loginctl gained commands to list, introspect and terminate machines.
- user.slice and machine.slice will now be pulled in by logind.service,
since only logind.service requires this slice.
Describe how to handle an AF_UNIX socket, with Accept set to false,
received from systemd, upon exit.
Signed-off-by: Łukasz Stelmach <l.stelmach@samsung.com>
In order to prepare for the kernel cgroup rework, let's introduce a new
unit type to systemd, the "slice". Slices can be arranged in a tree and
are useful to partition resources freely and hierarchally by the user.
Each service unit can now be assigned to one of these slices, and later
on login users and machines may too.
Slices translate pretty directly to the cgroup hierarchy, and the
various objects can be assigned to any of the slices in the tree.
Otherwise, when a network device is renamed, systemd-sysctl is run twice
with the same network device name: once for ACTION="add" and once for
ACTION="move".
The list and descriptions of valid transports was difficult to read, so
break the long sentence up into discrete man page list items to improve
readability.
Since the system journal wasn't open yet, available_space() returned 0.
Before:
systemd-journal[22170]: Allowing system journal files to grow to 4.0G.
systemd-journal[22170]: Journal size currently limited to 0B due to SystemKeepFree.
After:
systemd-journal[22178]: Allowing system journal files to grow to 4.0G.
systemd-journal[22178]: Journal size currently limited to 3.0G due to SystemKeepFree.
Also, when failing to write a message, show how much space was needed:
"Failed to write entry (26 items, 260123456 bytes) despite vacuuming, ignoring: ...".
quotaon.service is already installed through dist_systemunit_DATA, so it doesn't
need to be added to nodist_systemunit_DATA. Installing the same file twice
results in a race condition where the install process can fail.
https://bugs.freedesktop.org/show_bug.cgi?id=65659
[zj: actually remove quotaon.service from the other list.]
In the following scenario:
server creates system.journal
server creates user-1000.journal
both journals share the same seqnum_id.
Then
server writes to user-1000.journal first,
and server writes to system.journal a bit later,
and everything is fine.
The server then terminates (crash, reboot, rsyslog testing,
whatever), and user-1000.journal has entries which end with
a lower seqnum than system.journal. Now
server is restarted
server opens user-1000.journal and writes entries to it...
BAM! duplicate seqnums for the same seqnum_id.
Now, we usually don't see that happen, because system.journal
is closed last, and opened first. Since usually at least one
message is written during boot and lands in the system.journal,
the seqnum is initialized from it, and is set to a number higher
than than anything found in user journals. Nevertheless, if
system.journal is corrupted and is rotated, it can happen that
an entry is written to the user journal with a seqnum that is
a duplicate with an entry found in the corrupted system.journal~.
When browsing the journal, journalctl can fall into a loop
where it tries to follow the seqnums, and tries to go the
next location by seqnum, and is transported back in time to
to the older duplicate seqnum. There is not way to find
out the maximum seqnum used in a multiple files, without
actually looking at all of them. But we don't want to do
that because it would be slow, and actually it isn't really
possible, because a file might e.g. be temporarily unaccessible.
Fix the problem by using different seqnum series for user
journals. Using the same seqnum series for rotated journals
is still fine, because we know that nothing will write
to the rotated journal anymore.
Likely related:
https://bugs.freedesktop.org/show_bug.cgi?id=64566https://bugs.freedesktop.org/show_bug.cgi?id=59856https://bugs.freedesktop.org/show_bug.cgi?id=64296https://bugs.archlinux.org/task/35581https://bugzilla.novell.com/show_bug.cgi?id=817778
Possibly related:
https://bugs.freedesktop.org/show_bug.cgi?id=64293
The order was different in various places, which makes it harder to
read to code. Also consistently use ternany for all direction checks.
Remove one free(NULL).
This allows the caller to explicitly specify which journal files
should be opened. The same functionality could be achieved before
by creating a directory and playing around with symlinks. It
is useful to debug stuff and explore the journal, and has been
requested before.
Waiting is supported, the journal will notice modifications on
the files supplied when opening the journal, but will not add
any new files.