mirror of
https://github.com/systemd/systemd.git
synced 2025-01-10 05:18:17 +03:00
898e9edc46
This makes the special PE sections available again in our output EFI images. Since the compiler provides no way to mark a section as not allocated, we use GNU assembler syntax to emit the sections instead. This ensures the section data isn't emitted twice as load segments will only contain allocating input sections.
689 lines
22 KiB
Python
Executable File
689 lines
22 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# SPDX-License-Identifier: LGPL-2.1-or-later
|
|
|
|
# Convert ELF static PIE to PE/EFI image.
|
|
|
|
# To do so we simply copy desired ELF sections while preserving their memory layout to ensure that
|
|
# code still runs as expected. We then translate ELF relocations to PE relocations so that the EFI
|
|
# loader/firmware can properly load the binary to any address at runtime.
|
|
#
|
|
# To make this as painless as possible we only operate on static PIEs as they should only contain
|
|
# base relocations that are easy to handle as they have a one-to-one mapping to PE relocations.
|
|
#
|
|
# EDK2 does a similar process using their GenFw tool. The main difference is that they use the
|
|
# --emit-relocs linker flag, which emits a lot of different (static) ELF relocation types that have
|
|
# to be handled differently for each architecture and is overall more work than its worth.
|
|
#
|
|
# Note that on arches where binutils has PE support (x86/x86_64 mostly, aarch64 only recently)
|
|
# objcopy can be used to convert ELF to PE. But this will still not convert ELF relocations, making
|
|
# the resulting binary useless. gnu-efi relies on this method and contains a stub that performs the
|
|
# ELF dynamic relocations at runtime.
|
|
|
|
# pylint: disable=attribute-defined-outside-init
|
|
|
|
import argparse
|
|
import hashlib
|
|
import io
|
|
import os
|
|
import pathlib
|
|
import time
|
|
import typing
|
|
from ctypes import (
|
|
c_char,
|
|
c_uint8,
|
|
c_uint16,
|
|
c_uint32,
|
|
c_uint64,
|
|
LittleEndianStructure,
|
|
sizeof,
|
|
)
|
|
|
|
from elftools.elf.constants import SH_FLAGS
|
|
from elftools.elf.elffile import ELFFile
|
|
from elftools.elf.enums import (
|
|
ENUM_DT_FLAGS_1,
|
|
ENUM_RELOC_TYPE_AARCH64,
|
|
ENUM_RELOC_TYPE_ARM,
|
|
ENUM_RELOC_TYPE_i386,
|
|
ENUM_RELOC_TYPE_x64,
|
|
)
|
|
from elftools.elf.relocation import (
|
|
Relocation as ElfRelocation,
|
|
RelocationTable as ElfRelocationTable,
|
|
)
|
|
|
|
|
|
class PeCoffHeader(LittleEndianStructure):
|
|
_fields_ = (
|
|
("Machine", c_uint16),
|
|
("NumberOfSections", c_uint16),
|
|
("TimeDateStamp", c_uint32),
|
|
("PointerToSymbolTable", c_uint32),
|
|
("NumberOfSymbols", c_uint32),
|
|
("SizeOfOptionalHeader", c_uint16),
|
|
("Characteristics", c_uint16),
|
|
)
|
|
|
|
|
|
class PeDataDirectory(LittleEndianStructure):
