systemd.specialsystemdsystemd.special7systemd.specialSpecial systemd unitsbasic.target,
bluetooth.target,
cryptsetup-pre.target,
cryptsetup.target,
veritysetup-pre.target,
veritysetup.target,
ctrl-alt-del.target,
blockdev@.target,
boot-complete.target,
default.target,
emergency.target,
exit.target,
factory-reset.target,
final.target,
first-boot-complete.target,
getty.target,
getty-pre.target,
graphical.target,
halt.target,
hibernate.target,
hybrid-sleep.target,
suspend-then-hibernate.target,
initrd.target,
initrd-fs.target,
initrd-root-device.target,
initrd-root-fs.target,
initrd-usr-fs.target,
integritysetup-pre.target,
integritysetup.target,
kbrequest.target,
kexec.target,
local-fs-pre.target,
local-fs.target,
machines.targetmulti-user.target,
network-online.target,
network-pre.target,
network.target,
nss-lookup.target,
nss-user-lookup.target,
paths.target,
poweroff.target,
printer.target,
reboot.target,
remote-cryptsetup.target,
remote-veritysetup.target,
remote-fs-pre.target,
remote-fs.target,
rescue.target,
rpcbind.target,
runlevel2.target,
runlevel3.target,
runlevel4.target,
runlevel5.target,
shutdown.target,
sigpwr.target,
sleep.target,
slices.target,
smartcard.target,
sockets.target,
soft-reboot.target,
sound.target,
ssh-access.target,
storage-target-mode.target,
suspend.target,
swap.target,
sysinit.target,
system-update.target,
system-update-pre.target,
time-set.target,
time-sync.target,
timers.target,
tpm2.target,
umount.target,
usb-gadget.target,
-.slice,
system.slice,
user.slice,
machine.slice,
-.mount,
dbus.service,
dbus.socket,
display-manager.service,
init.scope,
syslog.socket,
system-update-cleanup.serviceDescriptionA few units are treated specially by systemd. Many of them have
special internal semantics and cannot be renamed, while others simply
have a standard meaning and should be present on all systems.Units managed by the system service managerSpecial System Units-.mountThe root mount point, i.e. the mount unit for the /
path. This unit is unconditionally active, during the entire time the system is up, as
this mount point is where the basic userspace is running from.basic.targetA special target unit covering basic boot-up.systemd automatically adds dependency of the type
After= for this target unit to all
services (except for those with
DefaultDependencies=no).Usually, this should pull-in all local mount points plus
/var/, /tmp/ and
/var/tmp/, swap devices, sockets, timers,
path units and other basic initialization necessary for general
purpose daemons. The mentioned mount points are special cased
to allow them to be remote.
This target usually does not pull in any non-target units
directly, but rather does so indirectly via other early boot targets.
It is instead meant as a synchronization point for late boot
services. Refer to
bootup7
for details on the targets involved.
