IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
In mkosi, I want to add a sysupdate verb to wrap systemd-sysupdate.
The definitions will be picked up from mkosi.sysupdate/ and passed
to systemd-sysupdate. I want users to be able to write transfer
definitions that are independent of the output directory used by
mkosi. To make this possible, it should be possible to specify the
directory that transfer sources should be looked up in on the sysupdate
command line. Let's allow this via a new --transfer-source= option.
Additionally, transfer sources that want to take advantage of this
feature should specify PathRelativeTo=directory to indicate the configured
Path= is interpreted relative to the tranfer source directory specified
on the CLI.
This allows for the following transfer definition to be put in
mkosi.sysupdate:
"""
[Transfer]
ProtectVersion=%A
[Source]
Type=regular-file
Path=/
PathRelativeTo=directory
MatchPattern=ParticleOS_@v.usr-%a.@u.raw
[Target]
Type=partition
Path=auto
MatchPattern=ParticleOS_@v
MatchPartitionType=usr
PartitionFlags=0
ReadOnly=1
"""
This options is pretty simple, it allows specifying an UKI whose
sections to import first, and place at the beginning of the new UKI.
This is useful for generating multi-profile UKIs piecemeal: generate the
base UKI first, then append a profile, and another one and another one.
The sections imported this way are not included in any PCR signature,
the assumption is that that already happened before in the imported UKI.
Now that mkfs.btrfs is adding support for compressing the generated
filesystem (https://github.com/kdave/btrfs-progs/pull/882), let's
add general support for specifying the compression algorithm and
compression level to use.
We opt to not parse the specified compression algorithm and instead
pass it on as is to the mkfs tool. This has a few benefits:
- We support every compression algorithm supported by every tool
automatically.
- Users don't need to modify systemd-repart if a mkfs tool learns a
new compression algorithm in the future
- We don't need to maintain a bunch of tables for filesystem to map
from our generic compression algorithm enum to the filesystem specific
names.
We don't add support for btrfs just yet until the corresponding PR
in btrfs-progs is merged.
These operations might require slow I/O, and thus might block PID1's main
loop for an undeterminated amount of time. Instead of performing them
inline, fork a worker process and stash away the D-Bus message, and reply
once we get a SIGCHILD indicating they have completed. That way we don't
break compatibility and callers can continue to rely on the fact that when
they get the method reply the operation either succeeded or failed.
To keep backward compatibility, unlike reload control processes, these
are ran inside init.scope and not the target cgroup. Unlike ExecReload,
this is under our control and is not defined by the unit. This is necessary
because previously the operation also wasn't ran from the target cgroup,
so suddenly forking a copy-on-write copy of pid1 into the target cgroup
will make memory usage spike, and if there is a MemoryMax= or MemoryHigh=
set and the cgroup is already close to the limit, it will cause an OOM
kill, where previously it would have worked fine.
This adds two more fields in 'udevadm info':
- J for device ID, e.g. b128:1, c10:1, n1, and so on.
- B for driver subsystem, e.g. pci, i2c, and so on.
These, especially the device ID field may be useful to find udev
database file under /run/udev/data for a device.
To create the sd_device object of a driver, the function
sd_device_new_from_subsystem_sysname() requires "drivers" for subsystem
and e.g. "pci:iwlwifi" for sysname. Similarly, sd_device_new_from_device_id()
also requires driver subsystem. However, we have never provided a
way to get the driver subsystem ("pci" for the previous example) from
an existing sd_device object.
Let's introduce a way to get driver subsystem.
One of the major pait points of managing fleets of headless nodes is
that when something fails at startup, unless debug level was already
enabled (which usually isn't, as it's a firehose), one needs to manually
enable it and pray the issue can be reproduced, which often is really
hard and time consuming, just to get extra info. Usually the extra log
messages are enough to triage an issue.
This new option makes it so that when a service fails and is restarted
due to Restart=, log level for that unit is set to debug, so that all
setup code in pid1 and sd-executor logs at debug level, and also a new
DEBUG_INVOCATION=1 env var is passed to the service itself, so that it
knows it should start with a higher log level. Once the unit succeeds
or reaches the rate limit the original level is restored.
So far we manually hardcoded $LISTEN_FDNAMES to "varlink" in various
varlink service units we ship, even though FileDescriptorName=varlink
is specified in associated socket units already, because
FileDescriptorName= is currently silently ignored when combined with
Accept=yes. Let's step away from this, which seems saner.
Note that this is technically a compat break, but a mostly negligible
one as there shall be few users setting FileDescriptorName= but
still expecting LISTEN_FDNAMES=connection in the actual executable.
Preparation for #34080
DefaultRoute is a D-Bus property, not a valid setting name in .network
files nor resolved.conf.
Whether a link is the default route or not is configured with
DNSDefaultRoute= setting in .network files.
I don't actually need this anymore since we're going with a
unit based approach for the containers stuff internally so
let's just revert it.
Fixes#34085
This reverts commit ce2291730d.
A previous commit made sysupdate recognize installed versions where some
transfers are missing. This commit teaches sysupdate how to correctly
repair these incomplete versions.
Previously, if you had a incomplete installation of the OS booted, and
ran sysupdate in an attempt to repair it, sysupdate would make things
worse by creating copies of the currently-booted partitions in the
inactive slots. Then at boot you have two identical partitions, with
identical labels an UUIDs, and end up with a mess.
With this commit, sysupdate is able to recognize situations where it can
simply download the missing transfers and leave the rest of the system
undistrubed.
Partial fix for https://github.com/systemd/systemd/issues/33339
When enumerating what versions exist for a given target, sysupdate would
completely throw out any version that's incomplete (where some of the
transfers in the target have that version installed or available, and
other transfers do not).
If we're trying to find what versions we can offer for download, this is
great behavior. If the server side is advertising a partial update to
download, we shouldn't present it to the user.
On the other hand, if we're enumerating what versions we have currently
installed, this is a bad behavior. It makes sysupdate fragile. For
example, if a sysext introduces a new .conf file into
/usr/lib/sysupdate.d, suddenly the currently-installed OS stops being a
version that we've enumerated. Since it's not enumerated, it's not
protected, and so sysupdate will wipe the booted OS.
So if we're looking for installed versions, we now loosen the
restrictions and enumerate incomplete installations.
Partial fix for https://github.com/systemd/systemd/issues/33339
This has been a glaring omission the docs: when people create
.user/.group/.user-privileged/.group-privileged drop-in files, they
should also create matching .membership files.
This softens the behavior originally introduced in eded61e410 to apply
only to the fallback dns servers.
The intent is that the global FallbackDNS (instead of DNS) can now be
used in conjunction with the per-link dns, providing a fallback behavior
without introducing a scope overlap.
References: eded61e410 (resolved: demote the global unicast scope, 2024-08-19)