IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Previously, sd-bus inofficially already supported bus matches that
tested a string against an array of strings ("as"). This was done via an
enhanced way to interpret "arg0=" matches. This is problematic however,
since clients have no way to determine if their respective
implementation understood strv matches or not, thus allowing invalid
matches to be installed without a way to detect that.
This patch changes the logic to only allow such matches with a new
"arg0has=" syntax. This has the benefit that non-conforming
implementations will return a parse error and a client application may
thus efficiently detect support for the match type.
Matches of this type are useful for "udev"-like systems that "tag" objects
with a number of strings, and clients need to be able to match against
any of these "tags".
The name "has" takes inspiration from Python's ".has_key()" construct.
This allows marking properties as "explicit". Properties marked like
this are included in the introspection, but are avoided in GetAll()
property queries, PropertiesChanged() signals and in in GetManaged()
object manager calls and InterfacesAdded() signals.
Expensive properties may be marked that way, and they will be
retrievable when explicitly being requested, but never in "blanket"
all-property queries and signals.
This flag may be combined with the flags for "const" and
"emit-validation" properties, but not with "emit-validation", as that
is only useful for properties whose value shall be sent in "blanket"
all-property signals.
The "explicit" flag is also exposed in the introspection data via a new
annotation.
When enumerating machines from /run, and when accepting machine names
for operations, be more strict and always validate.
Note that these checks are strictly speaking unnecessary, since
enumeration happens only on the trusted /run...
As it turns out machine_name_is_valid() does the exact same thing as
hostname_is_valid() these days, as it just invoked that and checked the
name length was < 64. However, hostname_is_valid() checks the length
against HOST_NAME_MAX anyway (which is 64 on Linux), hence any
additional check is redundant.
We hence replace machine_name_is_valid() by a macro that simply maps it
to hostname_is_valid() but sets the allow_trailing_dot parameter to
false. We also move this this call to hostname-util.h, to the same place
as the hostname_is_valid() declaration.
If a connection passed KDBUS_HELLO_ACTIVATOR, it cannot do I/O on the
bus. Hence, we should not treat it as proper peer. To actually query it,
you have to explicitly ask for activators.
This makes kdbus in-line with what dbus-daemon does.
This reverts commit 92d16a53e3. As it turns
out, this is not how ObjectManager is supposed to work. It is just a
special behavior of BlueZ, but no-one else implements it this way.
Revert the patch as discussed on github, and as such revert to the
previous behavior (as described in the spec).
Prior to commit c32eb440ba, libudev's
function udev_enumerate_scan_devices() had behaved differently. If
parent match was added with udev_enumerate_add_match_parent(),
udev_enumerate_scan_devices() did not return error if some child devices
had no subsystem symlink in sysfs. An example of such devices is USB
endpoints /sys/bus/usb/devices/*/ep_*. If there was a parent match
against USB device, old implementation of udev_enumerate_scan_devices()
did not treat ep_* device directories without subsystem symlink as error
and just ignored them, but new implementation returns -ENOENT (also
ignoring these devices) though correctly enumerates all other matching
devices.
To compare, you could look at 96df036fe3,
in src/libudev/libudev-enumerate.c, function parent_add_child():
if (!match_subsystem(enumerate, udev_device_get_subsystem(dev)))
goto nomatch;
udev_device_get_subsystem() was returning NULL, match_subsystem() was
returning false, and USB endpoint device was ignored.
New parent_add_child() from src/libsystemd/sd-device/device-enumerator.c
checks return value of sd_device_get_subsystem() and fails if subsystem
was not found. Absence of subsystem symlink should not be really treated
as error because all enumerations of children of USB devices will fail
with -ENOENT. This new behavior also breaks system-config-printer.
So restore old behavior and treat absence of subsystem symlink as no
match.
To be able to use `systemd-run` or `machinectl login` on a container
that is in a private user namespace, the sub-process must have entered
the user namespace before connecting to the container's D-Bus, otherwise
the UID and GID in the peer credentials are garbage.
So we extend namespace_open and namespace_enter to support UID namespaces,
and we enter the UID namespace in bus_container_connect_{socket,kernel}.
namespace_open will degrade to a no-op if user namespaces are not enabled
in the kernel.
