1
0
mirror of https://github.com/systemd/systemd.git synced 2025-01-10 05:18:17 +03:00
systemd/tools/elf2efi.py
2024-03-22 15:44:17 +01:00

712 lines
24 KiB
Python
Executable File

#!/usr/bin/env python3
# SPDX-License-Identifier: LGPL-2.1-or-later
# Convert ELF static PIE to PE/EFI image.
# To do so we simply copy desired ELF sections while preserving their memory layout to ensure that
# code still runs as expected. We then translate ELF relocations to PE relocations so that the EFI
# loader/firmware can properly load the binary to any address at runtime.
#
# To make this as painless as possible we only operate on static PIEs as they should only contain
# base relocations that are easy to handle as they have a one-to-one mapping to PE relocations.
#
# EDK2 does a similar process using their GenFw tool. The main difference is that they use the
# --emit-relocs linker flag, which emits a lot of different (static) ELF relocation types that have
# to be handled differently for each architecture and is overall more work than its worth.
#
# Note that on arches where binutils has PE support (x86/x86_64 mostly, aarch64 only recently)
# objcopy can be used to convert ELF to PE. But this will still not convert ELF relocations, making
# the resulting binary useless. gnu-efi relies on this method and contains a stub that performs the
# ELF dynamic relocations at runtime.
# pylint: disable=attribute-defined-outside-init
import argparse
import hashlib
import io
import os
import pathlib
import sys
import time
import typing
from ctypes import (
c_char,
c_uint8,
c_uint16,
c_uint32,
c_uint64,
LittleEndianStructure,
sizeof,
)
from elftools.elf.constants import SH_FLAGS
from elftools.elf.elffile import ELFFile
from elftools.elf.enums import (
ENUM_DT_FLAGS_1,
ENUM_RELOC_TYPE_AARCH64,
ENUM_RELOC_TYPE_ARM,
ENUM_RELOC_TYPE_i386,
ENUM_RELOC_TYPE_x64,
)
from elftools.elf.relocation import (
Relocation as ElfRelocation,
RelocationTable as ElfRelocationTable,
)
class PeCoffHeader(LittleEndianStructure):
_fields_ = (
("Machine", c_uint16),
("NumberOfSections", c_uint16),
("TimeDateStamp", c_uint32),
("PointerToSymbolTable", c_uint32),
("NumberOfSymbols", c_uint32),
("SizeOfOptionalHeader", c_uint16),
("Characteristics", c_uint16),
)
class PeDataDirectory(LittleEndianStructure):
_fields_ = (
("VirtualAddress", c_uint32),
("Size", c_uint32),
)
class PeRelocationBlock(LittleEndianStructure):
_fields_ = (
("PageRVA", c_uint32),
("BlockSize", c_uint32),
)
def __init__(self, PageRVA: int):
super().__init__(PageRVA)
self.entries: typing.List[PeRelocationEntry] = []
class PeRelocationEntry(LittleEndianStructure):
_fields_ = (
("Offset", c_uint16, 12),
("Type", c_uint16, 4),
)
class PeOptionalHeaderStart(LittleEndianStructure):
_fields_ = (
("Magic", c_uint16),
("MajorLinkerVersion", c_uint8),
("MinorLinkerVersion", c_uint8),
("SizeOfCode", c_uint32),
("SizeOfInitializedData", c_uint32),
("SizeOfUninitializedData", c_uint32),
("AddressOfEntryPoint", c_uint32),
("BaseOfCode", c_uint32),
)
class PeOptionalHeaderMiddle(LittleEndianStructure):
_fields_ = (
("SectionAlignment", c_uint32),
("FileAlignment", c_uint32),
("MajorOperatingSystemVersion", c_uint16),
("MinorOperatingSystemVersion", c_uint16),
("MajorImageVersion", c_uint16),
("MinorImageVersion", c_uint16),
("MajorSubsystemVersion", c_uint16),
("MinorSubsystemVersion", c_uint16),
