IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
systemd-stub provides the signing key for TPM2 signed PCR policies in a
file tpm2-pcr-public-key.pem to userspace. Hence, to clarify that this
is the same key as used when signing via "systemd-measure", let's rename
it in the docs like that.
Also rename the private key to tpm2-pcr-private-key.pem, to keep the
symmetry.
With this we should universally stick to this nomenclature:
1. tpm2-pcr-public-key.pem ← public part of signing key
2. tpm2-pcr-private-key.pem ← private part of signing key
3. tpm2-pcr-signature.json ← signature file made with key pair
Inspired by: #34069
It is not true that "no string" is written to journal; the binary
name is used when run via `systemd-cat command`, or `cat` is used
when run via `command | systemd-cat`.
These variables closely mirror the existing
LoaderDevicePartUUID/LoaderImageIdentifier variables. But the Stub…
variables indicate the location of the stub/UKI (i.e. of systemd-stub),
while the Loader… variables indicate the location of the boot loader
(i.e. of systemd-boot). (Except of course, there is no boot loader used,
in which case both sets point to the stub/UKI, as a special case).
This actually matters, as we support that sd-boot runs off the ESP,
while a UKI then runs off XBOOTLDR, i.e. two distinct partitions.
First of all, these were always set, i.e. since sd-boot was merged into
our tree, i.e. v220. Let's say so explicitly.
Also, let's be more accurate, regarding which partition this referes to:
it's usually "the" ESP, but given that you can make firmware boot from
arbitrary disks, it could be any other partition too. Hence, be
explicit on this.
Also, clarify tha sd-stub will set this too, if sd-boot never set it.
This adds a ability to add alternative sections of a specific type in
the same UKI. The primary usecase is for supporting multiple different
kernel cmdlines that are baked into a UKI.
The mechanism is relatively simple (I think), in order to make it robust.
1. A new PE section ".profile" is introduced, that is a lot like
".osrel", but contains information about a specific "profile" to
boot. The ".profile" section can appear multiple times in the same
PE, and acts as delimiter indicating where a new profile starts.
Everything before the first ".profile" is called the "base profile",
and is shared among all other profiles, which can then override or
add addition PE sections on top.
2. An UKI's command line can be prefixed with an argument such as "@0" or
"@1" or "@2" which indicates the "profile" to boot. If no argument is
specified the default is profile 0. Also, a UKI that lacks any
.profile section is treated like one with only a profile 0, but with
no data in that profile section.
3. The stub will first search for its usual set of PE sections
(hereafter called "base sections"), and stop at the first .profile PE
section if any. It will then find the .profile matching the selected
profile by its index, and any sections found as part of that profile
on top of the base sections.
And that's already it.
Example: let's say a distro wants to provide a single UKI that can be
invoked in one of three ways:
1. The regular profile that just boots the system
2. A profile that boots into storagetm
3. A profile that initiates factory reset and reboots.
For this it would define a classic UKI with sections .linux, .initrd,
.cmdline, and whatever else it needs. The .cmdline section would contain
the kernel command line for the regular profile.
It would then insert one ".profile" section, with a contents like the
following:
ID=regular
This is the profile for profile 0. It would immediately afterwards add
another ".profile" section:
ID=storagetm
TITLE=Boot into Storage Target Mode
This would then followed with a .cmdline section that is just like the
basic one, but with "rd.systemd.unit=storage-target-mode.target"
suffixed. Then, another .profile section would be added:
ID=factory-reset
TITLE=Factory Reset
Which is then followed by one last PE section: a .cmdline one with
"systemd.unit=factory-reset.target" suffixed to te regular command line.
i.e. expressed in tabular form the above would be:
The base profile:
.linux
.initrd
.cmdline
.osrel
The regular boot profile:
.profile
The storagetm profile:
.profile
.cmdline
The factory reset profile:
.profile
.cmdline
You might wonder why the first .cmdline in the list above is placed in
the base profile rather than in the regular boot profile, given that it
is overriden in all other profiles anyway. And you are right. The only
reason I'd place it in the base profile is that it makes the UKI more
nicely extensible if later profiles are added that want to replace
something else instead of the .cmdline, for example .ucode or so. But it
really doesn't matter much.
While the primary usecase is of course multiple alternative command
lines, the concept is more powerful than that: for various usecases it
might be valuable to offer multiple choices of devicetree, ucode or
initrds.
The .profile contents is also passed to the invoked kernel as a file in
/.extra/profile (via a synthetic initrd). Thus, this functionality can
even be useful without overriding any section at all, simply by means of
reading that file from userspace.
Design choices:
1. On purposes I used a special command line marker (i.e. the "@" thing,
which maybe we should call the "profile selector"), that doesn't look
like a regular kernel command line option. This is because this is
really not a regular kernel command line option – we process it in
the stub, then remove it as prefix, and measure the unprefixed
command line only after that. The kernel will not see the profile
selector either. I think these special semantics are best
communicated by making it look substantially different from regular
options.
2. This moves around measurements a bit. Previously we measured our UKI
sections right after finding them. Now we first parse the profile
number from the command line, then search for the profile's sections,
and only then measure the sections we actually end up using for this
profile. I think that this logic makes most sense: measure what we
are using, not what we are overriding. Or in other words, if you boot
profile @3, then we'll measure .cmdline (assuming it exists) of
profile 3, and *not* measure .cmdline of the base profile. Also note
that if the user passes in a custom kernel command line via command
line arguments we'll strip off the profile selector (i.e. the initial
"@X" thing) before we pass it on.
