IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
This is primarily supposed to be a 1st step with varlinkifying our
various command line tools, and excercise in how this might look like
across our codebase one day. However, at AllSystemsGo! 2023 it was
requested that we provide an API to do a PCR measurement along with a
matching event log record, and this provides that.
This adds an explicit service for initializing the TPM2 SRK. This is
implicitly also done by systemd-cryptsetup, hence strictly speaking
redundant, but doing this early has the benefit that we can parallelize
this in a nicer way. This also write a copy of the SRK public key in PEM
format to /run/ + /var/lib/, thus pinning the disk image to the TPM.
Making the SRK public key is also useful for allowing easy offline
encryption for a specific TPM.
Sooner or later we should probably grow what this service does, the
above is just the first step. For example, the service should probably
offer the ability to reset the TPM (clear the owner hierarchy?) on a
factory reset, if such a policy is needed. And we might want to install
some default AK (?).
Fixes: #27986
Also see: #22637
Before this commit, the hibernate location logic only exists in
the generator. Also, we compare device nodes (devnode_same()) and
clear EFI variable HibernateLocation in the generator too. This is
not ideal though: when the generator gets to run, udev hasn't yet
started, so effectively devnode_same() always fails. Moreover, if
the boot process is interrupted by e.g. battery-check, the hibernate
information is lost.
Therefore, let's split out the logic of finding hibernate location.
The generator only does the initial validation of system info and
enables systemd-hibernate-resume.service, and when the service
actually runs we validate everything again, which includes comparing
the device nodes and clearing the EFI variable. This should make
things more robust, plus systems that don't utilize a systemd-enabled
initrd can use the exact same logic to resume using the EFI variable.
I.e., systemd-hibernate-resume can be used standalone.
- add reference to the service unit in the man page,
- fix several indentation and typos,
- replace '(uint64_t) -1' with 'UINT64_MAX',
- drop unnecessary 'continue'.
This makes tmpfiles, sysusers, and udevd invoked in the following order:
1. systemd-tmpfiles-setup-dev-early.service
Create device nodes gracefully, that is, create device nodes anyway
by ignoring unknown users and groups.
2. systemd-sysusers.service
Create users and groups, to make later invocations of tmpfiles and
udevd can resolve necessary users and groups.
3. systemd-tmpfiles-setup-dev.service
Adjust owners of previously created device nodes.
4. systemd-udevd.service
Process all devices. Especially to make block devices active and can
be mountable.
5. systemd-tmpfiles-setup.service
Setup basic filesystem.
Follow-up for b42482af90.
Fixes#28653.
Replaces #28681 and #28732.
Let's rename the unit to systemd-battery-check.service. We usually want
to name our own unit files like our tools they wrap, in particular if
they are entirely defined by us (i.e. not just wrappers of foreign
concepts)
While we are at it, also hook this in from initrd.target, and order it
against initrd-root-device.target so that it runs before the root device
is possibly written to (i.e. mounted or fsck'ed).
This is heavily inspired by @aafeijoo-suse's PR #28208, but quite
different ;-)
This also merges two arrays units and in_units, and uses dictionary
for declaring units.
This also fixes the condition handling, that previously only two
conditions were handled and rests were ignored.
This adds a new mechanism for rebooting, a form of "userspace reboot"
hereby dubbed "soft-reboot". It will stop all services as in a usual
shutdown, possibly transition into a new root fs and then issue a fresh
initial transaction. The kernel is not replaced.
File descriptors can be passed over, thus opening the door for leaving
certain resources around between such reboots.
Usecase: this is an extremely quick way to reset userspace fully when
updating image based systems, without going through a full
hardware/firmware/boot loader/kernel/initrd cycle. It minimizes "grayout time"
for OS updates. (In particular when combined with kernel live patching)
This mimics what we already have for cryptsetup services: the slice they
are placed in (they have their own slice since that's what we do by
default for instantiated services) shouldn't conflict with
shutdown.target, so that veritysetup services can stay around until the
very end (which is what we want for the root and usr verity volumes).
It's literally just a copy of the same unit we already have for
cryptsetup, just with an updated description string.
This drops all mentions of gnu-efi and its manual build machinery. A
future commit will bring bootloader builds back. A new bootloader meson
option is now used to control whether to build sd-boot and its userspace
tooling.
since we don't have systemd-pcrphase built anyway, which breaks the tests:
...
I: Attempting to install /usr/lib/systemd/systemd-networkd-wait-online (based on unit file reference)
I: Attempting to install /usr/lib/systemd/systemd-network-generator (based on unit file reference)
I: Attempting to install /usr/lib/systemd/systemd-oomd (based on unit file reference)
I: Attempting to install /usr/lib/systemd/systemd-pcrphase (based on unit file reference)
W: Failed to install '/usr/lib/systemd/systemd-pcrphase'
make: *** [Makefile:4: setup] Error 1
make: Leaving directory '/root/systemd/test/TEST-01-BASIC'
Follow-up to 04959faa63.