("Win32VersionValue", c_uint32),
("SizeOfImage", c_uint32),
("SizeOfHeaders", c_uint32),
("CheckSum", c_uint32),
("Subsystem", c_uint16),
("DllCharacteristics", c_uint16),
)
class PeOptionalHeaderEnd(LittleEndianStructure):
_fields_ = (
("LoaderFlags", c_uint32),
("NumberOfRvaAndSizes", c_uint32),
("ExportTable", PeDataDirectory),
("ImportTable", PeDataDirectory),
("ResourceTable", PeDataDirectory),
("ExceptionTable", PeDataDirectory),
("CertificateTable", PeDataDirectory),
("BaseRelocationTable", PeDataDirectory),
("Debug", PeDataDirectory),
("Architecture", PeDataDirectory),
("GlobalPtr", PeDataDirectory),
("TLSTable", PeDataDirectory),
("LoadConfigTable", PeDataDirectory),
("BoundImport", PeDataDirectory),
("IAT", PeDataDirectory),
("DelayImportDescriptor", PeDataDirectory),
("CLRRuntimeHeader", PeDataDirectory),
("Reserved", PeDataDirectory),
)
class PeOptionalHeader(LittleEndianStructure):
pass
class PeOptionalHeader32(PeOptionalHeader):
_anonymous_ = ("Start", "Middle", "End")
_fields_ = (
("Start", PeOptionalHeaderStart),
("BaseOfData", c_uint32),
("ImageBase", c_uint32),
("Middle", PeOptionalHeaderMiddle),
("SizeOfStackReserve", c_uint32),
("SizeOfStackCommit", c_uint32),
("SizeOfHeapReserve", c_uint32),
("SizeOfHeapCommit", c_uint32),
("End", PeOptionalHeaderEnd),
)
class PeOptionalHeader32Plus(PeOptionalHeader):
_anonymous_ = ("Start", "Middle", "End")
_fields_ = (
("Start", PeOptionalHeaderStart),
("ImageBase", c_uint64),
("Middle", PeOptionalHeaderMiddle),
("SizeOfStackReserve", c_uint64),
("SizeOfStackCommit", c_uint64),
("SizeOfHeapReserve", c_uint64),
("SizeOfHeapCommit", c_uint64),
("End", PeOptionalHeaderEnd),
)
class PeSection(LittleEndianStructure):
_fields_ = (
("Name", c_char * 8),
("VirtualSize", c_uint32),
("VirtualAddress", c_uint32),
("SizeOfRawData", c_uint32),
("PointerToRawData", c_uint32),
("PointerToRelocations", c_uint32),
("PointerToLinenumbers", c_uint32),
("NumberOfRelocations", c_uint16),
("NumberOfLinenumbers", c_uint16),
("Characteristics", c_uint32),
)
def __init__(self):
super().__init__()
self.data = bytearray()
N_DATA_DIRECTORY_ENTRIES = 16
assert sizeof(PeSection) == 40
assert sizeof(PeCoffHeader) == 20
assert sizeof(PeOptionalHeader32) == 224
assert sizeof(PeOptionalHeader32Plus) == 240
PE_CHARACTERISTICS_RX = 0x60000020 # CNT_CODE|MEM_READ|MEM_EXECUTE
PE_CHARACTERISTICS_RW = 0xC0000040 # CNT_INITIALIZED_DATA|MEM_READ|MEM_WRITE
PE_CHARACTERISTICS_R = 0x40000040 # CNT_INITIALIZED_DATA|MEM_READ
IGNORE_SECTIONS = [
".eh_frame",
".eh_frame_hdr",
".ARM.exidx",
".relro_padding",
]
IGNORE_SECTION_TYPES = [
"SHT_DYNAMIC",
"SHT_DYNSYM",
"SHT_GNU_ATTRIBUTES",
"SHT_GNU_HASH",
"SHT_HASH",
"SHT_NOTE",
"SHT_REL",
"SHT_RELA",
"SHT_RELR",
"SHT_STRTAB",
"SHT_SYMTAB",
]
# EFI mandates 4KiB memory pages.
SECTION_ALIGNMENT = 4096
FILE_ALIGNMENT = 512
# Nobody cares about DOS headers, so put the PE header right after.
PE_OFFSET = 64
PE_MAGIC = b"PE\0\0"
def align_to(x: int, align: int) -> int:
return (x + align - 1) & ~(align - 1)
def align_down(x: int, align: int) -> int:
return x & ~(align - 1)
def next_section_address(sections: typing.List[PeSection]) -> int:
return align_to(sections[-1].VirtualAddress + sections[-1].VirtualSize,
SECTION_ALIGNMENT)
class BadSectionError(ValueError):
"One of the sections is in a bad state"
def iter_copy_sections(elf: ELFFile) -> typing.Iterator[PeSection]:
pe_s = None
# This is essentially the same as copying by ELF load segments, except that we assemble them
# manually, so that we can easily strip unwanted sections. We try to only discard things we know
# about so that there are no surprises.
relro = None
for elf_seg in elf.iter_segments():
if elf_seg["p_type"] == "PT_LOAD" and elf_seg["p_align"] != SECTION_ALIGNMENT:
raise BadSectionError(f"ELF segment {elf_seg['p_type']} is not properly aligned"
f" ({elf_seg['p_align']} != {SECTION_ALIGNMENT})")
if elf_seg["p_type"] == "PT_GNU_RELRO":
relro = elf_seg
for elf_s in elf.iter_sections():
if (
elf_s["sh_flags"] & SH_FLAGS.SHF_ALLOC == 0
or elf_s["sh_type"] in IGNORE_SECTION_TYPES
or elf_s.name in IGNORE_SECTIONS
or elf_s["sh_size"] == 0
):
continue
if elf_s["sh_type"] not in ["SHT_PROGBITS", "SHT_NOBITS"]:
raise BadSectionError(f"Unknown section {elf_s.name} with type {elf_s['sh_type']}")
if elf_s.name == '.got':
# FIXME: figure out why those sections are inserted
print("WARNING: Non-empty .got section", file=sys.stderr)
if elf_s["sh_flags"] & SH_FLAGS.SHF_EXECINSTR:
rwx = PE_CHARACTERISTICS_RX
elif elf_s["sh_flags"] & SH_FLAGS.SHF_WRITE:
rwx = PE_CHARACTERISTICS_RW
else:
rwx = PE_CHARACTERISTICS_R
# PE images are always relro.
if relro and relro.section_in_segment(elf_s):
rwx = PE_CHARACTERISTICS_R
if pe_s and pe_s.Characteristics != rwx:
yield pe_s
pe_s = None
if pe_s:
# Insert padding to properly align the section.
pad_len = elf_s["sh_addr"] - pe_s.VirtualAddress - len(pe_s.data)
pe_s.data += bytearray(pad_len) + elf_s.data()
else:
pe_s = PeSection()
pe_s.VirtualAddress = elf_s["sh_addr"]
pe_s.Characteristics = rwx
pe_s.data = elf_s.data()
if pe_s:
yield pe_s
def convert_sections(elf: ELFFile, opt: PeOptionalHeader) -> typing.List[PeSection]:
last_vma = (0, 0)
sections = []
for pe_s in iter_copy_sections(elf):
# Truncate the VMA to the nearest page and insert appropriate padding. This should not
# cause any overlap as this is pretty much how ELF *segments* are loaded/mmapped anyways.
# The ELF sections inside should also be properly aligned as we reuse the ELF VMA layout
# for the PE image.
vma = pe_s.VirtualAddress
pe_s.VirtualAddress = align_down(vma, SECTION_ALIGNMENT)
pe_s.data = bytearray(vma - pe_s.VirtualAddress) + pe_s.data
pe_s.VirtualSize = len(pe_s.data)
pe_s.SizeOfRawData = align_to(len(pe_s.data), FILE_ALIGNMENT)
pe_s.Name = {
PE_CHARACTERISTICS_RX: b".text",
PE_CHARACTERISTICS_RW: b".data",
PE_CHARACTERISTICS_R: b".rodata",
}[pe_s.Characteristics]
