IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
hibernate-resume-generator understands resume= kernel command line parameter
and instantiates the systemd-resume@.service accordingly if it is passed.
This enables resume from hibernation using device specified on the kernel
command line, and it may be specified either as "/dev/disk/by-foo/bar"
or "FOO=bar", not only "/dev/sdXY" which is understood by the in-kernel
implementation.
So now resume= is brought on par with root= in terms of possible ways to
specify a device.
This can be used to initiate a resume from hibernation by path to a swap
device containing the hibernation image.
The respective templated unit is also added. It is instantiated using
path to the desired resume device.
When this system-wide start-up timeout is hit we execute one of the
failure actions already implemented for services that fail.
This should not only be useful on embedded devices, but also on laptops
which have the power-button reachable when the lid is closed. This
devices, when in a backpack might get powered on by accident due to the
easily reachable power button. We want to make sure that the system
turns itself off if it starts up due this after a while.
When the system manages to fully start-up logind will suspend the
machine by default if the lid is closed. However, in some cases we don't
even get as far as logind, and the boot hangs much earlier, for example
because we ask for a LUKS password that nobody ever enters.
Yeah, this is a real-life problem on my Yoga 13, which has one of those
easily accessible power buttons, even if the device is closed.
In contrast to the DHCP/IPv4LL/ICMP6 APIs sd-network is not a protocol
implementation but a client API for networkd, hence move it into
libsystemd proper.
In the long run this should become a full fledged client to networkd
(but not before networkd learns bus support). For now, just pull
interesting data out of networkd, udev, and rtnl and present it to the
user, in a simple but useful output.
We are unlikely to evert support most of them, but we can at least
display the types properly.
The list is taken from the IANA list.
The table of number->name mappings is converted to a switch
statement. gcc does a nice job of optimizing lookup (when optimization
is enabled).
systemd-resolve-host -t is now case insensitive.
We now maintain two lists of DNS servers: system servers and fallback
servers.
system servers are used in combination with any per-link servers.
fallback servers are only used if there are no system servers or
per-link servers configured.
The system server list is supposed to be populated from a foreign tool's
/etc/resolv.conf (not implemented yet).
Also adds a configuration switch for LLMNR, that allows configuring
whether LLMNR shall be used simply for resolving or also for responding.
Make sure we format UTF-8 labels as IDNA when writing them to DNS
packets, and as native UTF-8 when writing them to mDNS or LLMNR packets.
When comparing or processing labels always consider native UTF-8 and
IDNA formats equivalent.
LOC records have a version field. So far only version 0 has been
published, but if a record with a different version was encountered,
our only recourse is to treat it as an unknown type. This is
implemented with the 'unparseable' flag, which causes the
serialization/deserialization and printing function to cause the
record as a blob. The flag can be used if other packet types cannot be
parsed for whatever reason.
This tool will warn about misspelt directives, unknown sections, and
non-executable commands. It will also catch the common mistake of
using Accept=yes with a non-template unit and vice versa.
https://bugs.freedesktop.org/show_bug.cgi?id=56607
Commit 637f421e5c ("cgroups: always propagate controller membership
to siblings") changed the mask propagation logic, but the test wasn't
updated.
Move to normal tests from manual tests, it should not touch the system
anymore.
Also add a bit of debugging output to help diagnose problems,
add missing units, and simplify cppflags.
Move test-engine to normal tests from manual tests, it should now
work without destroying the system.
Our version has evolved independently of the original table
in systemd-config-keyboard, so it cannot be ever regenerated from
original upstream. Remove script to avoid confusion.
The unifont layer of libsystemd-terminal provides a fallback font for
situations where no system-fonts are available, or if you don't want to
deal with traditional font-formats for some reasons.
The unifont API mmaps a pre-compiled bitmap font that was generated out of
GNU-Unifont font-data. This guarantees, that all users of the font will
share the pages in memory. Furthermore, the layout of the binary file
allows accessing glyph data in O(1) without pre-rendering glyphs etc. That
is, the OS can skip loading pages for glyphs that we never access.
Note that this is currently a test-run and we want to include the binary
file in the GNU-Unifont package. However, until it was considered stable
and accepted by the maintainers, we will ship it as part of systemd. So
far it's only enabled with the experimental --enable-terminal, anyway.
The systemd-subterm example is a stacked terminal that shows how to
use sd-term. Instead of rendering images and displaying it via X11/etc.,
it uses its parent terminal to display the page (terminal-emulator inside
a terminal-emulator) (like GNU-screen and friends do).
This is only for testing and not installed system-wide!
The screen-layer represents the terminal-side (compared to the host-side).
It connects term_parser with term_page and implements all the required
control sequences.
We do not implement all available control sequences. Even though our
parser recognizes them, there is no need to handle them. Most of them are
legacy or unused. We try to be as compatible to xterm, so if we missed
something, we can implement it later. However, all the VT510 / VT440 stuff
can safely be skipped (who needs terminal macros? WTF?).
The keyboard-handling is still missing. It will be added once
systemd-console is available and we pulled in the key-definitions.
The term-parser is used to parse any input from TTY-clients. It reads CSI,
DCS, OSC and ST control sequences and normal escape sequences. It doesn't
do anything with the parsed data besides detecting the sequence and
returning it. The caller has to react to them.
The parser also comes with its own UTF-8 helpers. The reason for that is
that we don't want to assert() or hard-fail on parsing errors. Instead,
we treat any invalid UTF-8 sequences as ISO-8859-1. This allows pasting
invalid data into a terminal (which cannot be controlled through the TTY,
anyway) and we still deal with it in a proper manner.
This is _required_ for 8-bit and 7-bit DEC modes (including the g0-g3
mappings), so it's not just an ugly fallback because we can (it's still
horribly ugly but at least we have an excuse).