The systemd-growfs@.service units are currently written in full for each
file system to grow. Which is kinda pointless given that (besides an
optional ordering dep) they contain always the same definition. Let's
fix that and add a static template for this logic, that the generator
simply instantiates (and adds an ordering dep for).
This mimics how systemd-fsck@.service is handled. Similar to the wait
that for root fs there's a special instance systemd-fsck-root.service
we also add a special instance systemd-growfs-root.service for the root
fs, since it has slightly different deps.
Fixes: #20788
See: #10014
We want PCR 15 to be useful for binding per-system policy to. Let's
measure the machine ID into it, to ensure that every OS we can
distinguish will get a different PCR (even if the root disk encryption
key is already measured into it).
Before this patch the only way to prevent journald from reading the audit
messages was to mask systemd-journald-audit.socket. However this had main
drawback that downstream couldn't ship the socket disabled by default (beside
the fact that masking units is not supposed to be the usual way to disable
them).
Fixes#15777
This renames systemd-boot-system-token.service to
systemd-boot-random-seed.service and conditions it less strictly.
Previously, the job of the service was to write a "system token" EFI
variable if it was missing. It called "bootctl --graceful random-seed"
for that. With this change we condition it more liberally: instead of
calling it only when the "system token" EFI variable isn't set, we call
it whenever a boot loader interface compatible boot loader is used. This
means, previously it was invoked on the first boot only: now it is
invoked at every boot.
This doesn#t change the command that is invoked. That's because
previously already the "bootctl --graceful random-seed" did two things:
set the system token if not set yet *and* refresh the random seed in the
ESP. Previousy we put the focus on the former, now we shift the focus to
the latter.
With this simple change we can replace the logic
f913c784ad added, but from a service that
can run much later and doesn't keep the ESP pinned.
This adds two more phases to the PCR boot phase logic: "sysinit" +
"final".
The "sysinit" one is placed between sysinit.target and basic.target.
It's good to have a milestone in this place, since this is after all
file systems/LUKS volumes are in place (which sooner or later should
result in measurements of their own) and before services are started
(where we should be able to rely on them to be complete).
This is particularly useful to make certain secrets available for
mounting secondary file systems, but making them unavailable later.
This breaks API in a way (as measurements during runtime will change),
but given that the pcrphase stuff wasn't realeased yet should be OK.
This makes use of the option switch that was added in the previous commit.
We used a pretty big hammer on a relatively small nail: we would do daemon-reload
and (in principle) allow any configuration to be changed. But in fact we only
made use of this in systemd-fstab-generator. systemd-fstab-generator filters
out all mountpoints except /usr and those marked with x-initrd.mount, i.e. on
a big majority of systems it wouldn't do anything.
Also, since systemd-fstab-generator first parses /proc/cmdline, and then
initrd's /etc/fstab, and only then /sysroot/etc/fstab, configuration in the
host would only matter if it the same mountpoint wasn't configured "earlier".
So the config in the host could be used for new mountpoints, but it couldn't
be used to amend configuration for existing mountpoints. And we wouldn't actually
remount anything, so mountpoints that were already mounted wouldn't be affected,
even if did change some config.
In the new scheme, we will parse /sysroot/etc/fstab and explicitly start
sysroot-usr.mount and other units that we just wrote. In most cases (as written
above), this will actually result in no units being created or started.
If the generator is invoked on a system with /sysroot/etc/fstab present,
behaviour is not changed and we'll create units as before. This is needed so
that if daemon-reload is later at some points, we don't "lose" those units.
There's a minor bugfix here: we honour x-initrd.mount for swaps, but we
wouldn't restart swap.target, i.e. the new swaps wouldn't necessarilly be
pulled in immediately.
If for any reason something goes wrong during the boot process (most likely due
to a network issue), system admins should be allowed to log in to the system to
debug the problem. However due to the login session barrier enforced by
systemd-user-sessions.service for all users, logins for root will be delayed
until a (dbus) timeout expires. Beside being confusing, it's not a nice user
experience to wait for an indefinite period of time (no message is shown) this
and also suggests that something went wrong in the background.
The reason of this delay is due to the fact that all units involved in the
creation of a user session are ordered after systemd-user-sessions.service,
which is subject to network issues. If root needs to log in at that time,
logind is requested to create a new session (via pam_systemd), which ultimately
ends up waiting for systemd-user-session.service to be activated. This has the
bad side effect to block login for root until the dbus call done by pam_systemd
times out and the PAM stack proceeds anyways.
To solve this problem, this patch orders the session scope units and the user
instances only after systemd-user-sessions.service for unprivileged users only.
GIT_VERSION is not available as a config.h variable, because it's rendered
into version.h during builds. Let's rework jinja2 rendering to also
parse version.h. No functional change, the new variable is so far unused.