boot-complete.targetThis target is intended as generic synchronization point for services that shall determine or act on
whether the boot process completed successfully. Order units that are required to succeed for a boot process
to be considered successful before this unit, and add a Requires= dependency from the
target unit to them. Order units that shall only run when the boot process is considered successful after the
target unit and pull in the target from it, also with Requires=. Note that by default this
target unit is not part of the initial boot transaction, but is supposed to be pulled in only if required by
units that want to run only on successful boots.See
systemd-boot-check-no-failures.service8
for a service that implements a generic system health check and orders itself before
boot-complete.target.See
systemd-bless-boot.service8
for a service that propagates boot success information to the boot loader, and orders itself after
boot-complete.target.ctrl-alt-del.targetsystemd starts this target whenever Control+Alt+Del is
pressed on the console. Usually, this should be aliased
(symlinked) to reboot.target.cryptsetup.targetA target that pulls in setup services for all
encrypted block devices.veritysetup.targetA target that pulls in setup services for all
verity integrity protected block devices.dbus.serviceA special unit for the D-Bus bus daemon. As soon as
this service is fully started up systemd will connect to it
and register its service.dbus.socketA special unit for the D-Bus system bus socket. All
units with Type=dbus automatically gain a
dependency on this unit.default.targetThe default unit systemd starts at bootup. Usually, this should be aliased (symlinked) to
multi-user.target or graphical.target. See
bootup7 for
more discussion.The default unit systemd starts at bootup can be overridden with the
systemd.unit= kernel command line option, or more conveniently, with the short
names like single, rescue, 1,
3, 5, …; see
systemd1.display-manager.serviceThe display manager service. Usually, this should be
aliased (symlinked) to gdm.service or a
similar display manager service.emergency.targetA special target unit that starts an emergency shell on the main console. This
target does not pull in other services or mounts. It is the most minimal version of
starting the system in order to acquire an interactive shell; the only processes running
are usually just the system manager (PID 1) and the shell process. This unit may be used
by specifying emergency on the kernel command line; it is
also used when a file system check on a required file system fails and boot-up cannot
continue. Compare with rescue.target, which serves a similar
purpose, but also starts the most basic services and mounts all file systems.In many ways booting into emergency.target is similar to the
effect of booting with init=/bin/sh on the kernel command line,
except that emergency mode provides you with the full system and service manager, and
allows starting individual units in order to continue the boot process in steps.Note that depending on how emergency.target is reached, the root file
system might be mounted read-only or read-write (no remounting is done specially for this
target). For example, the system may boot with root mounted read-only when ro
is used on the kernel command line and remain this way for emergency.target,
or the system may transition to emergency.target after the system has been
partially booted and disks have already been remounted read-write.exit.targetA special service unit for shutting down the system or
user service manager. It is equivalent to
poweroff.target on non-container
systems, and also works in containers.systemd will start this unit when it receives the
SIGTERM or SIGINT
signal when running as user service daemon.Normally, this (indirectly) pulls in
shutdown.target, which in turn should be
conflicted by all units that want to be scheduled for
shutdown when the service manager starts to exit.factory-reset.targetA special target to trigger a factory reset.final.targetA special target unit that is used during the shutdown
logic and may be used to pull in late services after all
normal services are already terminated and all mounts
unmounted.
getty.targetA special target unit that pulls in statically
configured local TTY getty instances.
graphical.targetA special target unit for setting up a graphical login
screen. This pulls in
multi-user.target.Units that are needed for graphical logins shall add
Wants= dependencies for their unit to
this unit (or multi-user.target) during
installation. This is best configured via
WantedBy=graphical.target in the unit's
[Install] section.hibernate.targetA special target unit for hibernating the system. This
pulls in sleep.target.hybrid-sleep.targetA special target unit for hibernating and suspending
the system at the same time. This pulls in
sleep.target.suspend-then-hibernate.targetA special target unit for suspending the system for a period
of time, waking it and putting it into hibernate. This pulls in
sleep.target.halt.targetA special target unit for shutting down and halting
the system. Note that this target is distinct from
poweroff.target in that it generally
really just halts the system rather than powering it
down.Applications wanting to halt the system should not start this unit
directly, but should instead execute systemctl halt
(possibly with the option) or call
systemd1's
org.freedesktop.systemd1.Manager.Halt D-Bus method
directly.init.scopeThis scope unit is where the system and service manager (PID 1) itself resides. It
is active as long as the system is running.initrd.targetThis is the default target in the initrd, similar to default.target in
the main system. It is used to mount the real root and transition to it. See
bootup7 for
more discussion.initrd-fs.targetsystemd-fstab-generator3
automatically adds dependencies of type Before= to
sysroot-usr.mount and all mount points found in
/etc/fstab that have the mount option set
and do not have the mount option set. It is also indirectly ordered after
sysroot.mount. Thus, once this target is reached the
/sysroot/ hierarchy is fully set up, in preparation for the transition to
the host OS.initrd-root-device.targetA special initrd target unit that is reached when the root filesystem device is available, but before
it has been mounted.
systemd-fstab-generator3
and
systemd-gpt-auto-generator3
automatically setup the appropriate dependencies to make this happen.