# This can happen if not building with '-z separate-code'.
if pe_s.VirtualAddress < sum(last_vma):
raise BadSectionError(f"Section {pe_s.Name.decode()!r} @0x{pe_s.VirtualAddress:x} overlaps"
f" previous section @0x{last_vma[0]:x}+0x{last_vma[1]:x}=@0x{sum(last_vma):x}")
last_vma = (pe_s.VirtualAddress, pe_s.VirtualSize)
if pe_s.Name == b".text":
opt.BaseOfCode = pe_s.VirtualAddress
opt.SizeOfCode += pe_s.VirtualSize
else:
opt.SizeOfInitializedData += pe_s.VirtualSize
if pe_s.Name == b".data" and isinstance(opt, PeOptionalHeader32):
opt.BaseOfData = pe_s.VirtualAddress
sections.append(pe_s)
return sections
def copy_sections(
elf: ELFFile,
opt: PeOptionalHeader,
input_names: str,
sections: typing.List[PeSection],
):
for name in input_names.split(","):
elf_s = elf.get_section_by_name(name)
if not elf_s:
continue
if elf_s.data_alignment > 1 and SECTION_ALIGNMENT % elf_s.data_alignment != 0:
raise BadSectionError(f"ELF section {name} is not aligned")
if elf_s["sh_flags"] & (SH_FLAGS.SHF_EXECINSTR | SH_FLAGS.SHF_WRITE) != 0:
raise BadSectionError(f"ELF section {name} is not read-only data")
pe_s = PeSection()
pe_s.Name = name.encode()
pe_s.data = elf_s.data()
pe_s.VirtualAddress = next_section_address(sections)
pe_s.VirtualSize = len(elf_s.data())
pe_s.SizeOfRawData = align_to(len(elf_s.data()), FILE_ALIGNMENT)
pe_s.Characteristics = PE_CHARACTERISTICS_R
opt.SizeOfInitializedData += pe_s.VirtualSize
sections.append(pe_s)
def apply_elf_relative_relocation(
reloc: ElfRelocation,
image_base: int,
sections: typing.List[PeSection],
addend_size: int,
):
[target] = [pe_s for pe_s in sections
if pe_s.VirtualAddress <= reloc["r_offset"] < pe_s.VirtualAddress + len(pe_s.data)]
addend_offset = reloc["r_offset"] - target.VirtualAddress
if reloc.is_RELA():
addend = reloc["r_addend"]
else:
addend = target.data[addend_offset : addend_offset + addend_size]
addend = int.from_bytes(addend, byteorder="little")
value = (image_base + addend).to_bytes(addend_size, byteorder="little")
target.data[addend_offset : addend_offset + addend_size] = value
def convert_elf_reloc_table(
elf: ELFFile,
elf_reloc_table: ElfRelocationTable,
elf_image_base: int,
sections: typing.List[PeSection],
pe_reloc_blocks: typing.Dict[int, PeRelocationBlock],
):
NONE_RELOC = {
"EM_386": ENUM_RELOC_TYPE_i386["R_386_NONE"],
"EM_AARCH64": ENUM_RELOC_TYPE_AARCH64["R_AARCH64_NONE"],
"EM_ARM": ENUM_RELOC_TYPE_ARM["R_ARM_NONE"],
"EM_LOONGARCH": 0,
"EM_RISCV": 0,
"EM_X86_64": ENUM_RELOC_TYPE_x64["R_X86_64_NONE"],
}[elf["e_machine"]]
RELATIVE_RELOC = {
"EM_386": ENUM_RELOC_TYPE_i386["R_386_RELATIVE"],
"EM_AARCH64": ENUM_RELOC_TYPE_AARCH64["R_AARCH64_RELATIVE"],
"EM_ARM": ENUM_RELOC_TYPE_ARM["R_ARM_RELATIVE"],
"EM_LOONGARCH": 3,
"EM_RISCV": 3,
"EM_X86_64": ENUM_RELOC_TYPE_x64["R_X86_64_RELATIVE"],
}[elf["e_machine"]]
for reloc in elf_reloc_table.iter_relocations():
if reloc["r_info_type"] == NONE_RELOC:
continue
if reloc["r_info_type"] == RELATIVE_RELOC:
apply_elf_relative_relocation(reloc,
elf_image_base,
sections,
elf.elfclass // 8)
# Now that the ELF relocation has been applied, we can create a PE relocation.
block_rva = reloc["r_offset"] & ~0xFFF
if block_rva not in pe_reloc_blocks:
pe_reloc_blocks[block_rva] = PeRelocationBlock(block_rva)
entry = PeRelocationEntry()
entry.Offset = reloc["r_offset"] & 0xFFF
# REL_BASED_HIGHLOW or REL_BASED_DIR64
entry.Type = 3 if elf.elfclass == 32 else 10
pe_reloc_blocks[block_rva].entries.append(entry)
continue
raise BadSectionError(f"Unsupported relocation {reloc}")
def convert_elf_relocations(
elf: ELFFile,
opt: PeOptionalHeader,
sections: typing.List[PeSection],
minimum_sections: int,
) -> typing.Optional[PeSection]:
dynamic = elf.get_section_by_name(".dynamic")
if dynamic is None:
raise BadSectionError("ELF .dynamic section is missing")
[flags_tag] = dynamic.iter_tags("DT_FLAGS_1")
if not flags_tag["d_val"] & ENUM_DT_FLAGS_1["DF_1_PIE"]:
raise ValueError("ELF file is not a PIE")
