IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Normally, these services are killed because we run isolate. But I booted into
emergency mode (because of a futher bug with us timing out improperly on the
luks password prompt), and then continuted to the host system by running
'systemctl start systemd-switch-root.service'. My error, but the results are
confusing and bad: systemd in the host sees 'systemd-tmpfiles-setup.service'
as started successfully, and doesn't restart it, so the setup for /tmp/.X11 is
not done and gdm.service fails. So while we wouldn't encounter this during
normal successful boot, I think it's good to make this more robust.
The dep is added to systemd-tmpfiles-{setup,clean}, because /tmp is not
propagated over switch-root. /dev is, so I didn't touch
systemd-tmpfiles-setup-dev.service.
Boot loaders are software like any other, and hence muse be updated in
regular intervals. Let's add a simple (optional) service that updates
sd-boot automatically from the host if it is found installed but
out-of-date in the ESP.
Note that traditional distros probably should invoke "bootctl update"
directly from the package scripts whenver they update the sd-boot
package. This new service is primarily intended for image-based update
systems, i.e. where the rootfs or /usr are atomically updated in A/B
style and where the current boot loader should be synced into the ESP
from the currently booted image every now and then. It can also act as
safety net if the packaging scripts in classic systems are't doing the
bootctl update stuff themselves.
Since updating boot loaders mit be a tiny bit risky (even though we try
really hard to make them robust, by fsck'ing the ESP and mounting it only on
demand, by doing updates mostly as single file updates and by fsync()ing
heavily) this is an optional feature, i.e. subject to "systemctl
enable". However, since it's the right thing to do I think, it's enabled
by default via the preset logic.
Note that the updating logic is implemented gracefully: i.e. it's a NOP
if the boot loader is already new enough, or was never installed.
"Update about" is not gramatically correct. I also think saying "Record" makes
this easier to understand for people who don't necessarilly know what UTMP is.
In general, it's not very usuful to repeat the unit name as the description.
Especially when the word is a common name and if somebody doesn't understand
the meaning immediately, they are not going to gain anything from the
repeat either, e.g. "halt", "swap".
In the status-unit-format=combined output parentheses are used around
Description, so avoid using parenthesis in the Description itself.
Since d8f9686c0f we use the chattr +i flag
for marking containers in directories as reead-only. But to do so we
need the cap for it, hence grant it.
Fixes: #19115
I'm working on building initramfs images directly from normal packages, and it
doesn't make sense for those units to be started. Pristine system rpms need to
behave correctly as much as possible also in the initrd, and those units are
enabled by the rpms. There usually isn't enough time for the timer to actually
fire, but starting it gives a line on the console and generally looks confusing
and sloppy. Flushing the journal means that its actually lost, since the real
/var is not available yet.
Another approach would be not enable those units, but right now they are
statically enabled, and changing that would be more work, and doesn't really
seem necessary, since the condition checks are very quick.
Checking for /etc/initrd-release is the standard condition that the initrd
units use, so let's do the same here.
The comment talks about upstream development steps and doesn't make
sense for users. We used special '## ' syntax to strip it out during
build, but it got inadvertently reformatted as a normal comment
in 3982becc92.
We don't need two (and half) templating systems anymore, yay!
I'm keeping the changes minimal, to make the diff manageable. Some enhancements
due to a better templating system might be possible in the future.
For handling of '## ' — see the next commit.
Old meson fails with:
Element not a string: [<Holder: <ExternalProgram 'sh' -> ['/bin/sh']>>, '-c', 'test -n "$DESTDIR" || /bin/journalctl --update-catalog']
I'm doing it as a revert so that it's easy to undo the revert when we require
newer meson. The effect is not so bad, maybe a dozen or so lines about finding
'sh'.