initrd-root-fs.targetsystemd-fstab-generator3
automatically adds dependencies of type Before= to the
sysroot.mount unit, which is generated from the kernel command line's
root= setting (or equivalent).initrd-usr-fs.targetsystemd-fstab-generator3
automatically adds dependencies of type Before= to the
sysusr-usr.mount unit, which is generated from the kernel command line's
usr= switch. Services may order themselves after this target unit in order to
run once the /sysusr/ hierarchy becomes available, on systems that come up
initially without a root file system, but with an initialized /usr/ and need
to access that before setting up the root file system to ultimately switch to. On systems where
usr= is not used this target is ordered after
sysroot.mount and thus mostly equivalent to
initrd-root-fs.target. In effect on any system once this target is reached
the file system backing /usr/ is mounted, though possibly at two different
locations, either below the /sysusr/ or the /sysroot/
hierarchies.kbrequest.targetsystemd starts this target whenever Alt+ArrowUp is
pressed on the console. Note that any user with physical access
to the machine will be able to do this, without authentication,
so this should be used carefully.kexec.targetA special target unit for shutting down and rebooting the system via kexec.Applications wanting to reboot the system should not start this unit directly, but should
instead execute systemctl kexec (possibly with the
option) or call
systemd-logind8's
org.freedesktop.login1.Manager.RebootWithFlags() D-Bus method
directly.See
systemd-kexec.service8
for further details of the operation this target pulls in.local-fs.targetsystemd-fstab-generator3
automatically adds dependencies of type
Before= to all mount units that refer to
local mount points for this target unit. In addition, it
adds dependencies of type Wants= to this
target unit for those mounts listed in
/etc/fstab that have the
mount option set.machines.targetA standard target unit for starting all the containers
and other virtual machines. See systemd-nspawn@.service
for an example.multi-user.targetA special target unit for setting up a multi-user
system (non-graphical). This is pulled in by
graphical.target.Units that are needed for a multi-user system shall
add Wants= dependencies for their unit to
this unit during installation. This is best configured via
WantedBy=multi-user.target in the unit's
[Install] section.network-online.targetUnits that strictly require a configured network
connection should pull in
network-online.target (via a
Wants= type dependency) and order
themselves after it. This target unit is intended to pull in
a service that delays further execution until the network is
sufficiently set up. What precisely this requires is left to
the implementation of the network managing service.Note the distinction between this unit and network.target. This unit
is an active unit (i.e. pulled in by the consumer rather than the provider of this functionality)
and pulls in a service which possibly adds substantial delays to further execution. In contrast,
network.target is a passive unit (i.e. pulled in by the provider of the
functionality, rather than the consumer) that usually does not delay execution much. Usually,
network.target is part of the boot of most systems, while
network-online.target is not, except when at least one unit requires
it. Also see Running Services After the Network Is
Up for more information.All mount units for remote network file systems automatically pull in this unit, and order
themselves after it. Note that networking daemons that simply provide
functionality to other hosts (as opposed to consume functionality of other
hosts) generally do not need to pull this in.systemd automatically adds dependencies of type Wants= and
After= for this target unit to all SysV init script service units
with an LSB header referring to the $network facility.Note that this unit is only useful during the original system start-up
logic. After the system has completed booting up, it will not track the online state of
the system anymore. Due to this it cannot be used as a network connection monitor
concept, it is purely a one-time system start-up concept.paths.targetA special target unit that sets up all path units (see
systemd.path5
for details) that shall be active after boot.It is recommended that path units installed by
applications get pulled in via Wants=
dependencies from this unit. This is best configured via a
WantedBy=paths.target in the path unit's
[Install] section.poweroff.targetA special target unit for shutting down and powering
off the system.Applications wanting to power off the system should not start this unit
directly, but should instead execute systemctl poweroff
(possibly with the option) or call
systemd-logind8's
org.freedesktop.login1.Manager.PowerOff D-Bus method
directly.runlevel0.target is an alias for
this target unit, for compatibility with SysV.reboot.targetA special target unit for shutting down and rebooting the system.Applications wanting to reboot the system should not start this unit directly, but should