# This checks that the ELF image base is 0.
symtab = elf.get_section_by_name(".symtab")
if symtab:
exe_start = symtab.get_symbol_by_name("__executable_start")
if exe_start and exe_start[0]["st_value"] != 0:
raise ValueError("Unexpected ELF image base")
opt.SizeOfHeaders = align_to(PE_OFFSET
+ len(PE_MAGIC)
+ sizeof(PeCoffHeader)
+ sizeof(opt)
+ sizeof(PeSection) * max(len(sections) + 1, minimum_sections),
FILE_ALIGNMENT)
# We use the basic VMA layout from the ELF image in the PE image. This could cause the first
# section to overlap the PE image headers during runtime at VMA 0. We can simply apply a fixed
# offset relative to the PE image base when applying/converting ELF relocations. Afterwards we
# just have to apply the offset to the PE addresses so that the PE relocations work correctly on
# the ELF portions of the image.
segment_offset = 0
if sections[0].VirtualAddress < opt.SizeOfHeaders:
segment_offset = align_to(opt.SizeOfHeaders - sections[0].VirtualAddress,
SECTION_ALIGNMENT)
opt.AddressOfEntryPoint = elf["e_entry"] + segment_offset
opt.BaseOfCode += segment_offset
if isinstance(opt, PeOptionalHeader32):
opt.BaseOfData += segment_offset
pe_reloc_blocks: typing.Dict[int, PeRelocationBlock] = {}
for reloc_type, reloc_table in dynamic.get_relocation_tables().items():
if reloc_type not in ["REL", "RELA"]:
raise BadSectionError(f"Unsupported relocation type {reloc_type}")
convert_elf_reloc_table(elf,
reloc_table,
opt.ImageBase + segment_offset,
sections,
pe_reloc_blocks)
for pe_s in sections:
pe_s.VirtualAddress += segment_offset
if len(pe_reloc_blocks) == 0:
return None
data = bytearray()
for rva in sorted(pe_reloc_blocks):
block = pe_reloc_blocks[rva]
n_relocs = len(block.entries)
# Each block must start on a 32-bit boundary. Because each entry is 16 bits
# the len has to be even. We pad by adding a none relocation.
if n_relocs % 2 != 0:
n_relocs += 1
block.entries.append(PeRelocationEntry())
block.PageRVA += segment_offset
block.BlockSize = sizeof(PeRelocationBlock) + sizeof(PeRelocationEntry) * n_relocs
data += block
for entry in sorted(block.entries, key=lambda e: e.Offset):
data += entry
pe_reloc_s = PeSection()
pe_reloc_s.Name = b".reloc"
pe_reloc_s.data = data
pe_reloc_s.VirtualAddress = next_section_address(sections)
pe_reloc_s.VirtualSize = len(data)
pe_reloc_s.SizeOfRawData = align_to(len(data), FILE_ALIGNMENT)
# CNT_INITIALIZED_DATA|MEM_READ|MEM_DISCARDABLE
pe_reloc_s.Characteristics = 0x42000040
sections.append(pe_reloc_s)
opt.SizeOfInitializedData += pe_reloc_s.VirtualSize
return pe_reloc_s
def write_pe(
file,
coff: PeCoffHeader,
opt: PeOptionalHeader,
sections: typing.List[PeSection],
):
file.write(b"MZ")
file.seek(0x3C, io.SEEK_SET)
file.write(PE_OFFSET.to_bytes(2, byteorder="little"))
file.seek(PE_OFFSET, io.SEEK_SET)
file.write(PE_MAGIC)
file.write(coff)
file.write(opt)
offset = opt.SizeOfHeaders
for pe_s in sorted(sections, key=lambda s: s.VirtualAddress):
if pe_s.VirtualAddress < opt.SizeOfHeaders:
raise BadSectionError(f"Section {pe_s.Name} @0x{pe_s.VirtualAddress:x} overlaps"
" PE headers ending at 0x{opt.SizeOfHeaders:x}")
pe_s.PointerToRawData = offset
file.write(pe_s)
offset = align_to(offset + len(pe_s.data), FILE_ALIGNMENT)
assert file.tell() <= opt.SizeOfHeaders
for pe_s in sections:
file.seek(pe_s.PointerToRawData, io.SEEK_SET)
file.write(pe_s.data)
file.truncate(offset)
def elf2efi(args: argparse.Namespace):
elf = ELFFile(args.ELF)
if not elf.little_endian:
raise ValueError("ELF file is not little-endian")
if elf["e_type"] not in ["ET_DYN", "ET_EXEC"]:
raise ValueError(f"Unsupported ELF type {elf['e_type']}")
pe_arch = {
"EM_386": 0x014C,
"EM_AARCH64": 0xAA64,
"EM_ARM": 0x01C2,
"EM_LOONGARCH": 0x6232 if elf.elfclass == 32 else 0x6264,
"EM_RISCV": 0x5032 if elf.elfclass == 32 else 0x5064,
"EM_X86_64": 0x8664,
}.get(elf["e_machine"])
if pe_arch is None:
raise ValueError(f"Unsupported ELF architecture {elf['e_machine']}")
coff = PeCoffHeader()
opt = PeOptionalHeader32() if elf.elfclass == 32 else PeOptionalHeader32Plus()