Meson 0.58 has gotten quite bad with emitting a message every time
a quoted command is used:
Program /home/zbyszek/src/systemd-work/tools/meson-make-symlink.sh found: YES (/home/zbyszek/src/systemd-work/tools/meson-make-symlink.sh)
Program sh found: YES (/usr/bin/sh)
Program sh found: YES (/usr/bin/sh)
Program sh found: YES (/usr/bin/sh)
Program sh found: YES (/usr/bin/sh)
Program sh found: YES (/usr/bin/sh)
Program sh found: YES (/usr/bin/sh)
Program xsltproc found: YES (/usr/bin/xsltproc)
Configuring custom-entities.ent using configuration
Message: Skipping bootctl.1 because ENABLE_EFI is false
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Message: Skipping journal-remote.conf.5 because HAVE_MICROHTTPD is false
Message: Skipping journal-upload.conf.5 because HAVE_MICROHTTPD is false
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Message: Skipping loader.conf.5 because ENABLE_EFI is false
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
...
Let's suffer one message only for each command. Hopefully we can silence
even this when https://github.com/mesonbuild/meson/issues/8642 is
resolved.
This reverts commit 7c20dd4b6e.
Debian has now been updated to patch the issue, so SemaphoreCI should
no longer fail. The fix has also been backported to the affected
stable branches.
Otherwise a coredump started at the inconvinient moment can stop
shutdown.target leaving the system in a halfway-down state:
Pulling in shutdown.target/start from systemd-poweroff.service/start
Added job shutdown.target/start to transaction.
...
Keeping job shutdown.target/start because of systemd-poweroff.service/start
...
[ OK ] Stopped target Remote File Systems.
shutdown.target: starting held back, waiting for: systemd-networkd.socket
sysinit.target: stopping held back, waiting for: remount_tmp.service
systemd-coredump.socket: Incoming traffic
...
systemd-coredump@0-243-0.service: Trying to enqueue job systemd-coredump@0-243-0.service/start/replace
Added job systemd-coredump@0-243-0.service/start to transaction.
Pulling in systemd-journald.socket/start from systemd-coredump@0-243-0.service/start
Added job systemd-journald.socket/start to transaction.
Pulling in system.slice/start from systemd-journald.socket/start
Added job system.slice/start to transaction.
Pulling in -.slice/start from system.slice/start
Added job -.slice/start to transaction.
Pulling in system-systemd\x2dcoredump.slice/start from systemd-coredump@0-243-0.service/start
Added job system-systemd\x2dcoredump.slice/start to transaction.
Pulling in system.slice/start from system-systemd\x2dcoredump.slice/start
Pulling in shutdown.target/stop from system-systemd\x2dcoredump.slice/start
Added job shutdown.target/stop to transaction.
...
Keeping job systemd-poweroff.service/stop because of umount.target/stop
Keeping job shutdown.target/stop because of systemd-coredump@0-243-0.service/start
This changes the fstab-generator to handle mounting of /usr/ a bit
differently than before. Instead of immediately mounting the fs to
/sysroot/usr/ we'll first mount it to /sysusr/usr/ and then add a
separate bind mount that mounts it from /sysusr/usr/ to /sysroot/usr/.
This way we can access /usr independently of the root fs, without for
waiting to be mounted via the /sysusr/ hierarchy. This is useful for
invoking systemd-repart while a root fs doesn't exist yet and for
creating it, with partition data read from the /usr/ hierarchy.
This introduces a new generic target initrd-usr-fs.target that may be
used to generically order services against /sysusr/ to become available.
systemd-networkd.socket can re-start systemd-networkd.service in
shutdown and by doing this even stop shutdown.target leaving the
system in halfway-down state.
Fixes#4955.
Single-param LoadCredential= in units causes systemd v247/v248 to
assert when parsing. Disable it for now, until the fix is merged
in the stable trees, released and available (eg: in Debian
for the CI)
See: https://github.com/systemd/systemd/issues/19178
With 8f20232fcb systemd-localed supports
generating locales when required. This fails if the locale directory is
read-only, so make it writable.