instead execute systemctl reboot (possibly with the
option) or call
systemd-logind8's
org.freedesktop.login1.Manager.Reboot() D-Bus method directly.See
systemd-reboot.service8
for further details of the operation this target pulls in.runlevel6.target is an alias for this target unit, for compatibility
with SysV.remote-cryptsetup.targetSimilar to cryptsetup.target, but for encrypted
devices which are accessed over the network. It is used for
crypttab8
entries marked with .remote-veritysetup.targetSimilar to veritysetup.target, but for verity
integrity protected devices which are accessed over the network. It is used for
veritytab8
entries marked with .remote-fs.targetSimilar to local-fs.target, but
for remote mount points.systemd automatically adds dependencies of type
After= for this target unit to all SysV
init script service units with an LSB header referring to
the $remote_fs facility.rescue.targetA special target unit that pulls in the base system (including system mounts) and
spawns a rescue shell. Isolate to this target in order to administer the system in
single-user mode with all file systems mounted but with no services running, except for
the most basic. Compare with emergency.target, which is much more
reduced and does not provide the file systems or most basic services. Compare with
multi-user.target, this target could be seen as
single-user.target.runlevel1.target is an alias for this target unit, for
compatibility with SysV.Use the systemd.unit=rescue.target kernel command line option
to boot into this mode. A short alias for this kernel command line option is
1, for compatibility with SysV.runlevel2.targetrunlevel3.targetrunlevel4.targetrunlevel5.targetThese are targets that are called whenever the SysV
compatibility code asks for runlevel 2, 3, 4, 5,
respectively. It is a good idea to make this an alias for
(i.e. symlink to) graphical.target
(for runlevel 5) or multi-user.target
(the others).shutdown.targetA special target unit that terminates the services on
system shutdown.Services that shall be terminated on system shutdown
shall add Conflicts= and
Before= dependencies to this unit for
their service unit, which is implicitly done when
DefaultDependencies=yes is set (the
default).sigpwr.targetA special target that is started when systemd receives
the SIGPWR process signal, which is normally sent by the
kernel or UPS daemons when power fails.sleep.targetA special target unit that is pulled in by
suspend.target,
hibernate.target and
hybrid-sleep.target and may be used to
hook units into the sleep state logic.slices.targetA special target unit that sets up all slice units (see
systemd.slice5
for details) that shall always be active after boot. By default the generic
system.slice slice unit as well as the root slice unit
-.slice are pulled in and ordered before this unit (see
below).Adding slice units to slices.target is generally not
necessary. Instead, when some unit that uses Slice= is started, the
specified slice will be started automatically. Adding
WantedBy=slices.target lines to the [Install]
section should only be done for units that need to be always active. In that case care
needs to be taken to avoid creating a loop through the automatic dependencies on
"parent" slices.sockets.targetA special target unit that sets up all socket
units (see
systemd.socket5
for details) that shall be active after boot.Services that can be socket-activated shall add
Wants= dependencies to this unit for
their socket unit during installation. This is best
configured via a WantedBy=sockets.target
in the socket unit's [Install]
section.soft-reboot.targetA special target unit for shutting down and rebooting the userspace of the system (leaving
the kernel running).Applications wanting to reboot the system should not start this unit directly, but should
instead execute systemctl soft-reboot (possibly with the
option) or call
systemd-logind8's
org.freedesktop.login1.Manager.RebootWithFlags() D-Bus method
directly.See
systemd-soft-reboot.service8
for further details of the operation this target pulls in.storage-target-mode.targetA special target unit that can be booted into that selects the "Storage Target Mode" for
the OS. In this mode all local storage disks are exposed to external systems as block
devices. This invokes
systemd-storagetm.service8
which exposes all local disks as NVMe-TCP devices for access over the network. It might as well
invoke other services too that make local disks available via other mechanisms.suspend.targetA special target unit for suspending the system. This
pulls in sleep.target.swap.targetSimilar to local-fs.target, but
for swap partitions and swap files.sysinit.targetsystemd automatically adds dependencies of the types
Requires= and After=
for this target unit to all services (except for those with
DefaultDependencies=no).This target pulls in the services required for system
initialization. System services pulled in by this target should
declare DefaultDependencies=no and specify
all their dependencies manually, including access to anything
more than a read only root filesystem. For details on the
dependencies of this target, refer to
bootup7.