Special handling is required for the setns call in namespace_enter with
a user namespace, since transitioning to your own namespace is forbidden,
as it would result in re-entering your user namespace as root.
Arguably it may be valid to check this at the call site, rather than
inside namespace_enter, but it is less code to do it inside, and if the
intention of calling namespace_enter is to *be* in the target namespace,
rather than to transition to the target namespace, it is a reasonable
approach.
The check for whether the user namespace is the same must happen before
entering namespaces, as we may not be able to access /proc during the
intermediate transition stage.
We can't instead attempt to enter the user namespace and then ignore
the failure from it being the same namespace, since the error code is
not distinct, and we can't compare namespaces while mid-transition.
The following functions return immediately if a null pointer was passed.
* calendar_spec_free
* link_address_free
* manager_free
* sd_bus_unref
* sd_journal_close
* udev_monitor_unref
* udev_unref
It is therefore not needed that a function caller repeats a corresponding check.
This issue was fixed by using the software Coccinelle 1.0.1.
Whenever one of our calls is invoked with a non-NULL, writable
sd_bus_error parameter, let's fill in some valid error on failure. We
previously only filled in remote errors, but never local errors, which is
hard to handle by users. Hence, let's clean this up to always fill in
the error.
This introduces a new bus_assert_return() macro that works like
assert_return() but optionally also initializes a bus_error struct.
Fixes#224.
Based on a patch by Umut Tezduyar.
We should not fall back to dbus-1 and connect to the proxy when kdbus
returns an error that indicates that kdbus is running but just does not
accept new connections because of quota limits or something similar.
Using is_kdbus_available() in libsystemd/ requires it to move from
shared/ to libsystemd/.
Based on a patch from David Herrmann:
https://github.com/systemd/systemd/pull/886
Previously, if the event loop never ran before sd_event_now() would
fail. With this change it will instead fall back to invoking now(). This
way, the function cannot fail anymore, except for programming error when
invoking it with wrong parameters.
This takes into account the fact that many callers did not handle the
error condition correctly, and if the callers did, then they kept simply
invoking now() as fall back on their own. Hence let's shorten the code
using this call, and make things more robust, and let's just fall back
to now() internally.
Whether now() is used or the cache timestamp may still be detected via
the return value of sd_event_now(). If > 0 is returned, then the fall
back to now() was used, if == 0 is returned, then the cached value was
returned.
This patch also simplifies many of the invocations of sd_event_now():
the manual fall back to now() can be removed. Also, in cases where the
call is invoked withing void functions we can now protect the invocation
via assert_se(), acknowledging the fact that the call cannot fail
anymore except for programming errors with the parameters.
This change is inspired by #841.
Using --size option triggers an assert failure below because
parse_size() requires the second argument, base, being either 1000 or
1024. As it's for a packet size, it'd be better using IEC binary
suffix (base 1024) IMHO.
$ busctl --size 2048
Assertion 'base == 1000 || base == 1024' failed at src/basic/util.c:2222,
function parse_size(). Aborting.
Aborted (core dumped)
In member_compare_func(), it compares interface, type and name of
members. But as it can contain NULL pointer, it needs to check them
before calling strcmp(). So make it as a separate strcmp_ptr
function (named after streq_ptr) so that it can be used by others.
Also let streq_ptr() to use it in order to make the code simpler.
We *must not* assume that an entry returned by KDBUS_CMD_LIST only
carries a single KDBUS_ITEM_OWNED_NAME. Similarly, we already parse
multiple such items for message-metadata, so make sure we support the
same on KDBUS_CMD_LIST.
By relying on the kernel to return all names separately, we limit the
kernel API significantly. Stop this and let the kernel decide how to
return its data.
Some places invoked fflush() directly with their own manual error
checking, let's unify all that by using fflush_and_check().
This also unifies the general error paths of fflush()+rename() file
writers.
The gvariant root container contains a 'variant' at the end, which embeds
the whole message body. This variant *must* contain a structure so we are
compatible to dbus1. Otherwise, it could encode at most 1 type, instead
of a full signature.