|
|
_fields_ = (
|
|
("VirtualAddress", c_uint32),
|
|
("Size", c_uint32),
|
|
)
|
|
|
|
|
|
class PeRelocationBlock(LittleEndianStructure):
|
|
_fields_ = (
|
|
("PageRVA", c_uint32),
|
|
("BlockSize", c_uint32),
|
|
)
|
|
|
|
def __init__(self, PageRVA: int):
|
|
super().__init__(PageRVA)
|
|
self.entries: typing.List[PeRelocationEntry] = []
|
|
|
|
|
|
class PeRelocationEntry(LittleEndianStructure):
|
|
_fields_ = (
|
|
("Offset", c_uint16, 12),
|
|
("Type", c_uint16, 4),
|
|
)
|
|
|
|
|
|
class PeOptionalHeaderStart(LittleEndianStructure):
|
|
_fields_ = (
|
|
("Magic", c_uint16),
|
|
("MajorLinkerVersion", c_uint8),
|
|
("MinorLinkerVersion", c_uint8),
|
|
("SizeOfCode", c_uint32),
|
|
("SizeOfInitializedData", c_uint32),
|
|
("SizeOfUninitializedData", c_uint32),
|
|
("AddressOfEntryPoint", c_uint32),
|
|
("BaseOfCode", c_uint32),
|
|
)
|
|
|
|
|
|
class PeOptionalHeaderMiddle(LittleEndianStructure):
|
|
_fields_ = (
|
|
("SectionAlignment", c_uint32),
|
|
("FileAlignment", c_uint32),
|
|
("MajorOperatingSystemVersion", c_uint16),
|
|
("MinorOperatingSystemVersion", c_uint16),
|
|
("MajorImageVersion", c_uint16),
|
|
("MinorImageVersion", c_uint16),
|
|
("MajorSubsystemVersion", c_uint16),
|
|
("MinorSubsystemVersion", c_uint16),
|
|
("Win32VersionValue", c_uint32),
|
|
("SizeOfImage", c_uint32),
|
|
("SizeOfHeaders", c_uint32),
|
|
("CheckSum", c_uint32),
|
|
("Subsystem", c_uint16),
|
|
("DllCharacteristics", c_uint16),
|
|
)
|
|
|
|
|
|
class PeOptionalHeaderEnd(LittleEndianStructure):
|
|
_fields_ = (
|
|
("LoaderFlags", c_uint32),
|
|
("NumberOfRvaAndSizes", c_uint32),
|
|
("ExportTable", PeDataDirectory),
|
|
("ImportTable", PeDataDirectory),
|
|
("ResourceTable", PeDataDirectory),
|
|
("ExceptionTable", PeDataDirectory),
|
|
("CertificateTable", PeDataDirectory),
|
|
("BaseRelocationTable", PeDataDirectory),
|
|
("Debug", PeDataDirectory),
|
|
("Architecture", PeDataDirectory),
|
|
("GlobalPtr", PeDataDirectory),
|
|
("TLSTable", PeDataDirectory),
|
|
("LoadConfigTable", PeDataDirectory),
|
|
("BoundImport", PeDataDirectory),
|
|
("IAT", PeDataDirectory),
|
|
("DelayImportDescriptor", PeDataDirectory),
|
|
("CLRRuntimeHeader", PeDataDirectory),
|
|
("Reserved", PeDataDirectory),
|
|
)
|
|
|
|
|
|
class PeOptionalHeader(LittleEndianStructure):
|
|
pass
|
|
|
|
|
|
class PeOptionalHeader32(PeOptionalHeader):
|
|
_anonymous_ = ("Start", "Middle", "End")
|
|
_fields_ = (
|
|
("Start", PeOptionalHeaderStart),
|
|
("BaseOfData", c_uint32),
|
|
("ImageBase", c_uint32),
|
|
("Middle", PeOptionalHeaderMiddle),
|
|
("SizeOfStackReserve", c_uint32),
|
|
("SizeOfStackCommit", c_uint32),
|
|
("SizeOfHeapReserve", c_uint32),
|
|
("SizeOfHeapCommit", c_uint32),
|
|
("End", PeOptionalHeaderEnd),
|
|
)
|
|
|
|
|
|
class PeOptionalHeader32Plus(PeOptionalHeader):
|
|
