systemd-resolved.servicesystemdsystemd-resolved.service8systemd-resolved.servicesystemd-resolvedNetwork Name Resolution managersystemd-resolved.service/usr/lib/systemd/systemd-resolvedDescriptionsystemd-resolved is a system service that provides network name resolution to
local applications. It implements a caching and validating DNS/DNSSEC stub resolver, as well as an LLMNR
and MulticastDNS resolver and responder. Local applications may submit network name resolution requests
via three interfaces:The native, fully-featured API systemd-resolved exposes on the bus,
see
org.freedesktop.resolve15
and
org.freedesktop.LogControl15
for details. Usage of this API is generally recommended to clients as it is asynchronous and fully
featured (for example, properly returns DNSSEC validation status and interface scope for addresses as
necessary for supporting link-local networking).The glibc
getaddrinfo3
API as defined by RFC3493 and its related
resolver functions, including
gethostbyname3.
This API is widely supported, including beyond the Linux platform. In its current form it does not
expose DNSSEC validation status information however, and is synchronous only. This API is backed by the
glibc Name Service Switch
(nss5).
Usage of the glibc NSS module
nss-resolve8 is
required in order to allow glibc's NSS resolver functions to resolve hostnames via
systemd-resolved.Additionally, systemd-resolved provides a local DNS stub listener on
IP address 127.0.0.53 on the local loopback interface. Programs issuing DNS requests directly,
bypassing any local API may be directed to this stub, in order to connect them to
systemd-resolved. Note however that it is strongly recommended that local programs
use the glibc NSS or bus APIs instead (as described above), as various network resolution concepts
(such as link-local addressing, or LLMNR Unicode domains) cannot be mapped to the unicast DNS
protocol.The DNS servers contacted are determined from the global settings in
/etc/systemd/resolved.conf, the per-link static settings in
/etc/systemd/network/*.network files (in case
systemd-networkd.service8
is used), the per-link dynamic settings received over DHCP, information provided via
resolvectl1, and any
DNS server information made available by other system services. See
resolved.conf5 and
systemd.network5 for
details about systemd's own configuration files for DNS servers. To improve compatibility,
/etc/resolv.conf is read in order to discover configured system DNS servers, but
only if it is not a symlink to /run/systemd/resolve/stub-resolv.conf,
/usr/lib/systemd/resolv.conf or
/run/systemd/resolve/resolv.conf (see below).Synthetic Recordssystemd-resolved synthesizes DNS resource records (RRs) for the following
cases:The local, configured hostname is resolved to all locally configured IP addresses
ordered by their scope, or — if none are configured — the IPv4 address 127.0.0.2 (which is on the local
loopback interface) and the IPv6 address ::1 (which is the local host).The hostnames localhost and localhost.localdomain
as well as any hostname ending in .localhost or
.localhost.localdomain are resolved to the IP addresses 127.0.0.1 and ::1.
The hostname _gateway is resolved to all current default routing
gateway addresses, ordered by their metric. This assigns a stable hostname to the current gateway,
useful for referencing it independently of the current network configuration state.The mappings defined in /etc/hosts are resolved to their
configured addresses and back, but they will not affect lookups for non-address types (like MX).
Support for /etc/hosts may be disabled with ReadEtcHosts=no,
see resolved.conf5.
Protocols and RoutingThe lookup requests that systemd-resolved.service receives are routed to the
available DNS servers, LLMNR, and MulticastDNS interfaces according to the following rules:Names for which synthetic records are generated (the local hostname,
localhost and localdomain, local gateway, as listed in the
previous section) and addresses configured in /etc/hosts are never routed to the
network and a reply is sent immediately.Single-label names are resolved using LLMNR on all local interfaces where LLMNR is
enabled. Lookups for IPv4 addresses are only sent via LLMNR on IPv4, and lookups for IPv6 addresses are
only sent via LLMNR on IPv6. Note that lookups for single-label synthesized names are not routed to
LLMNR, MulticastDNS or unicast DNS.Queries for the address records (A and AAAA) of single-label non-synthesized names are
resolved via unicast DNS using search domains. For any interface which defines search domains, such
look-ups are routed to that interface, suffixed with each of the search domains defined on that
interface in turn. When global search domains are defined, such look-ups are routed to all interfaces,
suffixed by each of the global search domains in turn. Additionally, lookup of single-label names via
unicast DNS may be enabled with the ResolveUnicastSingleLabel=yes setting. The
details of which servers are queried and how the final reply is chosen are described below. Note that
this means that address queries for single-label names are never sent out to remote DNS servers by
default, and resoulution is only possible if search domains are defined.Multi-label names with the domain suffix .local are resolved using
MulticastDNS on all local interfaces where MulticastDNS is enabled. As with LLMNR, IPv4 address lookups
are sent via IPv4 and IPv6 address lookups are sent via IPv6.Queries for multi-label names are routed via unicast DNS on local interfaces that have
a DNS server configured, plus the globally configured DNS servers if there are any. Which interfaces
are used is determined by the routing logic based on search and route-only domains, described below.