Our gvariant message parser already parses the variant-content as a
structure, so we're mostly good. However, it does *not* include the
opening and closing parantheses, nor does it parse them.
This patch fixes the decoder to verify a message contains the
parantheses, and also make the encoder add those parantheses into the
marshaled message.
If c->item_size is 0, the next item to parse in a structure is empty.
However, this also implies that the signature must be empty. The latter
case is already handled just fine by enter_struct_or_dict_entry() so
there is no reason to handle the same case in the caller.
Right now sd_bus_message_skip() will abort execution if passed a
signature of the unary type "()". Regardless whether this should be
supported or not, we really must not abort. Drop the incorrect assertion
and add a test-case for this.
Each signal of the ObjectManager interface carries the path of the object
in question as an argument. Therefore, a caller will deduce the object
this signal is generated for, by parsing the _argument_. A caller will
*not* use the object-path of the message itself (i.e., message->path).
This is done on purpose, so the caller can rely on message->path to be
the path of the actual object-manager that generated this signal, instead
of the path of the object that triggered this signal.
This commit fixes all InterfacesAdded/Removed signals to use the path of
the closest object-manager as message->path. 'closest' in this case means
closest parent with at least one object-manager registered.
This fix raises the question what happens if we stack object-managers in
a hierarchy. Two implementations are possible: First, we report each
object only on the nearest object-manager. Second, we report it on each
parent object-manager. This patch chooses the former. This is compatible
with other existing ObjectManager implementations, which are required to
call GetManagedObjects() recursively on each object they find, which
implements the ObjectManager interface.
In bus_kernel_translate_message(), we print a DEBUG message on unknown
items. But right now, we also print this message for KDBUS_ITEM_TIMESTAMP
despite parsing it properly. Fix this!
This adds test-bus-proxy which should be used to test correct behavior of
systemd-bus-proxyd. The first test that was added is to verify we actually
receive NameAcquired signals for ourselves on bus-connect.
If the caller does not specify arg1 for NameOwnerChanged matches, we
really must take the ID from arg2 or arg3, if provided. They are
guaranteed to be identical to arg1 if either is supplied, but there is no
strict requiredment that arg1 is supplied. Hence, make sure to always
take the more restrictive match. Otherwise, we install rather wide
matches without anyone requiring them.
Make sure we don't install NameOwnerChanged matches if the caller passed
a destination='' match (except if it is the broadcast address). Per spec,
all NameOwnerChanged signals are broadcasts.
Only the NameLost/NameAcquired signals are unicasts, but those are never
received through sd-bus. Instead, the bus-proxy synthesizes them and it
already installs proper matches for them.
In gvariant, all fixed-size objects need to be sized a multiple of their
alignment. If a structure has only fixed-size members, it is required to
be fixed size itself. If you imagine a structure like (ty), you have an
8-byte member followed by an 1-byte member. Hence, the overall inner-size
is 9. The alignment of the object is 8, though. Therefore, the specs
mandates final padding after fixed-size structures, to make sure it's
sized a multiple of its alignment (=> 16).
On the gvariant decoder side, we already account for this in
bus_gvariant_get_size(), as we apply overall padding to the size of the
structure. Therefore, our decoder correctly skips such final padding when
parsing fixed-size structure.
On the gvariant encoder side, however, we don't account for this final
padding. This patch fixes the structure and dict-entry encoders to
properly place such padding at the end of non-uniform fixed-size
structures.
The problem can be easily seen by running:
$ busctl --user monitor
and
$ busctl call --user org.freedesktop.systemd1 / org.foobar foobar "(ty)" 777 8
The monitor will fail to parse the message and print an error. With this
patch applied, everything works fine again.
This patch also adds a bunch of test-cases to force non-uniform
structures with non-pre-aligned positions.
Thanks to Jan Alexander Steffens <jan.steffens@gmail.com> for spotting
this and narrowing it down to non-uniform gvariant structures. Fixes#597.
So right now our object-tree is limited to 2 levels at most
('/' and '/foo/...../bar'). We never link any intermediate levels, even
though that was clearly the plan. Fix the bus_node_allocate() helper to
actually link all intermediate nodes, too, not just the root node.