_anonymous_ = ("Start", "Middle", "End")
|
|
_fields_ = (
|
|
("Start", PeOptionalHeaderStart),
|
|
("ImageBase", c_uint64),
|
|
("Middle", PeOptionalHeaderMiddle),
|
|
("SizeOfStackReserve", c_uint64),
|
|
("SizeOfStackCommit", c_uint64),
|
|
("SizeOfHeapReserve", c_uint64),
|
|
("SizeOfHeapCommit", c_uint64),
|
|
("End", PeOptionalHeaderEnd),
|
|
)
|
|
|
|
|
|
class PeSection(LittleEndianStructure):
|
|
_fields_ = (
|
|
("Name", c_char * 8),
|
|
("VirtualSize", c_uint32),
|
|
("VirtualAddress", c_uint32),
|
|
("SizeOfRawData", c_uint32),
|
|
("PointerToRawData", c_uint32),
|
|
("PointerToRelocations", c_uint32),
|
|
("PointerToLinenumbers", c_uint32),
|
|
("NumberOfRelocations", c_uint16),
|
|
("NumberOfLinenumbers", c_uint16),
|
|
("Characteristics", c_uint32),
|
|
)
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.data = bytearray()
|
|
|
|
|
|
N_DATA_DIRECTORY_ENTRIES = 16
|
|
|
|
assert sizeof(PeSection) == 40
|
|
assert sizeof(PeCoffHeader) == 20
|
|
assert sizeof(PeOptionalHeader32) == 224
|
|
assert sizeof(PeOptionalHeader32Plus) == 240
|
|
|
|
PE_CHARACTERISTICS_RX = 0x60000020 # CNT_CODE|MEM_READ|MEM_EXECUTE
|
|
PE_CHARACTERISTICS_RW = 0xC0000040 # CNT_INITIALIZED_DATA|MEM_READ|MEM_WRITE
|
|
PE_CHARACTERISTICS_R = 0x40000040 # CNT_INITIALIZED_DATA|MEM_READ
|
|
|
|
IGNORE_SECTIONS = [
|
|
".eh_frame",
|
|
".eh_frame_hdr",
|
|
".ARM.exidx",
|
|
]
|
|
|
|
IGNORE_SECTION_TYPES = [
|
|
"SHT_DYNAMIC",
|
|
"SHT_DYNSYM",
|
|
"SHT_GNU_ATTRIBUTES",
|
|
"SHT_GNU_HASH",
|
|
"SHT_HASH",
|
|
"SHT_NOTE",
|
|
"SHT_REL",
|
|
"SHT_RELA",
|
|
"SHT_RELR",
|
|
"SHT_STRTAB",
|
|
"SHT_SYMTAB",
|
|
]
|
|
|
|
# EFI mandates 4KiB memory pages.
|
|
SECTION_ALIGNMENT = 4096
|
|
FILE_ALIGNMENT = 512
|
|
|
|
# Nobody cares about DOS headers, so put the PE header right after.
|
|
PE_OFFSET = 64
|
|
PE_MAGIC = b"PE\0\0"
|
|
|
|
|
|
def align_to(x: int, align: int) -> int:
|
|
return (x + align - 1) & ~(align - 1)
|
|
|
|
|
|
def align_down(x: int, align: int) -> int:
|
|
return x & ~(align - 1)
|
|
|
|
|
|
def next_section_address(sections: typing.List[PeSection]) -> int:
|
|
return align_to(
|
|
sections[-1].VirtualAddress + sections[-1].VirtualSize, SECTION_ALIGNMENT
|
|
)
|
|
|
|
|
|
def iter_copy_sections(elf: ELFFile) -> typing.Iterator[PeSection]:
|
|
pe_s = None
|
|
|
|
# This is essentially the same as copying by ELF load segments, except that we assemble them
|
|
# manually, so that we can easily strip unwanted sections. We try to only discard things we know
|
|
# about so that there are no surprises.
|
|
|
|
for elf_s in elf.iter_sections():
|
|
if (
|
|
elf_s["sh_flags"] & SH_FLAGS.SHF_ALLOC == 0
|
|
or elf_s["sh_type"] in IGNORE_SECTION_TYPES
|
|
or elf_s.name in IGNORE_SECTIONS
|
|
):
|
|
continue
|
|
if elf_s["sh_type"] not in ["SHT_PROGBITS", "SHT_NOBITS"]:
|
|
raise RuntimeError(f"Unknown section {elf_s.name}.")