Closes#19138
Let's make use of our own credentials infrastructure in our tools: let's
hook up systemd-sysusers with the credentials logic, so that the root
password can be provisioned this way. This is really useful when working
with stateless systems, in particular nspawn's "--volatile=yes" switch,
as this works now:
# systemd-nspawn -i foo.raw --volatile=yes --set-credential=passwd.plaintext-password:foo
For the first time we have a nice, non-interactive way to provision the
root password for a fully stateless system from the container manager.
Yay!
We have a chicken and egg problem: validation of DNSSEC signatures
doesn't work without a correct clock, but to set the correct clock we
need to contact NTP servers which requires resolving a hostname, which
would normally require DNSSEC validation.
Let's break the cycle by excluding NTP hostname resolution from
validation for now.
Of course, this leaves NTP traffic unprotected. To cover that we need
NTPSEC support, which we can add later.
Fixes: #5873#15607
Even though many of those scripts are very simple, it is easier to include
the header than to try to say whether each of those files is trivial enough
not to require one.
We'll leave this as opt-in (i.e. a unit that must be enabled
explicitly), since this is supposed to be a debug/developer feature
primarily, and thus no be around in regular production systems.
This adds the support for veritytab.
The veritytab file contains at most five fields, the first four are
mandatory, the last one is optional:
- The first field contains the name of the resulting verity volume; its
block device is set up /dev/mapper/</filename>.
- The second field contains a path to the underlying block data device,
or a specification of a block device via UUID= followed by the UUID.
- The third field contains a path to the underlying block hash device,
or a specification of a block device via UUID= followed by the UUID.
- The fourth field is the roothash in hexadecimal.
- The fifth field, if present, is a comma-delimited list of options.
The following options are recognized only: ignore-corruption,
restart-on-corruption, panic-on-corruption, ignore-zero-blocks,
check-at-most-once and root-hash-signature. The others options will
be implemented later.
Also, this adds support for the new kernel verity command line boolean
option "veritytab" which enables the read for veritytab, and the new
environment variable SYSTEMD_VERITYTAB which sets the path to the file
veritytab to read.
Instead of invoking meson-add-wants.sh once for each wants that has
to be added, we pass all wants to a single invocation of
meson-add-wants.sh and in meson-add-wants.sh, loop over the
arguments.
This saves about 300ms on the install step.
Before:
```
‣ Running build script...
[1/418] Generating version.h with a custom command
Installing /root/build/po/be.gmo to /root/dest/usr/share/locale/be/LC_MESSAGES/systemd.mo
Installing /root/build/po/be@latin.gmo to /root/dest/usr/share/locale/be@latin/LC_MESSAGES/systemd.mo
Installing /root/build/po/bg.gmo to /root/dest/usr/share/locale/bg/LC_MESSAGES/systemd.mo
Installing /root/build/po/ca.gmo to /root/dest/usr/share/locale/ca/LC_MESSAGES/systemd.mo
Installing /root/build/po/cs.gmo to /root/dest/usr/share/locale/cs/LC_MESSAGES/systemd.mo
Installing /root/build/po/da.gmo to /root/dest/usr/share/locale/da/LC_MESSAGES/systemd.mo
Installing /root/build/po/de.gmo to /root/dest/usr/share/locale/de/LC_MESSAGES/systemd.mo