I guess this will make partial rebuilds a bit slower, but it's useful
to be able to use the full version string.
These unit (if enabled) will try to update the OS in regular intervals.
Moreover, every day in the early morning this will attempt to reboot the
system if there's a newer version installed than running.
The systemd-oomd.service unit contains
[Install]
WantedBy=multi-user.target
Alias=dbus-org.freedesktop.oom1.service
which means the symlink is supposed to be created dynamically when the
service is enabled.
When using "capture : true" in custom_target()s the mode of the source
file is not preserved when the generated file is not installed and so
needs to be tweaked manually. Switch from output capture to creating the
target file and copy the permissions from the input file.
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
This adds support for dm integrity targets and an associated
/etc/integritytab file which is required as the dm integrity device
super block doesn't include all of the required metadata to bring up
the device correctly. See integritytab man page for details.
Compared to PID1 where systemd-oomd has to be the client to PID1
because PID1 is a more privileged process than systemd-oomd, systemd-oomd
is the more privileged process compared to a user manager so we have
user managers be the client whereas systemd-oomd is now the server.
The same varlink protocol is used between user managers and systemd-oomd
to deliver ManagedOOM property updates. systemd-oomd now sets up a varlink
server that user managers connect to to send ManagedOOM property updates.
We also add extra validation to make sure that non-root senders don't
send updates for cgroups they don't own.
The integration test was extended to repeat the chill/bloat test using
a user manager instead of PID1.
We don't need two (and half) templating systems anymore, yay!
I'm keeping the changes minimal, to make the diff manageable. Some enhancements
due to a better templating system might be possible in the future.
For handling of '## ' — see the next commit.
Old meson fails with:
Element not a string: [<Holder: <ExternalProgram 'sh' -> ['/bin/sh']>>, '-c', 'test -n "$DESTDIR" || /bin/journalctl --update-catalog']
I'm doing it as a revert so that it's easy to undo the revert when we require
newer meson. The effect is not so bad, maybe a dozen or so lines about finding
'sh'.
Meson 0.58 has gotten quite bad with emitting a message every time
a quoted command is used:
Program /home/zbyszek/src/systemd-work/tools/meson-make-symlink.sh found: YES (/home/zbyszek/src/systemd-work/tools/meson-make-symlink.sh)
Program sh found: YES (/usr/bin/sh)
Program sh found: YES (/usr/bin/sh)
Program sh found: YES (/usr/bin/sh)
Program sh found: YES (/usr/bin/sh)
Program sh found: YES (/usr/bin/sh)
Program sh found: YES (/usr/bin/sh)
Program xsltproc found: YES (/usr/bin/xsltproc)
Configuring custom-entities.ent using configuration
Message: Skipping bootctl.1 because ENABLE_EFI is false
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Message: Skipping journal-remote.conf.5 because HAVE_MICROHTTPD is false
Message: Skipping journal-upload.conf.5 because HAVE_MICROHTTPD is false
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Message: Skipping loader.conf.5 because ENABLE_EFI is false
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
...
Let's suffer one message only for each command. Hopefully we can silence
even this when https://github.com/mesonbuild/meson/issues/8642 is
resolved.
This changes the fstab-generator to handle mounting of /usr/ a bit
differently than before. Instead of immediately mounting the fs to
/sysroot/usr/ we'll first mount it to /sysusr/usr/ and then add a
separate bind mount that mounts it from /sysusr/usr/ to /sysroot/usr/.
This way we can access /usr independently of the root fs, without for
waiting to be mounted via the /sysusr/ hierarchy. This is useful for
invoking systemd-repart while a root fs doesn't exist yet and for
creating it, with partition data read from the /usr/ hierarchy.
This introduces a new generic target initrd-usr-fs.target that may be
used to generically order services against /sysusr/ to become available.
We'll leave this as opt-in (i.e. a unit that must be enabled
explicitly), since this is supposed to be a debug/developer feature
primarily, and thus no be around in regular production systems.
This adds the support for veritytab.
The veritytab file contains at most five fields, the first four are
mandatory, the last one is optional:
- The first field contains the name of the resulting verity volume; its
block device is set up /dev/mapper/</filename>.
- The second field contains a path to the underlying block data device,
or a specification of a block device via UUID= followed by the UUID.
- The third field contains a path to the underlying block hash device,
or a specification of a block device via UUID= followed by the UUID.
- The fourth field is the roothash in hexadecimal.
- The fifth field, if present, is a comma-delimited list of options.
The following options are recognized only: ignore-corruption,
restart-on-corruption, panic-on-corruption, ignore-zero-blocks,
check-at-most-once and root-hash-signature. The others options will
be implemented later.
Also, this adds support for the new kernel verity command line boolean
option "veritytab" which enables the read for veritytab, and the new
environment variable SYSTEMD_VERITYTAB which sets the path to the file
veritytab to read.