syslog.socketThe socket unit syslog implementations should listen
on. All userspace log messages will be made available on
this socket. For more information about syslog integration,
please consult the Syslog
Interface document.system-update.targetsystem-update-pre.targetsystem-update-cleanup.serviceA special target unit that is used for offline system updates.
systemd-system-update-generator8
will redirect the boot process to this target if /system-update or
/etc/system-update exists. For more information see
systemd.offline-updates7.
Updates should happen before the system-update.target is
reached, and the services which implement them should cause the machine to reboot. The
main units executing the update should order themselves after
system-update-pre.target but not pull it in. Services which want to
run during system updates only, but before the actual system update is executed should
order themselves before this unit and pull it in. As a safety measure, if this does not
happen, and /system-update or
/etc/system-update still exists after
system-update.target is reached,
system-update-cleanup.service will remove the symlinks and reboot
the machine.timers.targetA special target unit that sets up all timer units
(see
systemd.timer5
for details) that shall be active after boot.It is recommended that timer units installed by
applications get pulled in via Wants=
dependencies from this unit. This is best configured via
WantedBy=timers.target in the timer
unit's [Install] section.umount.targetA special target unit that unmounts all mount and
automount points on system shutdown.Mounts that shall be unmounted on system shutdown
shall add Conflicts dependencies to this unit for their
mount unit, which is implicitly done when
DefaultDependencies=yes is set (the
default).Special System Units for DevicesSome target units are automatically pulled in as devices of
certain kinds show up in the system. These may be used to
automatically activate various services based on the specific type
of the available hardware.bluetooth.targetThis target is started automatically as soon as a
Bluetooth controller is plugged in or becomes available at
boot.This may be used to pull in Bluetooth management
daemons dynamically when Bluetooth hardware is found.printer.targetThis target is started automatically as soon as a
printer is plugged in or becomes available at boot.This may be used to pull in printer management daemons
dynamically when printer hardware is found.smartcard.targetThis target is started automatically as soon as a
smartcard controller is plugged in or becomes available at
boot.This may be used to pull in smartcard management
daemons dynamically when smartcard hardware is found.sound.targetThis target is started automatically as soon as a
sound card is plugged in or becomes available at
boot.This may be used to pull in audio management daemons
dynamically when audio hardware is found.usb-gadget.targetThis target is started automatically as soon as a
USB Device Controller becomes available at boot.This may be used to pull in usb gadget
dynamically when UDC hardware is found.tpm2.targetThis target is started automatically if a TPM2 device is discovered, either by the OS or by
the firmware. It acts as synchronization point for services that require TPM2 device access. The
target unit is enqueued by
systemd-tpm2-generator8
if it detects that the firmware has discovered a TPM2 device but the OS kernel has not activated
a driver for it yet. It is also pulled in whenever
systemd-udevd.service8
discovers a TPM2 device. The target unit is ordered after the /dev/tpmrm0
device node, so that it only becomes active once the TPM2 device is actually accessible. Early
boot programs that intend to access the TPM2 device should hence order themselves after this
target unit, but not pull it in.Special Passive System Units A number of special system targets are defined that can be
used to properly order boot-up of optional services. These targets
are generally not part of the initial boot transaction, unless
they are explicitly pulled in by one of the implementing services.