|
|
|
|
if elf_s["sh_flags"] & SH_FLAGS.SHF_EXECINSTR:
|
|
rwx = PE_CHARACTERISTICS_RX
|
|
elif elf_s["sh_flags"] & SH_FLAGS.SHF_WRITE:
|
|
rwx = PE_CHARACTERISTICS_RW
|
|
else:
|
|
rwx = PE_CHARACTERISTICS_R
|
|
|
|
if pe_s and pe_s.Characteristics != rwx:
|
|
yield pe_s
|
|
pe_s = None
|
|
|
|
if pe_s:
|
|
# Insert padding to properly align the section.
|
|
pad_len = elf_s["sh_addr"] - pe_s.VirtualAddress - len(pe_s.data)
|
|
pe_s.data += bytearray(pad_len) + elf_s.data()
|
|
else:
|
|
pe_s = PeSection()
|
|
pe_s.VirtualAddress = elf_s["sh_addr"]
|
|
pe_s.Characteristics = rwx
|
|
pe_s.data = elf_s.data()
|
|
|
|
if pe_s:
|
|
yield pe_s
|
|
|
|
|
|
def convert_sections(elf: ELFFile, opt: PeOptionalHeader) -> typing.List[PeSection]:
|
|
last_vma = 0
|
|
sections = []
|
|
|
|
for pe_s in iter_copy_sections(elf):
|
|
# Truncate the VMA to the nearest page and insert appropriate padding. This should not
|
|
# cause any overlap as this is pretty much how ELF *segments* are loaded/mmapped anyways.
|
|
# The ELF sections inside should also be properly aligned as we reuse the ELF VMA layout
|
|
# for the PE image.
|
|
vma = pe_s.VirtualAddress
|
|
pe_s.VirtualAddress = align_down(vma, SECTION_ALIGNMENT)
|
|
pe_s.data = bytearray(vma - pe_s.VirtualAddress) + pe_s.data
|
|
|
|
pe_s.VirtualSize = len(pe_s.data)
|
|
pe_s.SizeOfRawData = align_to(len(pe_s.data), FILE_ALIGNMENT)
|
|
pe_s.Name = {
|
|
PE_CHARACTERISTICS_RX: b".text",
|
|
PE_CHARACTERISTICS_RW: b".data",
|
|
PE_CHARACTERISTICS_R: b".rodata",
|
|
}[pe_s.Characteristics]
|
|
|
|
# This can happen if not building with `-z separate-code`.
|
|
if pe_s.VirtualAddress < last_vma:
|
|
raise RuntimeError("Overlapping PE sections.")
|
|
last_vma = pe_s.VirtualAddress + pe_s.VirtualSize
|
|
|
|
if pe_s.Name == b".text":
|
|
opt.BaseOfCode = pe_s.VirtualAddress
|
|
opt.SizeOfCode += pe_s.VirtualSize
|
|
else:
|
|
opt.SizeOfInitializedData += pe_s.VirtualSize
|
|
|
|
if pe_s.Name == b".data" and isinstance(opt, PeOptionalHeader32):
|
|
opt.BaseOfData = pe_s.VirtualAddress
|
|
|
|
sections.append(pe_s)
|
|
|
|
return sections
|
|
|
|
|
|
def copy_sections(
|
|
elf: ELFFile,
|
|
opt: PeOptionalHeader,
|
|
input_names: str,
|
|
sections: typing.List[PeSection],
|
|
):
|
|
for name in input_names.split(","):
|
|
elf_s = elf.get_section_by_name(name)
|
|
if not elf_s:
|
|
continue
|
|
if elf_s.data_alignment > 1 and SECTION_ALIGNMENT % elf_s.data_alignment != 0:
|
|
raise RuntimeError(f"ELF section {name} is not aligned.")
|
|
if elf_s["sh_flags"] & (SH_FLAGS.SHF_EXECINSTR | SH_FLAGS.SHF_WRITE) != 0:
|
|
raise RuntimeError(f"ELF section {name} is not read-only data.")