# We relocate to a unique image base to reduce the chances for runtime relocation to occur.
base_name = pathlib.Path(args.PE.name).name.encode()
opt.ImageBase = int(hashlib.sha1(base_name).hexdigest()[0:8], 16)
if elf.elfclass == 32:
opt.ImageBase = (0x400000 + opt.ImageBase) & 0xFFFF0000
else:
opt.ImageBase = (0x100000000 + opt.ImageBase) & 0x1FFFF0000
sections = convert_sections(elf, opt)
copy_sections(elf, opt, args.copy_sections, sections)
pe_reloc_s = convert_elf_relocations(elf, opt, sections, args.minimum_sections)
coff.Machine = pe_arch
coff.NumberOfSections = len(sections)
coff.TimeDateStamp = int(os.environ.get("SOURCE_DATE_EPOCH", time.time()))
coff.SizeOfOptionalHeader = sizeof(opt)
# EXECUTABLE_IMAGE|LINE_NUMS_STRIPPED|LOCAL_SYMS_STRIPPED|DEBUG_STRIPPED
# and (32BIT_MACHINE or LARGE_ADDRESS_AWARE)
coff.Characteristics = 0x30E if elf.elfclass == 32 else 0x22E
opt.SectionAlignment = SECTION_ALIGNMENT
opt.FileAlignment = FILE_ALIGNMENT
opt.MajorImageVersion = args.version_major
opt.MinorImageVersion = args.version_minor
opt.MajorSubsystemVersion = args.efi_major
opt.MinorSubsystemVersion = args.efi_minor
opt.Subsystem = args.subsystem
opt.Magic = 0x10B if elf.elfclass == 32 else 0x20B
opt.SizeOfImage = next_section_address(sections)
# DYNAMIC_BASE|NX_COMPAT|HIGH_ENTROPY_VA or DYNAMIC_BASE|NX_COMPAT
opt.DllCharacteristics = 0x160 if elf.elfclass == 64 else 0x140
# These values are taken from a natively built PE binary (although, unused by EDK2/EFI).
opt.SizeOfStackReserve = 0x100000
opt.SizeOfStackCommit = 0x001000
opt.SizeOfHeapReserve = 0x100000
opt.SizeOfHeapCommit = 0x001000
opt.NumberOfRvaAndSizes = N_DATA_DIRECTORY_ENTRIES
if pe_reloc_s:
opt.BaseRelocationTable = PeDataDirectory(
pe_reloc_s.VirtualAddress, pe_reloc_s.VirtualSize
)
write_pe(args.PE, coff, opt, sections)
def create_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser(description="Convert ELF binaries to PE/EFI")
parser.add_argument(
"--version-major",
type=int,
default=0,
help="Major image version of EFI image",
)
parser.add_argument(
"--version-minor",
type=int,
default=0,
help="Minor image version of EFI image",
)
parser.add_argument(
"--efi-major",
type=int,
default=0,
help="Minimum major EFI subsystem version",
)
parser.add_argument(
"--efi-minor",
type=int,
default=0,
help="Minimum minor EFI subsystem version",
)
parser.add_argument(
"--subsystem",
type=int,
default=10,
help="PE subsystem",
)
parser.add_argument(
"ELF",
type=argparse.FileType("rb"),
help="Input ELF file",
)
parser.add_argument(
"PE",
type=argparse.FileType("wb"),
help="Output PE/EFI file",
)
parser.add_argument(
"--minimum-sections",
type=int,
default=0,
help="Minimum number of sections to leave space for",
)
parser.add_argument(
"--copy-sections",
type=str,
default="",
help="Copy these sections if found",
)
return parser
def main():
parser = create_parser()
elf2efi(parser.parse_args())
if __name__ == "__main__":
main()