Note that by default, lookups for domains with the .local suffix are not routed to
DNS servers, unless the domain is specified explicitly as routing or search domain for the DNS server
and interface. This means that on networks where the .local domain is defined in a
site-specific DNS server, explicit search or routing domains need to be configured to make lookups work
within this DNS domain. Note that these days, it's generally recommended to avoid defining
.local in a DNS server, as RFC6762 reserves this domain for exclusive
MulticastDNS use.Address lookups (reverse lookups) are routed similarly to multi-label names, with the
exception that addresses from the link-local address range are never routed to unicast DNS and are only
resolved using LLMNR and MulticastDNS (when enabled).If lookups are routed to multiple interfaces, the first successful response is returned (thus
effectively merging the lookup zones on all matching interfaces). If the lookup failed on all interfaces,
the last failing response is returned.Routing of lookups is determined by the per-interface routing domains (search and route-only) and
global search domains. See
systemd.network5 and
resolvectl1 for a
description how those settings are set dynamically and the discussion of Domains= in
resolved.conf5 for a
description of globally configured DNS settings.The following query routing logic applies for unicast DNS lookups initiated by
systemd-resolved.service:If a name to look up matches (that is: is equal to or has as suffix) any of the
configured routing domains (search or route-only) of any link, or the globally configured DNS settings,
"best matching" routing domain is determined: the matching one with the most labels. The query is then
sent to all DNS servers of any links or the globally configured DNS servers associated with this "best
matching" routing domain. (Note that more than one link might have this same "best matching" routing
domain configured, in which case the query is sent to all of them in parallel).In case of single-label names, when search domains are defined, the same logic applies, except
that the name is first suffixed by each of the search domains in turn. Note that this search logic
doesn't apply to any names with at least one dot. Also see the discussion about compatibility with
the traditional glibc resolver below.If a query does not match any configured routing domain (either per-link or global), it
is sent to all DNS servers that are configured on links with the DefaultRoute=
option set, as well as the globally configured DNS server.If there is no link configured as DefaultRoute= and no global DNS
server configured, one of the compiled-in fallback DNS servers is used.Otherwise the unicast DNS query fails, as no suitable DNS servers can be determined.
The DefaultRoute= option is a boolean setting configurable with
resolvectl or in .network files. If not set, it is implicitly
determined based on the configured DNS domains for a link: if there's a route-only domain other than
~., it defaults to false, otherwise to true.Effectively this means: in order to support single-label non-synthesized names, define appropriate
search domains. In order to preferably route all DNS queries not explicitly matched by routing domain
configuration to a specific link, configure a ~. route-only domain on it. This will
ensure that other links will not be considered for these queries (unless they too carry such a routing
domain). In order to route all such DNS queries to a specific link only if no other link is preferred,
set the DefaultRoute= option for the link to true and do not configure a
~. route-only domain on it. Finally, in order to ensure that a specific link never
receives any DNS traffic not matching any of its configured routing domains, set the
DefaultRoute= option for it to false.See
org.freedesktop.resolve15
for information about the D-Bus APIs systemd-resolved provides.Compatibility with the traditional glibc stub resolverThis section provides a short summary of differences in the stub resolver implemented by
nss-resolve8 together
with systemd-resolved and the traditional stub resolver implemented in
nss-dns.Some names are always resolved internally (see Synthetic Records above). Traditionally
they would be resolved by nss-files if provided in
/etc/hosts. But note that the details of how a query is constructed are under the
control of the client library. nss-dns will first try to resolve names using
search domains and even if those queries are routed to systemd-resolved, it will
send them out over the network using the usual rules for multi-label name routing For
example, if /etc/nsswitch.conf has nameserver 127.0.0.53
search foobar.com barbar.com
and we look up localhost, nss-dns will send
the following queries to systemd-resolved listening on 127.0.0.53:53: first
localhost.foobar.com, then localhost.barbar.com, and finally
localhost. If (hopefully) the first two queries fail,
systemd-resolved will synthesize an answer for the third query.When using nss-dns with any search domains, it is thus crucial to always
configure nss-files with higher priority and provide mappings for names that
should not be resolved using search domains..Single-label names are not resolved for A and AAAA records using unicast DNS (unless
overridden with ResolveUnicastSingleLabel=, see
resolved.conf5).
This is similar to the option being set in
resolv.conf5.
Search domains are not used for suffixing of multi-label names.