|
|
|
|
pe_s = PeSection()
|
|
pe_s.Name = name.encode()
|
|
pe_s.data = elf_s.data()
|
|
pe_s.VirtualAddress = next_section_address(sections)
|
|
pe_s.VirtualSize = len(elf_s.data())
|
|
pe_s.SizeOfRawData = align_to(len(elf_s.data()), FILE_ALIGNMENT)
|
|
pe_s.Characteristics = PE_CHARACTERISTICS_R
|
|
opt.SizeOfInitializedData += pe_s.VirtualSize
|
|
sections.append(pe_s)
|
|
|
|
|
|
def apply_elf_relative_relocation(
|
|
reloc: ElfRelocation,
|
|
image_base: int,
|
|
sections: typing.List[PeSection],
|
|
addend_size: int,
|
|
):
|
|
# fmt: off
|
|
[target] = [
|
|
pe_s for pe_s in sections
|
|
if pe_s.VirtualAddress <= reloc["r_offset"] < pe_s.VirtualAddress + len(pe_s.data)
|
|
]
|
|
# fmt: on
|
|
|
|
addend_offset = reloc["r_offset"] - target.VirtualAddress
|
|
|
|
if reloc.is_RELA():
|
|
addend = reloc["r_addend"]
|
|
else:
|
|
addend = target.data[addend_offset : addend_offset + addend_size]
|
|
addend = int.from_bytes(addend, byteorder="little")
|
|
|
|
value = (image_base + addend).to_bytes(addend_size, byteorder="little")
|
|
target.data[addend_offset : addend_offset + addend_size] = value
|
|
|
|
|
|
def convert_elf_reloc_table(
|
|
elf: ELFFile,
|
|
elf_reloc_table: ElfRelocationTable,
|
|
elf_image_base: int,
|
|
sections: typing.List[PeSection],
|
|
pe_reloc_blocks: typing.Dict[int, PeRelocationBlock],
|
|
):
|
|
NONE_RELOC = {
|
|
"EM_386": ENUM_RELOC_TYPE_i386["R_386_NONE"],
|
|
"EM_AARCH64": ENUM_RELOC_TYPE_AARCH64["R_AARCH64_NONE"],
|
|
"EM_ARM": ENUM_RELOC_TYPE_ARM["R_ARM_NONE"],
|
|
"EM_LOONGARCH": 0,
|
|
"EM_RISCV": 0,
|
|
"EM_X86_64": ENUM_RELOC_TYPE_x64["R_X86_64_NONE"],
|
|
}[elf["e_machine"]]
|
|
|
|
RELATIVE_RELOC = {
|
|
"EM_386": ENUM_RELOC_TYPE_i386["R_386_RELATIVE"],
|
|
"EM_AARCH64": ENUM_RELOC_TYPE_AARCH64["R_AARCH64_RELATIVE"],
|
|
"EM_ARM": ENUM_RELOC_TYPE_ARM["R_ARM_RELATIVE"],
|
|
"EM_LOONGARCH": 3,
|
|
"EM_RISCV": 3,
|
|
"EM_X86_64": ENUM_RELOC_TYPE_x64["R_X86_64_RELATIVE"],
|
|
}[elf["e_machine"]]
|
|
|
|
for reloc in elf_reloc_table.iter_relocations():
|
|
if reloc["r_info_type"] == NONE_RELOC:
|
|
continue
|
|
|
|
if reloc["r_info_type"] == RELATIVE_RELOC:
|
|
apply_elf_relative_relocation(
|
|
reloc, elf_image_base, sections, elf.elfclass // 8
|
|
)
