IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
The main purpose of this hwdb was to tag touchpads that have the physical
trackstick buttons wired to the touchpad (Lenovo Carbon X1 3rd, Lenovo *50
series). This hwdb is not required on kernels 4.0 and above, the kernel now
re-routes button presses through the trackstick's device node. Userspace does
not need to do anything.
See kernel commit cdd9dc195916ef5644cfac079094c3c1d1616e4c.
This reverts commit 001a247324.
It is not udev's task to apply any of these setting that way, or
from udev rules files. Things need to be sortet out in the kernel,
or explicit whitelist can possibly be added to the hardware database.
Until that is sorted out, and general agreement, udev is not
willing to maintain any such lists or power management settings
in general.
"Thanks for digging this out! I thought my Kinesis keyboard got broken
and ordered a new one, only to find out that the new one doesn't work
as well. I'm not sure whether we should start collecting a blacklist
of keyboards which don't work with USB autosuspend, or rather a
whitelist? Or revert this wholesale?"
https://github.com/systemd/systemd/issues/340
USB and PCI soundcards have a nice set of ID_* properties. It would
be handy for firewire soundcards to have the same.
Note that this removes the explicit setting of ID_ID in the firewire
conditional. Because we are now setting ID_SERIAL, ID_ID will come
from later in the file.
The ALSA id sysattr is generated by the sound subsystem and is not
a stable identifier. It is generated though some string manipulation
then made unique if there is a conflict. This means that it is
enumeration-dependent and shouldn't be used for ID_ID.
If ID_ID is supposed to be system-unique, it is not already since
for firewire it is generated from the guid and there are broken
firewire devices that have duplicate guids across devices.
This is tracked for PulseAudio at
https://bugs.freedesktop.org/show_bug.cgi?id=90129.
This is essentially a revert of systemd
ed1b2d9fc7.
We only care about whether our direct parent is removable, not whether any
further points up the tree are - the kernel will take care of policy for
those itself. This enables autosuspend on devices where the root hub reports
that its removable state is unknown.
Parse properties in the form
EVDEV_ABS_00="<min>:<max>:<res>:<fuzz>:<flat>"
and apply them to the kernel device. Future processes that open that device
will see the updated EV_ABS range.
This is particularly useful for touchpads that don't provide a resolution in
the kernel driver but can be fixed up through hwdb entries (e.g. bcm5974).
All values in the property are optional, e.g. a string of "::45" is valid to
set the resolution to 45.
The order intentionally orders resolution before fuzz and flat despite it
being the last element in the absinfo struct. The use-case for setting
fuzz/flat is almost non-existent, resolution is probably the most common case
we'll need.
To avoid multiple hwdb invocations for the same device, replace the
hwdb "keyboard:" prefix with "evdev:" and drop the separate 60-keyboard.rules
file. The new 60-evdev.rules is called for all event nodes
anyway, we don't need a separate rules file and second callout to the hwdb
builtin.
On Mon, Mar 23, 2015 at 8:55 AM, Mantas Mikulėnas <grawity@gmail.com> wrote:
> On Tue, Mar 17, 2015 at 11:50 PM, Kay Sievers <kay@vrfy.org> wrote:
>> On Tue, Mar 17, 2015 at 5:00 PM, Mantas Mikulėnas <grawity@gmail.com>
>> wrote:
>> > Accidentally dropped in 1aff20687f.
>> > ---
>> > rules/60-persistent-storage.rules | 2 +-
>> > 1 file changed, 1 insertion(+), 1 deletion(-)
>>
>> > +KERNEL!="loop*|mmcblk[0-9]*|mspblk[0-9]*|nvme*|sd*|sr*|vd*",
>> > GOTO="persistent_storage_end"
>>
>> We can't do that, we need to ignore the mmc*rpmb devices:
>>
>> http://cgit.freedesktop.org/systemd/systemd/commit/?id=b87b01cf83947f467f3c46d9831cd67955fc46b9
>>
>> Maybe "mmcblk*[0-9]" will work?
>
> Yeah, that would probably work (the names are like mmcblk0p1 etc.)
We should never access parents, as the sysfs hierarchy is in no way
stable. Use KERNELS== etc. to match on a parent, then access it via
$attr{} (which accesses the matching device, not the current device).
We match on the evdev node, but only the parent has a "name" attribute.
Use $attr{device/name} to access it.
This is borked since 2013, I wonder how that ever worked? Maybe this will
suddenly fix all the DMI-based key detections.
Thanks to Peter Hutterer for catching this!
This reverts commit ba76ee29bc. As it turns
out, we need to match on driver=atkbd to not load the fixups on any
plugged USB devices.
That is, whenever you use "name:<name>:dmi:<dmi>" style matches, you
better provide a name or you're screwing things up.
Currently, we always run
hwdb 'keyboard:name:$attr{name}:$attr{[dmi/id]modalias}'
as last step to match keyboards. Therefore, if nothing else matched so
far, we still try the device-name+dmi combination.