This fixes a simple inverse ptr-diff bug.
The downside of this fix is that we clearly never tested (nor used) the
object tree in any way. The only reason that the introspection works is
that our enumerators shortcut the object tree.
Lets see whether that code actually works..
Thanks to: Nathaniel McCallum <nathaniel@themccallums.org>
..for reporting this. See #524 for an actual example code.
It is highly confusing if a getter function returns 0, but the value is
set to NULL. This, right now, triggers assertions as code relies on the
returned values to be non-NULL.
Like with sd-bus-creds and friends, return 0 only if a value is actually
available.
Discussed with Tom, and actually fixes real bugs as in #512.
We were ignoring failures from unhexchar, which meant that invalid
hex characters were being turned into garbage rather than the string
rejected.
Fix this by making unhexmem return an error code, also change the API
slightly, to return the size of the returned memory, reflecting the
fact that the memory is a binary blob,and not a string.
For convenience, still append a trailing NULL byte to the returned
memory (not included in the returned size), allowing callers to
treat it as a string without doing a second copy.
Given a container "foo", that maps user id $UID to container user, using
user namespaces, this NSS module extenstion will now map the $UID to a
name "vu-foo-$TUID" for the translated UID $UID.
Similar, userns groups are mapped to "vg-foo-$TGID" for translated GIDs
of $GID.
This simple change should make userns users more discoverable. Also,
given that many tools like "adduser" check NSS before allocating a UID,
should lower the chance of UID range conflicts between tools.
If GetManagedObjects is called on /foo/bar, then it should also include
the object /foo/bar, if it exists. Right now, we only include objects
underneath /foo/bar/.
This follows the behavior of existing dbus implementations.
Obsoletes #527 and fixes#525. Reported by: Nathaniel McCallum
All other *_get_description() functions use 'const char**', so make sure
sd_bus_slot_get_description() does the same.
This changes API, but ABI stays stable. I think this is fine, but I
wouldn't mind bumping SONAME.
Reported in #528.
Right now, if you're already in a session and call CreateSession, we
return information about the current session of yours. This is highy
confusing and a nasty hack. Avoid that, and instead return a commonly
known error, so the caller can detect that.
This has the side-effect, that we no longer override XDG_VTNR and XDG_SEAT
in pam_systemd, if you're already in a session. But this sounds like the
right thing to do, anyway.
Right now, we never install destination matches on kdbus as the kernel did
not support MATCH rules on those. With the introduction of
KDBUS_ITEM_DST_ID we can now match on destination IDs, so add explicit
support for those.
This requires a recent kdbus module to work. However, there seems to be no
user-space that uses "Destination=''" matches, yet, so old kdbus modules
still work fine (we couldn't find any real user).
This is needed to match on unicast signals in bus-proxy. A followup will
add support for this.
Running `busctl monitor` currently buffers data for several seconds /
kilobytes before writing stdout. This is highly confusing if you dump in a
file, ^C busctl and then end up with a file with data of the last few
_seconds_ missing.
Fix this by explicitly flushing after each signal.
sd_bus_flush_close_unref() is a call that simply combines sd_bus_flush()
(which writes all unwritten messages out) + sd_bus_close() (which
terminates the connection, releasing all unread messages) +
sd_bus_unref() (which frees the connection).
The combination of this call is used pretty frequently in systemd tools
right before exiting, and should also be relevant for most external
clients, and is hence useful to cover in a call of its own.
Previously the combination of the three calls was already done in the
_cleanup_bus_close_unref_ macro, but this was only available internally.
Also see #327
When we get notifications from the kernel, we always turn them into
synthetic dbus1 messages. This means, we do *not* consume the kdbus
message, and as such have to free the offset.
Right now, the translation-helpers told the caller that they consumed the
message, which is wrong. Fix this by explicitly releasing all kernel
messages that are translated.
Though currently unused by us, netlink attribute types support embedding flags to indicate
if the type is encoded in network byte-order and if it is a nested attribute. Read out
these flags when parsing the message.