|
|
|
|
# Now that the ELF relocation has been applied, we can create a PE relocation.
|
|
block_rva = reloc["r_offset"] & ~0xFFF
|
|
if block_rva not in pe_reloc_blocks:
|
|
pe_reloc_blocks[block_rva] = PeRelocationBlock(block_rva)
|
|
|
|
entry = PeRelocationEntry()
|
|
entry.Offset = reloc["r_offset"] & 0xFFF
|
|
# REL_BASED_HIGHLOW or REL_BASED_DIR64
|
|
entry.Type = 3 if elf.elfclass == 32 else 10
|
|
pe_reloc_blocks[block_rva].entries.append(entry)
|
|
|
|
continue
|
|
|
|
raise RuntimeError(f"Unsupported relocation {reloc}")
|
|
|
|
|
|
def convert_elf_relocations(
|
|
elf: ELFFile,
|
|
opt: PeOptionalHeader,
|
|
sections: typing.List[PeSection],
|
|
minimum_sections: int,
|
|
) -> typing.Optional[PeSection]:
|
|
dynamic = elf.get_section_by_name(".dynamic")
|
|
if dynamic is None:
|
|
raise RuntimeError("ELF .dynamic section is missing.")
|
|
|
|
[flags_tag] = dynamic.iter_tags("DT_FLAGS_1")
|
|
if not flags_tag["d_val"] & ENUM_DT_FLAGS_1["DF_1_PIE"]:
|
|
raise RuntimeError("ELF file is not a PIE.")
|
|
|
|
# This checks that the ELF image base is 0.
|
|
symtab = elf.get_section_by_name(".symtab")
|
|
if symtab:
|
|
exe_start = symtab.get_symbol_by_name("__executable_start")
|
|
if exe_start and exe_start[0]["st_value"] != 0:
|
|
raise RuntimeError("Unexpected ELF image base.")
|
|
|
|
opt.SizeOfHeaders = align_to(
|
|
PE_OFFSET
|
|
+ len(PE_MAGIC)
|
|
+ sizeof(PeCoffHeader)
|
|
+ sizeof(opt)
|
|
+ sizeof(PeSection) * max(len(sections) + 1, minimum_sections),
|
|
FILE_ALIGNMENT,
|
|
)
|
|
|
|
# We use the basic VMA layout from the ELF image in the PE image. This could cause the first
|
|
# section to overlap the PE image headers during runtime at VMA 0. We can simply apply a fixed
|
|
# offset relative to the PE image base when applying/converting ELF relocations. Afterwards we
|
|
# just have to apply the offset to the PE addresses so that the PE relocations work correctly on
|
|
# the ELF portions of the image.
|
|
segment_offset = 0
|
|
if sections[0].VirtualAddress < opt.SizeOfHeaders:
|
|
segment_offset = align_to(
|
|
opt.SizeOfHeaders - sections[0].VirtualAddress, SECTION_ALIGNMENT
|
|
)
|
|
|
|
opt.AddressOfEntryPoint = elf["e_entry"] + segment_offset
|
|
opt.BaseOfCode += segment_offset
|
|
if isinstance(opt, PeOptionalHeader32):
|
|
opt.BaseOfData += segment_offset
|
|
|
|
pe_reloc_blocks: typing.Dict[int, PeRelocationBlock] = {}
|
|
for reloc_type, reloc_table in dynamic.get_relocation_tables().items():
|
|
if reloc_type not in ["REL", "RELA"]:
|
|
raise RuntimeError("Unsupported relocation type {elf_reloc_type}.")
|
|
convert_elf_reloc_table(
|
|
elf, reloc_table, opt.ImageBase + segment_offset, sections, pe_reloc_blocks
|
|
)
|
|
|
|
for pe_s in sections:
|
|
pe_s.VirtualAddress += segment_offset
|
|
|
|
if len(pe_reloc_blocks) == 0:
|
|
return None
|
|
|
|
data = bytearray()
|
|
for rva in sorted(pe_reloc_blocks):
|
|
block = pe_reloc_blocks[rva]
|
|
n_relocs = len(block.entries)