Note specifically that these passive target
units are generally not pulled in by the consumer of a service,
but by the provider of the service. This means: a consuming
service should order itself after these targets (as appropriate),
but not pull it in. A providing service should order itself before
these targets (as appropriate) and pull it in (via a
Wants= type dependency).Note that these passive units cannot be started manually,
i.e. systemctl start time-sync.target will fail
with an error. They can only be pulled in by dependency. This is
enforced since they exist for ordering purposes only and thus are
not useful as only unit within a transaction.blockdev@.targetThis template unit is used to order mount units and other consumers of block
devices after services that synthesize these block devices. In particular, this is intended to be
used with storage services (such as
systemd-cryptsetup@.service5/
systemd-veritysetup@.service5)
that allocate and manage a virtual block device. Storage services are ordered before an instance of
blockdev@.target, and the consumer units after it. The ordering is
particularly relevant during shutdown, as it ensures that the mount is deactivated first and the
service backing the mount later. The blockdev@.target instance should be
pulled in via a dependency of the storage daemon and thus generally not be
part of any transaction unless a storage daemon is used. The instance name for instances of this
template unit must be a properly escaped block device node path, e.g.
blockdev@dev-mapper-foobar.target for the storage device
/dev/mapper/foobar.cryptsetup-pre.targetThis passive target unit may be pulled in by services
that want to run before any encrypted block device is set
up. All encrypted block devices are set up after this target
has been reached. Since the shutdown order is implicitly the
reverse start-up order between units, this target is
particularly useful to ensure that a service is shut down
only after all encrypted block devices are fully
stopped.veritysetup-pre.targetThis passive target unit may be pulled in by services
that want to run before any verity integrity protected block
device is set up. All verity integrity protected block
devices are set up after this target has been reached. Since
the shutdown order is implicitly the reverse start-up order
between units, this target is particularly useful to ensure
that a service is shut down only after all verity integrity
protected block devices are fully stopped.first-boot-complete.targetThis passive target is intended as a synchronization point for units that need to run once
during the first boot. Only after all units ordered before this target have finished, will the
machine-id5
be committed to disk, marking the first boot as completed. If the boot is aborted at any time
before that, the next boot will re-run any units with ConditionFirstBoot=yes.
getty-pre.targetA special passive target unit. Users of this target
are expected to pull it in the boot transaction via
a dependency (e.g. Wants=). Order your
unit before this unit if you want to make use of the console
just before getty is started.
local-fs-pre.targetThis target unit is
automatically ordered before
all local mount points marked
with
(see above). It can be used to
execute certain units before
all local mounts.network.targetThis unit is supposed to indicate when network functionality is available, but it is only
very weakly defined what that is supposed to mean. However, the following should apply at
minimum:At start-up, any configured synthetic network devices (i.e. not physical ones
that require hardware to show up and be probed, but virtual ones like bridge devices and
similar which are created programmatically) that do not depend on any underlying hardware
should be allocated by the time this target is reached. It is not necessary for these
interfaces to also have completed IP level configuration by the time
network.target is reached.At shutdown, a unit that is ordered after network.target
will be stopped before the network — to whatever level it might be set up by then — is shut
down. It is hence useful when writing service files that require network access on shutdown,
which should order themselves after this target, but not pull it in. Also see Running Services After the Network Is Up for
more information.It must emphasized that at start-up there's no guarantee that hardware-based devices have
shown up by the time this target is reached, or even acquired complete IP configuration. For that
purpose use network-online.target as described above.network-pre.targetThis passive target unit may be pulled in by services that want to run before any network
is set up, for example for the purpose of setting up a firewall. All network management software
orders itself after this target, but does not pull it in. Also see Running Services After the Network Is Up for more
information.nss-lookup.targetA target that should be used as synchronization point for all host/network name
service lookups. Note that this is independent of UNIX user/group name lookups for which
nss-user-lookup.target should be used. All services for which the
availability of full host/network name resolution is essential should be ordered after
this target, but not pull it in. systemd automatically adds dependencies of type
After= for this target unit to all SysV init script service units
with an LSB header referring to the $named facility.nss-user-lookup.targetA target that should be used as synchronization point for all regular UNIX
user/group name service lookups. Note that this is independent of host/network name
lookups for which nss-lookup.target should be used. All services
for which the availability of the full user/group database is essential should be
ordered after this target, but not pull it in. All services which provide parts of the
user/group database should be ordered before this target, and pull it in. Note that this
unit is only relevant for regular users and groups — system users and groups are
required to be resolvable during earliest boot already, and hence do not need any
special ordering against this target.remote-fs-pre.targetThis target unit is automatically ordered before all
mount point units (see above) and cryptsetup/veritysetup devices
marked with the . It can be used to run
certain units before remote encrypted devices and mounts are established.