Installing /root/build/po/el.gmo to /root/dest/usr/share/locale/el/LC_MESSAGES/systemd.mo
Installing /root/build/po/es.gmo to /root/dest/usr/share/locale/es/LC_MESSAGES/systemd.mo
Installing /root/build/po/fr.gmo to /root/dest/usr/share/locale/fr/LC_MESSAGES/systemd.mo
Installing /root/build/po/gl.gmo to /root/dest/usr/share/locale/gl/LC_MESSAGES/systemd.mo
Installing /root/build/po/hr.gmo to /root/dest/usr/share/locale/hr/LC_MESSAGES/systemd.mo
Installing /root/build/po/hu.gmo to /root/dest/usr/share/locale/hu/LC_MESSAGES/systemd.mo
Installing /root/build/po/id.gmo to /root/dest/usr/share/locale/id/LC_MESSAGES/systemd.mo
Installing /root/build/po/it.gmo to /root/dest/usr/share/locale/it/LC_MESSAGES/systemd.mo
Installing /root/build/po/ja.gmo to /root/dest/usr/share/locale/ja/LC_MESSAGES/systemd.mo
Installing /root/build/po/ko.gmo to /root/dest/usr/share/locale/ko/LC_MESSAGES/systemd.mo
Installing /root/build/po/lt.gmo to /root/dest/usr/share/locale/lt/LC_MESSAGES/systemd.mo
Installing /root/build/po/pl.gmo to /root/dest/usr/share/locale/pl/LC_MESSAGES/systemd.mo
Installing /root/build/po/pt_BR.gmo to /root/dest/usr/share/locale/pt_BR/LC_MESSAGES/systemd.mo
Installing /root/build/po/ro.gmo to /root/dest/usr/share/locale/ro/LC_MESSAGES/systemd.mo
Installing /root/build/po/ru.gmo to /root/dest/usr/share/locale/ru/LC_MESSAGES/systemd.mo
Installing /root/build/po/sk.gmo to /root/dest/usr/share/locale/sk/LC_MESSAGES/systemd.mo
Installing /root/build/po/sr.gmo to /root/dest/usr/share/locale/sr/LC_MESSAGES/systemd.mo
Installing /root/build/po/sv.gmo to /root/dest/usr/share/locale/sv/LC_MESSAGES/systemd.mo
Installing /root/build/po/tr.gmo to /root/dest/usr/share/locale/tr/LC_MESSAGES/systemd.mo
Installing /root/build/po/uk.gmo to /root/dest/usr/share/locale/uk/LC_MESSAGES/systemd.mo
Installing /root/build/po/zh_CN.gmo to /root/dest/usr/share/locale/zh_CN/LC_MESSAGES/systemd.mo
Installing /root/build/po/zh_TW.gmo to /root/dest/usr/share/locale/zh_TW/LC_MESSAGES/systemd.mo
Installing /root/build/po/pa.gmo to /root/dest/usr/share/locale/pa/LC_MESSAGES/systemd.mo
real 0m1.465s
user 0m1.025s
sys 0m0.426s
```
After:
```
‣ Running build script...
[1/418] Generating version.h with a custom command
Installing /root/build/po/be.gmo to /root/dest/usr/share/locale/be/LC_MESSAGES/systemd.mo
Installing /root/build/po/be@latin.gmo to /root/dest/usr/share/locale/be@latin/LC_MESSAGES/systemd.mo
Installing /root/build/po/bg.gmo to /root/dest/usr/share/locale/bg/LC_MESSAGES/systemd.mo
Installing /root/build/po/ca.gmo to /root/dest/usr/share/locale/ca/LC_MESSAGES/systemd.mo
Installing /root/build/po/cs.gmo to /root/dest/usr/share/locale/cs/LC_MESSAGES/systemd.mo
Installing /root/build/po/da.gmo to /root/dest/usr/share/locale/da/LC_MESSAGES/systemd.mo
Installing /root/build/po/de.gmo to /root/dest/usr/share/locale/de/LC_MESSAGES/systemd.mo
Installing /root/build/po/el.gmo to /root/dest/usr/share/locale/el/LC_MESSAGES/systemd.mo
Installing /root/build/po/es.gmo to /root/dest/usr/share/locale/es/LC_MESSAGES/systemd.mo
Installing /root/build/po/fr.gmo to /root/dest/usr/share/locale/fr/LC_MESSAGES/systemd.mo
Installing /root/build/po/gl.gmo to /root/dest/usr/share/locale/gl/LC_MESSAGES/systemd.mo
Installing /root/build/po/hr.gmo to /root/dest/usr/share/locale/hr/LC_MESSAGES/systemd.mo
Installing /root/build/po/hu.gmo to /root/dest/usr/share/locale/hu/LC_MESSAGES/systemd.mo
Installing /root/build/po/id.gmo to /root/dest/usr/share/locale/id/LC_MESSAGES/systemd.mo