However, we have a special atkbd rule which is only run for atkbd as:
hwdb 'keyboard:$attr{[dmi/id]modalias}'
This is redundant, as we already pass the same information to hwdb in the
last fallback step.
This patch converts the hwdb "keyboard:dmi:*" matches to
"keyboard:name:*:dmi:*" matches and drops the redundant rule.
There is no reason to match on usb-modaliases, if we can use the
input-modalias to achieve the same. This commit changes the
keyboard-lookups to not be restricted to USB, but pass all modaliases to
the hwdb. Furthermore, we convert all usb:* matches to input:* matches,
thus getting rid of any ambiguity if multiple usb devices are chained (or
a bluetooth device / etc. is on top).
Note that legacy keyboard:usb:* matches are still supported, but
deprecated. If possible, please use keyboard:input:* matches instead.
This is a required step to make other input devices work with
60-keyboard.hwdb. Other bus-types are often chained on usb and we want to
avoid any ambiguity here if we incorrectly match on a USB hub.
Newly added kernel drivers repeatedly pass our blacklist and
cause trouble for the devices, because they do not expect to
be examined by udev's default rules which include blkid.
This turns the blacklist into a whitelist. Device type which
need support for additional symlinks need to be added to the
whitelist now.
Note, that the by-id, by-path symlinks are only intended for
hotpluggable devices. There is no reason for exotic, or for
statically configured devices to provide them.
We don't actually want a by-path/ symlink for MMC RPMB devices, so just add
them to the blacklist. This will prevent creating wrong by-path links and
blkid'ing those.
Linux 3.10+ exposes RPMB (Replay Protected Memory Block) partitions of MMC
devices [1] ; trying to read them with blkid or other unspecific means will
cause kernel buffer I/O errors and timeouts. So don't run blkid on these.
Also ensure that /dev/disk/by-path creates proper symlinks and exposes the
-rpmb partition separately, instead of letting the "normal" partition symlink
point to the rpbm device (this is a race condition).
[1] http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=090d25fe224c0https://launchpad.net/bugs/1333140
Currently used to tag devices in the new Lenovo *50 series and the X1 Carbon
3rd. These laptops re-introduced the physical trackpoint buttons that were
missing from the *40 series but those buttons are now wired up to the
touchpad.
The touchpad now sends BTN_0, BTN_1 and BTN_2 for the trackpoint. The same
button codes were used in older touchpads that had dedicated scroll up/down
buttons. Input drivers need to work around this and thus know what they're
dealing with.
For the previous gen we introduced INPUT_PROP_TOPBUTTONPAD in the kernel, but
the resulting mess showed that these per-device quirks should really live in
userspace.
The list currently includes the X1 Carbon 3rd PNPID, others will be added as
get to know which PNPID they have.
This rule is only run on tablet/touchscreen devices, and extracts their size
in millimeters, as it can be found out through their struct input_absinfo.
The first usecase is exporting device size from tablets/touchscreens. This
may be useful to separate policy and application at the time of mapping
these devices to the available outputs in windowing environments that don't
offer that information as readily (eg. Wayland). This way the compositor can
stay deterministic, and the mix-and-match heuristics are performed outside.
Conceivably, size/resolution information can be changed through EVIOCSABS
anywhere else, but we're only interested in values prior to any calibration,
this rule is thus only run on "add", and no tracking of changes is performed.
This should only remain a problem if calibration were automatically applied
by an earlier udev rule (read: don't).
v2: Folded rationale into commit log, made a builtin, set properties
on device nodes themselves
v3: Use inline function instead of macro for mm. size calculation,
use DECIMAL_STR_MAX, other code style issues
v4: Made rule more selective
v5: Minor style issues, renamed to a more generic builtin, refined
rule further.
Pointer acceleration for relative input devices (mice, trackballs, etc.)
applies to the deltas of the device. Alas, those deltas have no physical
reference point - a delta of 10 may be caused by a large movement of a
low-dpi mouse or by a minute movement of a high-dpi mouse.
Which makes pointer acceleration a bit useless and high-dpi devices
essentially unusable.
In an ideal world, we could read the DPI from the device directly and work
with that. In the world we actually live in, we need to compile this list
manually. This patch introduces the database, with the usual match formats
and a single property to be set on a device: MOUSE_DPI
That is either a single value for most mice, or a list of values for mice
that can change resolution at runtime. The exact format is detailed in the
hwdb file.
Note that we're explicitly overshooting the requirements we have for
libinput atm. Frequency could be detected in software and we don't
actually use the list of multiple resolutions (because we can't detect
when they change anyway). However, we might as well collect those values
from the get-go, adding/modifying what will eventually amount to hundreds
of entries is a bit cumbersome.
Note: we rely on the input_id builtin to tag us as mouse first, ordering
of the rules is important.
(David: fixed up typos and moved hwdb file into ./hwdb/)