(Search domains are nevertheless used for lookup routing, for names that were
originally specified as single-label or multi-label.) Any name with at least one dot is always
interpreted as a FQDN. nss-dns would resolve names both as relative (using search
domains) and absolute FQDN names. Some names would be resolved as relative first, and after that query
has failed, as absolute, while other names would be resolved in opposite order. The
ndots option in /etc/resolv.conf was used to control how many
dots the name needs to have to be resolved as relative first. This stub resolver does not implement
this at all: multi-label names are only resolved as FQDNs.There are currently more than
1500 top-level domain names defined, and new ones are added regularly, often using "attractive" names
that are also likely to be used locally. Not looking up multi-label names in this fashion avoids
fragility in both directions: a valid global name could be obscured by a local name, and resolution of
a relative local name could suddenly break when a new top-level domain is created, or when a new
subdomain of a top-level domain in registered. Resolving any given name as either relative or absolute
avoids this ambiguity.)This resolver has a notion of the special .local domain used for
MulticastDNS, and will not route queries with that suffix to unicast DNS servers unless explicitly
configured, see above. Also, reverse lookups for link-local addresses are not sent to unicast DNS
servers.This resolver reads and caches /etc/hosts internally. (In other
words, nss-resolve replaces nss-files in addition to
nss-dns). Entries in /etc/hosts have highest priority.This resolver also implements LLMNR and MulticastDNS in addition to the classic unicast
DNS protocol, and will resolve single-label names using LLMNR (when enabled) and names ending in
.local using MulticastDNS (when enabled).Environment variables $LOCALDOMAIN and
$RES_OPTIONS described in
resolv.conf5
are not supported currently./etc/resolv.confFour modes of handling /etc/resolv.conf (see
resolv.conf5) are
supported:systemd-resolved maintains the
/run/systemd/resolve/stub-resolv.conf file for compatibility with traditional
Linux programs. This file may be symlinked from /etc/resolv.conf. This file lists
the 127.0.0.53 DNS stub (see above) as the only DNS server. It also contains a list of search domains
that are in use by systemd-resolved. The list of search domains is always kept up-to-date. Note that
/run/systemd/resolve/stub-resolv.conf should not be used directly by applications,
but only through a symlink from /etc/resolv.conf. This file may be symlinked from
/etc/resolv.conf in order to connect all local clients that bypass local DNS APIs
to systemd-resolved with correct search domains settings. This mode of operation is
recommended.A static file /usr/lib/systemd/resolv.conf is provided that lists
the 127.0.0.53 DNS stub (see above) as only DNS server. This file may be symlinked from
/etc/resolv.conf in order to connect all local clients that bypass local DNS APIs
to systemd-resolved. This file does not contain any search domains.
systemd-resolved maintains the
/run/systemd/resolve/resolv.conf file for compatibility with traditional Linux
programs. This file may be symlinked from /etc/resolv.conf and is always kept
up-to-date, containing information about all known DNS servers. Note the file format's limitations: it
does not know a concept of per-interface DNS servers and hence only contains system-wide DNS server
definitions. Note that /run/systemd/resolve/resolv.conf should not be used
directly by applications, but only through a symlink from /etc/resolv.conf. If
this mode of operation is used local clients that bypass any local DNS API will also bypass
systemd-resolved and will talk directly to the known DNS servers.Alternatively, /etc/resolv.conf may be managed by other packages,
in which case systemd-resolved will read it for DNS configuration data. In this mode
of operation systemd-resolved is consumer rather than provider of this configuration
file. Note that the selected mode of operation for this file is detected fully automatically, depending
on whether /etc/resolv.conf is a symlink to
/run/systemd/resolve/resolv.conf or lists 127.0.0.53 as DNS server.SignalsSIGUSR1Upon reception of the SIGUSR1 process signal
systemd-resolved will dump the contents of all DNS resource record caches it
maintains, as well as all feature level information it learnt about configured DNS servers into the
system logs.SIGUSR2Upon reception of the SIGUSR2 process signal
systemd-resolved will flush all caches it maintains. Note that it should normally
not be necessary to request this explicitly – except for debugging purposes – as
systemd-resolved flushes the caches automatically anyway any time the host's
network configuration changes. Sending this signal to systemd-resolved is
equivalent to the resolvectl flush-caches command, however the latter is
recommended since it operates in a synchronous way.SIGRTMIN+1Upon reception of the SIGRTMIN+1 process signal
systemd-resolved will forget everything it learnt about the configured DNS
servers. Specifically any information about server feature support is flushed out, and the server
feature probing logic is restarted on the next request, starting with the most fully featured
level. Note that it should normally not be necessary to request this explicitly – except for
debugging purposes – as systemd-resolved automatically forgets learnt information
any time the DNS server configuration changes. Sending this signal to
systemd-resolved is equivalent to the resolvectl
reset-server-features command, however the latter is recommended since it operates in a
synchronous way.See Alsosystemd1,
resolved.conf5,
dnssec-trust-anchors.d5,
nss-resolve8,
resolvectl1,
resolv.conf5,
hosts5,
systemd.network5,
systemd-networkd.service8