Installing /root/build/po/it.gmo to /root/dest/usr/share/locale/it/LC_MESSAGES/systemd.mo
Installing /root/build/po/ja.gmo to /root/dest/usr/share/locale/ja/LC_MESSAGES/systemd.mo
Installing /root/build/po/ko.gmo to /root/dest/usr/share/locale/ko/LC_MESSAGES/systemd.mo
Installing /root/build/po/lt.gmo to /root/dest/usr/share/locale/lt/LC_MESSAGES/systemd.mo
Installing /root/build/po/pl.gmo to /root/dest/usr/share/locale/pl/LC_MESSAGES/systemd.mo
Installing /root/build/po/pt_BR.gmo to /root/dest/usr/share/locale/pt_BR/LC_MESSAGES/systemd.mo
Installing /root/build/po/ro.gmo to /root/dest/usr/share/locale/ro/LC_MESSAGES/systemd.mo
Installing /root/build/po/ru.gmo to /root/dest/usr/share/locale/ru/LC_MESSAGES/systemd.mo
Installing /root/build/po/sk.gmo to /root/dest/usr/share/locale/sk/LC_MESSAGES/systemd.mo
Installing /root/build/po/sr.gmo to /root/dest/usr/share/locale/sr/LC_MESSAGES/systemd.mo
Installing /root/build/po/sv.gmo to /root/dest/usr/share/locale/sv/LC_MESSAGES/systemd.mo
Installing /root/build/po/tr.gmo to /root/dest/usr/share/locale/tr/LC_MESSAGES/systemd.mo
Installing /root/build/po/uk.gmo to /root/dest/usr/share/locale/uk/LC_MESSAGES/systemd.mo
Installing /root/build/po/zh_CN.gmo to /root/dest/usr/share/locale/zh_CN/LC_MESSAGES/systemd.mo
Installing /root/build/po/zh_TW.gmo to /root/dest/usr/share/locale/zh_TW/LC_MESSAGES/systemd.mo
Installing /root/build/po/pa.gmo to /root/dest/usr/share/locale/pa/LC_MESSAGES/systemd.mo
real 0m1.162s
user 0m0.803s
sys 0m0.338s
```
systemd-timesyncd.service only applies the much weaker monotonic clock
from file logic, i.e should pull in and order itself before
time-set.target. The strong time-sync.target unit is pulled in by
systemd-time-wait-sync.service.
In hostnamed this is exposed as a dbus property, and in the logs in both
places.
This is of interest to network management software and such: if the fallback
hostname is used, it's not as useful as the real configured thing. Right now
various programs try to guess the source of hostname by looking at the string.
E.g. "localhost" is assumed to be not the real hostname, but "fedora" is. Any
such attempts are bound to fail, because we cannot distinguish "fedora" (a
fallback value set by a distro), from "fedora" (received from reverse dns),
from "fedora" read from /etc/hostname.
/run/systemd/fallback-hostname is written with the fallback hostname when
either pid1 or hostnamed sets the kernel hostname to the fallback value. Why
remember the fallback value and not the transient hostname in /run/hostname
instead?
We have three hostname types: "static", "transient", fallback".
– Distinguishing "static" is easy: the hostname that is set matches what
is in /etc/hostname.
– Distingiushing "transient" and "fallback" is not easy. And the
"transient" hostname may be set outside of pid1+hostnamed. In particular,
it may be set by container manager, some non-systemd tool in the initramfs,
or even by a direct call. All those mechanisms count as "transient". Trying
to get those cases to write /run/hostname is futile. It is much easier to
isolate the "fallback" case which is mostly under our control.
And since the file is only used as a flag to mark the hostname as fallback,
it can be hidden inside of our /run/systemd directory.
For https://bugzilla.redhat.com/show_bug.cgi?id=1892235.
MESON_INSTALL_QUIET is set when --quiet is passed to meson install.
Make sure we check the variable in our custom install scripts and
don't output anything if it is set.