We will now swap the byteorder in case it is non-native when reading out integers (though
this is not needed by any of the types we currently support). We do not enforce the NESTED
flag, as the kernel gets this wrong in many cases.
Instead of representing containers as several arrays, make a new
netlink_container struct and keep one array of these structs. We
also introduce netlink_attribute structs that in the future will
hold meta-information about each atribute.
The kernel bonding layer allows passing an array of ARP IP targets as
bond-configuration. Due to the weird implementation of arrays in netlink
(which we haven't figure out a generic way to support, yet), we usually
hard-code the supported array-sizes. However, this should not be exported
from sd-netlink.
Instead, make sure the caller just uses it's current hack of enumerating
the types, and the sd-netlink core will have it's own list of supported
array-sizes (to be removed in future extensions, btw!). If either does not
match, we will just return a normal error.
Note that we provide 2 constants for ARP_IP_TARGETS_MAX now. However, both
have very different reasons:
- the constant in netdev-bond.c is used to warn the user that the given
number of targets might not be supported by the kernel (even though the
kernel might increase that number at _any_ time)
- the constant in sd-netlink is solely used due to us missing a proper
array implementation. Once that's supported in the type-system, it can
be removed without notice
Last but not least, this patch turns the log_error() into a log_warning().
Given that the previous condition was off-by-one, anyway, it never hit at
the right time. Thus, it was probably of no real use.
Explicitly export the root type-system to the type-system callers. This
avoids treating NULL as root, which for one really looks backwards (NULL
is usually a leaf, not root), and secondly prevents us from properly
debugging calling into non-nested types.
Also rename the root to "type_system_root". Once we support more than
rtnl, well will have to revisit that, anyway.
Empty type-systems are just fine. Avoid the nasty hack in
union-type-systems that treat empty type-systems as invalid. Instead check
for the actual types-array and make sure it's non-NULL (which is even true
for empty type-systems, due to "empty_types" array).
In sd-netlink-message, we always guarantee that the currently selected
type-system is non-NULL. Otherwise, we would be unable to parse any types
in the current container level. Hence, this assertion must be true:
message->container_type_system[m->n_containers] != NULL
During message_new() we currently do not verify that this assertion is
true. Instead, we blindly access nl_type->type_system and use it (which
might be NULL for basic types and unions). Fix this, by explicitly
checking that the root-level type is nested.
Note that this is *not* a strict requirement of netlink, but it's a strict
requirement for all message types we currently support. Furthermore, all
the callers of message_new() already verify that only supported types are
passed, therefore, this is a pure cosmetic check. However, it might be
needed on the future, so make sure we don't trap into this once we change
the type-system.
The NETLINK_TYPE_META pseudo-type is actually equivalent to an empty
nested type. Drop it and define an empty type-system instead.
This also has the nice side-effect that m->container_type_system[0] is
never NULL (which has really nasty side-effects if you try to read
attributes).
Right now we store the maximum type-ID of a type-system. This prevents us
from creating empty type-systems. Store the "count" instead, which should
be treated as max+1.
Note that type_system_union_protocol_get_type_system() currently has a
nasty hack to treat empty type-systems as invalid. This might need some
modification later on as well.
size_t is usually 64bit and int 32bit on a 64bit machine. This probably
does not matter for netlink message sizes, but nevertheless, avoid
hard-coding it anywhere.
Same as NLType, move NLTypeSystem into netlink-types.c and hide it from
the outside. Provide an accessor function for the 'max' field that is used
to allocate suitable array sizes.
Note that this will probably be removed later on, anyway. Once we support
bigger type-systems, it just seems impractical to allocate such big arrays
for each container entry. An RBTree would probably do just fine.
If we extend NLType to support arrays and further extended types, we
really want to avoid hard-coding the type-layout outside of
netlink-types.c. We already avoid accessing nl_type->type_system outside
of netlink-types.c, extend this to also avoid accessing any other fields.
Provide accessor functions for nl_type->type and nl_type->size and then
move NLType away from the type-system header.
With this in place, follow-up patches can safely turn "type_system" and
"type_system_union" into a real "union { }", and then add another type for
arrays.