|
|
|
|
# Each block must start on a 32-bit boundary. Because each entry is 16 bits
|
|
# the len has to be even. We pad by adding a none relocation.
|
|
if n_relocs % 2 != 0:
|
|
n_relocs += 1
|
|
block.entries.append(PeRelocationEntry())
|
|
|
|
block.PageRVA += segment_offset
|
|
block.BlockSize = (
|
|
sizeof(PeRelocationBlock) + sizeof(PeRelocationEntry) * n_relocs
|
|
)
|
|
data += block
|
|
for entry in sorted(block.entries, key=lambda e: e.Offset):
|
|
data += entry
|
|
|
|
pe_reloc_s = PeSection()
|
|
pe_reloc_s.Name = b".reloc"
|
|
pe_reloc_s.data = data
|
|
pe_reloc_s.VirtualAddress = next_section_address(sections)
|
|
pe_reloc_s.VirtualSize = len(data)
|
|
pe_reloc_s.SizeOfRawData = align_to(len(data), FILE_ALIGNMENT)
|
|
# CNT_INITIALIZED_DATA|MEM_READ|MEM_DISCARDABLE
|
|
pe_reloc_s.Characteristics = 0x42000040
|
|
|
|
sections.append(pe_reloc_s)
|
|
opt.SizeOfInitializedData += pe_reloc_s.VirtualSize
|
|
return pe_reloc_s
|
|
|
|
|
|
def write_pe(
|
|
file, coff: PeCoffHeader, opt: PeOptionalHeader, sections: typing.List[PeSection]
|
|
):
|
|
file.write(b"MZ")
|
|
file.seek(0x3C, io.SEEK_SET)
|
|
file.write(PE_OFFSET.to_bytes(2, byteorder="little"))
|
|
file.seek(PE_OFFSET, io.SEEK_SET)
|
|
file.write(PE_MAGIC)
|
|
file.write(coff)
|
|
file.write(opt)
|
|
|
|
offset = opt.SizeOfHeaders
|
|
for pe_s in sorted(sections, key=lambda s: s.VirtualAddress):
|
|
if pe_s.VirtualAddress < opt.SizeOfHeaders:
|
|
# Linker script should make sure this does not happen.
|
|
raise RuntimeError(f"Section {pe_s.Name} overlapping PE headers.")
|
|
|
|
pe_s.PointerToRawData = offset
|
|
file.write(pe_s)
|
|
offset = align_to(offset + len(pe_s.data), FILE_ALIGNMENT)
|
|
|
|
assert file.tell() <= opt.SizeOfHeaders
|
|
|
|
for pe_s in sections:
|
|
file.seek(pe_s.PointerToRawData, io.SEEK_SET)
|
|
file.write(pe_s.data)
|
|
|
|
file.truncate(offset)
|
|
|
|
|
|
def elf2efi(args: argparse.Namespace):
|
|
elf = ELFFile(args.ELF)
|
|
if not elf.little_endian:
|
|
raise RuntimeError("ELF file is not little-endian.")
|
|
if elf["e_type"] not in ["ET_DYN", "ET_EXEC"]:
|
|
raise RuntimeError("Unsupported ELF type.")
|
|
|
|
pe_arch = {
|
|
"EM_386": 0x014C,
|
|
"EM_AARCH64": 0xAA64,
|
|
"EM_ARM": 0x01C2,
|
|
"EM_LOONGARCH": 0x6232 if elf.elfclass == 32 else 0x6264,
|
|
"EM_RISCV": 0x5032 if elf.elfclass == 32 else 0x5064,
|
|
"EM_X86_64": 0x8664,
|
|
}.get(elf["e_machine"])
|
|
if pe_arch is None:
|
|
raise RuntimeError(f"Unsupported ELF arch {elf['e_machine']}")
|
|
|
|
coff = PeCoffHeader()
|
|
opt = PeOptionalHeader32() if elf.elfclass == 32 else PeOptionalHeader32Plus()