Note that this unit is generally not part of the initial
transaction, unless the unit that wants to be ordered before
all remote mounts pulls it in via a
Wants= type dependency. If the unit wants
to be pulled in by the first remote mount showing up, it
should use network-online.target (see
above).rpcbind.targetThe portmapper/rpcbind pulls in this target and orders
itself before it, to indicate its availability. systemd
automatically adds dependencies of type
After= for this target unit to all SysV
init script service units with an LSB header referring to
the $portmap facility.ssh-access.targetService and socket units that provide remote SSH secure shell access to the local system
should pull in this unit and order themselves before this unit. It's supposed to act as a
milestone indicating if and when SSH access into the system is available. It should only become
active when an SSH port is bound for remote clients (i.e. if SSH is used as a local privilege
escalation mechanism, it should not involve this target unit), regardless of
the protocol choices, i.e. regardless if IPv4, IPv6 or AF_VSOCK is
used.time-set.targetServices responsible for setting the system clock (CLOCK_REALTIME)
from a local source (such as a maintained timestamp file or imprecise real-time clock) should
pull in this target and order themselves before it. Services where approximate, roughly monotonic
time is desired should be ordered after this unit, but not pull it in.This target does not provide the accuracy guarantees of
time-sync.target (see below), however does not depend on remote clock
sources to be reachable, i.e. the target is typically not delayed by network problems and
similar. Use of this target is recommended for services where approximate clock accuracy and
rough monotonicity is desired but activation shall not be delayed for possibly unreliable network
communication.The service manager automatically adds dependencies of type After= for
this target unit to all timer units with at least one OnCalendar=
directive.The
systemd-timesyncd.service8
service is a simple daemon that pulls in this target and orders itself before it. Besides
implementing the SNTP network protocol it maintains a timestamp file on disk whose modification
time is regularly updated. At service start-up the local system clock is set from that modification time,
ensuring it increases roughly monotonically.Note that ordering a unit after time-set.target only has effect if
there's actually a service ordered before it that delays it until the clock is adjusted for rough
monotonicity. Otherwise, this target might get reached before the clock is adjusted to be roughly
monotonic. Enable
systemd-timesyncd.service8,
or an alternative NTP implementation to delay the target.time-sync.targetServices indicating completed synchronization of the system clock
(CLOCK_REALTIME) to a remote source should pull in this target and order
themselves before it. Services where accurate time is essential should be ordered after this
unit, but not pull it in.The service manager automatically adds dependencies of type After= for
this target unit to all SysV init script service units with an LSB header referring to the
$time facility, as well to all timer units with at least one
OnCalendar= directive.This target provides stricter clock accuracy guarantees than
time-set.target (see above), but likely requires
network communication and thus introduces unpredictable delays.
Services that require clock accuracy and where network
communication delays are acceptable should use this target. Services that require a less accurate
clock, and only approximate and roughly monotonic clock behaviour should use
time-set.target instead.Note that ordering a unit after time-sync.target only has effect if
there's actually a service ordered before it that delays it until clock synchronization is
reached. Otherwise, this target might get reached before the clock is synchronized to any remote
accurate reference clock. When using
systemd-timesyncd.service8,
enable
systemd-time-wait-sync.service8
to delay the target; or use an equivalent service for other NTP implementations.