3. The .profile stuff is supposed to be generic and extensible. For
example we could use it in future to mark "dangerous" options such as
factory reset, so that boot menus can ask for confirmation before
booting into it. Or we could introduce match expressions against
SMBIOS or other system identifiers, to filter out profiles on
specific hw.
Note btw, that PE allows defining multiple sections that point to the
same offsets in the file. This allows sharing payload under different
names. For example, if profile @4 and @7 shall carry the same .ucode
section, they can define .ucode in each profile and then make it point to
the same offset.
Also note that that one can even "mask" a base section in a profile, by
inserting an empty section. For example, if the base .dtb section should
not be used for profile @4, then add a section .dtb right after the
fourth .profile with a zero size to the UKI, and you will get your wish
fulfilled.
This code only contains changes to sd-stub. A follow-up commit will
teach sd-boot to also find this profile PE sections to synthesize
additional menu entries from a single UKI.
A later commit will add support for gnerating this via ukify.
Fixes: #24539
In mkosi, I want to add a sysupdate verb to wrap systemd-sysupdate.
The definitions will be picked up from mkosi.sysupdate/ and passed
to systemd-sysupdate. I want users to be able to write transfer
definitions that are independent of the output directory used by
mkosi. To make this possible, it should be possible to specify the
directory that transfer sources should be looked up in on the sysupdate
command line. Let's allow this via a new --transfer-source= option.
Additionally, transfer sources that want to take advantage of this
feature should specify PathRelativeTo=directory to indicate the configured
Path= is interpreted relative to the tranfer source directory specified
on the CLI.
This allows for the following transfer definition to be put in
mkosi.sysupdate:
"""
[Transfer]
ProtectVersion=%A
[Source]
Type=regular-file
Path=/
PathRelativeTo=directory
MatchPattern=ParticleOS_@v.usr-%a.@u.raw
[Target]
Type=partition
Path=auto
MatchPattern=ParticleOS_@v
MatchPartitionType=usr
PartitionFlags=0
ReadOnly=1
"""
This options is pretty simple, it allows specifying an UKI whose
sections to import first, and place at the beginning of the new UKI.
This is useful for generating multi-profile UKIs piecemeal: generate the
base UKI first, then append a profile, and another one and another one.
The sections imported this way are not included in any PCR signature,
the assumption is that that already happened before in the imported UKI.
Now that mkfs.btrfs is adding support for compressing the generated
filesystem (https://github.com/kdave/btrfs-progs/pull/882), let's
add general support for specifying the compression algorithm and
compression level to use.
We opt to not parse the specified compression algorithm and instead
pass it on as is to the mkfs tool. This has a few benefits:
- We support every compression algorithm supported by every tool
automatically.
- Users don't need to modify systemd-repart if a mkfs tool learns a
new compression algorithm in the future
- We don't need to maintain a bunch of tables for filesystem to map
from our generic compression algorithm enum to the filesystem specific
names.
We don't add support for btrfs just yet until the corresponding PR
in btrfs-progs is merged.
These operations might require slow I/O, and thus might block PID1's main
loop for an undeterminated amount of time. Instead of performing them
inline, fork a worker process and stash away the D-Bus message, and reply
once we get a SIGCHILD indicating they have completed. That way we don't
break compatibility and callers can continue to rely on the fact that when
they get the method reply the operation either succeeded or failed.
To keep backward compatibility, unlike reload control processes, these
are ran inside init.scope and not the target cgroup. Unlike ExecReload,
this is under our control and is not defined by the unit. This is necessary
because previously the operation also wasn't ran from the target cgroup,
so suddenly forking a copy-on-write copy of pid1 into the target cgroup
will make memory usage spike, and if there is a MemoryMax= or MemoryHigh=
set and the cgroup is already close to the limit, it will cause an OOM
kill, where previously it would have worked fine.
This adds two more fields in 'udevadm info':
- J for device ID, e.g. b128:1, c10:1, n1, and so on.
- B for driver subsystem, e.g. pci, i2c, and so on.
These, especially the device ID field may be useful to find udev
database file under /run/udev/data for a device.
To create the sd_device object of a driver, the function
sd_device_new_from_subsystem_sysname() requires "drivers" for subsystem
and e.g. "pci:iwlwifi" for sysname. Similarly, sd_device_new_from_device_id()
also requires driver subsystem. However, we have never provided a
way to get the driver subsystem ("pci" for the previous example) from
an existing sd_device object.
Let's introduce a way to get driver subsystem.
One of the major pait points of managing fleets of headless nodes is
that when something fails at startup, unless debug level was already
enabled (which usually isn't, as it's a firehose), one needs to manually
enable it and pray the issue can be reproduced, which often is really
hard and time consuming, just to get extra info. Usually the extra log
messages are enough to triage an issue.
This new option makes it so that when a service fails and is restarted
due to Restart=, log level for that unit is set to debug, so that all
setup code in pid1 and sd-executor logs at debug level, and also a new
DEBUG_INVOCATION=1 env var is passed to the service itself, so that it
knows it should start with a higher log level. Once the unit succeeds
or reaches the rate limit the original level is restored.
So far we manually hardcoded $LISTEN_FDNAMES to "varlink" in various
varlink service units we ship, even though FileDescriptorName=varlink
is specified in associated socket units already, because
FileDescriptorName= is currently silently ignored when combined with
Accept=yes. Let's step away from this, which seems saner.
Note that this is technically a compat break, but a mostly negligible
one as there shall be few users setting FileDescriptorName= but
still expecting LISTEN_FDNAMES=connection in the actual executable.
Preparation for #34080
DefaultRoute is a D-Bus property, not a valid setting name in .network
files nor resolved.conf.
Whether a link is the default route or not is configured with
DNSDefaultRoute= setting in .network files.