|
|
|
|
# We relocate to a unique image base to reduce the chances for runtime relocation to occur.
|
|
base_name = pathlib.Path(args.PE.name).name.encode()
|
|
opt.ImageBase = int(hashlib.sha1(base_name).hexdigest()[0:8], 16)
|
|
if elf.elfclass == 32:
|
|
opt.ImageBase = (0x400000 + opt.ImageBase) & 0xFFFF0000
|
|
else:
|
|
opt.ImageBase = (0x100000000 + opt.ImageBase) & 0x1FFFF0000
|
|
|
|
sections = convert_sections(elf, opt)
|
|
copy_sections(elf, opt, args.copy_sections, sections)
|
|
pe_reloc_s = convert_elf_relocations(elf, opt, sections, args.minimum_sections)
|
|
|
|
coff.Machine = pe_arch
|
|
coff.NumberOfSections = len(sections)
|
|
coff.TimeDateStamp = int(os.environ.get("SOURCE_DATE_EPOCH", time.time()))
|
|
coff.SizeOfOptionalHeader = sizeof(opt)
|
|
# EXECUTABLE_IMAGE|LINE_NUMS_STRIPPED|LOCAL_SYMS_STRIPPED|DEBUG_STRIPPED
|
|
# and (32BIT_MACHINE or LARGE_ADDRESS_AWARE)
|
|
coff.Characteristics = 0x30E if elf.elfclass == 32 else 0x22E
|
|
|
|
opt.SectionAlignment = SECTION_ALIGNMENT
|
|
opt.FileAlignment = FILE_ALIGNMENT
|
|
opt.MajorImageVersion = args.version_major
|
|
opt.MinorImageVersion = args.version_minor
|
|
opt.MajorSubsystemVersion = args.efi_major
|
|
opt.MinorSubsystemVersion = args.efi_minor
|
|
opt.Subsystem = args.subsystem
|
|
opt.Magic = 0x10B if elf.elfclass == 32 else 0x20B
|
|
opt.SizeOfImage = next_section_address(sections)
|
|
|
|
# DYNAMIC_BASE|NX_COMPAT|HIGH_ENTROPY_VA or DYNAMIC_BASE|NX_COMPAT
|
|
opt.DllCharacteristics = 0x160 if elf.elfclass == 64 else 0x140
|
|
|
|
# These values are taken from a natively built PE binary (although, unused by EDK2/EFI).
|
|
opt.SizeOfStackReserve = 0x100000
|
|
opt.SizeOfStackCommit = 0x001000
|
|
opt.SizeOfHeapReserve = 0x100000
|
|
opt.SizeOfHeapCommit = 0x001000
|
|
|
|
opt.NumberOfRvaAndSizes = N_DATA_DIRECTORY_ENTRIES
|
|
if pe_reloc_s:
|
|
opt.BaseRelocationTable = PeDataDirectory(
|
|
pe_reloc_s.VirtualAddress, pe_reloc_s.VirtualSize
|
|
)
|
|
|
|
write_pe(args.PE, coff, opt, sections)
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(description="Convert ELF binaries to PE/EFI")
|
|
parser.add_argument(
|
|
"--version-major",
|
|
type=int,
|
|
default=0,
|
|
help="Major image version of EFI image",
|
|
)
|
|
parser.add_argument(
|
|
"--version-minor",
|
|
type=int,
|
|
default=0,
|
|
help="Minor image version of EFI image",
|
|
)
|
|
parser.add_argument(
|
|
"--efi-major",
|
|
type=int,
|
|
default=0,
|
|
help="Minimum major EFI subsystem version",
|
|
)
|
|
parser.add_argument(
|
|
"--efi-minor",
|
|
type=int,
|
|
default=0,
|
|
help="Minimum minor EFI subsystem version",
|
|
)
|
|
parser.add_argument(
|
|
"--subsystem",
|
|
type=int,
|
|
default=10,
|
|
help="PE subsystem",
|
|
)
|
|
parser.add_argument(
|
|
"ELF",
|
|
type=argparse.FileType("rb"),
|
|
help="Input ELF file",
|
|
)
|
|
parser.add_argument(
|
|
"PE",
|
|
type=argparse.FileType("wb"),
|
|
help="Output PE/EFI file",
|
|
)
|
|
parser.add_argument(
|
|
"--minimum-sections",
|
|
type=int,
|
|
default=0,
|
|
help="Minimum number of sections to leave space for",
|
|
)
|
|
parser.add_argument(
|
|
"--copy-sections",
|
|
type=str,
|
|
default="",
|
|
help="Copy these sections if found",
|
|
)
|
|
|
|
elf2efi(parser.parse_args())
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|