Comparisontime-set.targettime-sync.target"quick" to reach"slow" to reachtypically uses local clock sources, boot process not affected by availability of external resourcestypically uses remote clock sources, inserts dependencies on remote resources into boot processreliable, because localunreliable, because typically network involvedtypically guarantees an approximate and roughly monotonic clock onlytypically guarantees an accurate clockimplemented by systemd-timesyncd.serviceimplemented by systemd-time-wait-sync.service
Special Slice UnitsThere are four .slice units which form the basis of the hierarchy for
assignment of resources for services, users, and virtual machines or containers. See
systemd.slice7
for details about slice units.-.sliceThe root slice is the root of the slice hierarchy. It usually does not contain
units directly, but may be used to set defaults for the whole tree.system.sliceBy default, all system services started by
systemd are found in this slice.user.sliceBy default, all user processes and services started on
behalf of the user, including the per-user systemd instance
are found in this slice. This is pulled in by
systemd-logind.service.machine.sliceBy default, all virtual machines and containers
registered with systemd-machined are
found in this slice. This is pulled in by
systemd-machined.service.Units managed by the user service managerSpecial User UnitsWhen systemd runs as a user instance, the following special
units are available:default.targetThis is the main target of the user session, started by default. Various services that
compose the normal user session should be pulled into this target. In this regard,
default.target is similar to multi-user.target in the
system instance, but it is a real unit, not an alias.In addition, the following units are available which have definitions similar to their
system counterparts:
exit.target,
shutdown.target,
sockets.target,
timers.target,
paths.target,
bluetooth.target,
printer.target,
smartcard.target,
sound.target.Special Passive User Unitsgraphical-session.targetThis target is active whenever any graphical session is running. It is used to
stop user services which only apply to a graphical (X, Wayland, etc.) session when the
session is terminated. Such services should have
PartOf=graphical-session.target in their [Unit]
section. A target for a particular session (e. g.
gnome-session.target) starts and stops
graphical-session.target with
BindsTo=graphical-session.target.Which services are started by a session target is determined by the
Wants= and Requires= dependencies. For services
that can be enabled independently, symlinks in .wants/ and
.requires/ should be used, see
systemd.unit5.
Those symlinks should either be shipped in packages, or should be added dynamically
after installation, for example using systemctl add-wants, see
systemctl1.
Nautilus as part of a GNOME sessiongnome-session.target pulls in Nautilus as top-level service:[Unit]
Description=User systemd services for GNOME graphical session
Wants=nautilus.service
BindsTo=graphical-session.targetnautilus.service gets stopped when the session stops:[Unit]
Description=Render the desktop icons with Nautilus
PartOf=graphical-session.target
[Service]
…graphical-session-pre.targetThis target contains services which set up the environment or global configuration
of a graphical session, such as SSH/GPG agents (which need to export an environment
variable into all desktop processes) or migration of obsolete d-conf keys after an OS
upgrade (which needs to happen before starting any process that might use them). This
target must be started before starting a graphical session like
gnome-session.target.xdg-desktop-autostart.targetThe XDG specification defines a way to autostart applications using XDG desktop files.
systemd ships
systemd-xdg-autostart-generator8
for the XDG desktop files in autostart directories. Desktop Environments can opt-in to use this
service by adding a Wants= dependency on
xdg-desktop-autostart.target.Special User Slice UnitsThere are four .slice units which form the basis of the user hierarchy for
assignment of resources for user applications and services. See
systemd.slice7
for details about slice units and the documentation about
Desktop Environments
for further information.-.sliceThe root slice is the root of the user's slice hierarchy.
It usually does not contain units directly, but may be used to set defaults for the whole tree.app.sliceBy default, all user services and applications managed by
systemd are found in this slice.
All interactively launched applications like web browsers and text editors
as well as non-critical services should be placed into this slice.session.sliceAll essential services and applications required for the
session should use this slice.
These are services that either cannot be restarted easily
or where latency issues may affect the interactivity of the system and applications.
This includes the display server, screen readers and other services such as DBus or XDG portals.
Such services should be configured to be part of this slice by
adding Slice=session.slice to their unit files.background.sliceAll services running low-priority background tasks should use this slice.
This permits resources to be preferentially assigned to the other slices.
Examples include non-interactive tasks like file indexing or backup operations
where latency is not important.See Alsosystemd1systemd.unit5systemd.service5systemd.socket5systemd.target5systemd.slice5bootup7systemd-fstab-generator8user@.service5