1
0
mirror of https://github.com/systemd/systemd.git synced 2025-01-14 23:24:38 +03:00
systemd/man/systemctl.xml
2017-10-10 21:59:03 +02:00

1951 lines
94 KiB
XML
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<?xml version='1.0'?> <!--*- Mode: nxml; nxml-child-indent: 2; indent-tabs-mode: nil -*-->
<!DOCTYPE refentry PUBLIC "-//OASIS//DTD DocBook XML V4.2//EN"
"http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd" [
<!ENTITY % entities SYSTEM "custom-entities.ent" >
%entities;
]>
<!--
This file is part of systemd.
Copyright 2010 Lennart Poettering
systemd is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
systemd is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with systemd; If not, see <http://www.gnu.org/licenses/>.
-->
<refentry id="systemctl"
xmlns:xi="http://www.w3.org/2001/XInclude">
<refentryinfo>
<title>systemctl</title>
<productname>systemd</productname>
<authorgroup>
<author>
<contrib>Developer</contrib>
<firstname>Lennart</firstname>
<surname>Poettering</surname>
<email>lennart@poettering.net</email>
</author>
</authorgroup>
</refentryinfo>
<refmeta>
<refentrytitle>systemctl</refentrytitle>
<manvolnum>1</manvolnum>
</refmeta>
<refnamediv>
<refname>systemctl</refname>
<refpurpose>Control the systemd system and service manager</refpurpose>
</refnamediv>
<refsynopsisdiv>
<cmdsynopsis>
<command>systemctl</command>
<arg choice="opt" rep="repeat">OPTIONS</arg>
<arg choice="plain">COMMAND</arg>
<arg choice="opt" rep="repeat">NAME</arg>
</cmdsynopsis>
</refsynopsisdiv>
<refsect1>
<title>Description</title>
<para><command>systemctl</command> may be used to introspect and
control the state of the <literal>systemd</literal> system and
service manager. Please refer to
<citerefentry><refentrytitle>systemd</refentrytitle><manvolnum>1</manvolnum></citerefentry>
for an introduction into the basic concepts and functionality this
tool manages.</para>
</refsect1>
<refsect1>
<title>Options</title>
<para>The following options are understood:</para>
<variablelist>
<varlistentry>
<term><option>-t</option></term>
<term><option>--type=</option></term>
<listitem>
<para>The argument should be a comma-separated list of unit
types such as <option>service</option> and
<option>socket</option>.
</para>
<para>If one of the arguments is a unit type, when listing
units, limit display to certain unit types. Otherwise, units
of all types will be shown.</para>
<para>As a special case, if one of the arguments is
<option>help</option>, a list of allowed values will be
printed and the program will exit.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>--state=</option></term>
<listitem>
<para>The argument should be a comma-separated list of unit
LOAD, SUB, or ACTIVE states. When listing units, show only
those in the specified states. Use <option>--state=failed</option>
to show only failed units.</para>
<para>As a special case, if one of the arguments is
<option>help</option>, a list of allowed values will be
printed and the program will exit.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-p</option></term>
<term><option>--property=</option></term>
<listitem>
<para>When showing unit/job/manager properties with the
<command>show</command> command, limit display to properties
specified in the argument. The argument should be a
comma-separated list of property names, such as
<literal>MainPID</literal>. Unless specified, all known
properties are shown. If specified more than once, all
properties with the specified names are shown. Shell
completion is implemented for property names.</para>
<para>For the manager itself,
<command>systemctl show</command> will show all available
properties. Those properties are documented in
<citerefentry><refentrytitle>systemd-system.conf</refentrytitle><manvolnum>5</manvolnum></citerefentry>.
</para>
<para>Properties for units vary by unit type, so showing any
unit (even a non-existent one) is a way to list properties
pertaining to this type. Similarly, showing any job will list
properties pertaining to all jobs. Properties for units are
documented in
<citerefentry><refentrytitle>systemd.unit</refentrytitle><manvolnum>5</manvolnum></citerefentry>,
and the pages for individual unit types
<citerefentry><refentrytitle>systemd.service</refentrytitle><manvolnum>5</manvolnum></citerefentry>,
<citerefentry><refentrytitle>systemd.socket</refentrytitle><manvolnum>5</manvolnum></citerefentry>,
etc.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-a</option></term>
<term><option>--all</option></term>
<listitem>
<para>When listing units with <command>list-units</command>, also show inactive units and
units which are following other units. When showing unit/job/manager properties, show all
properties regardless whether they are set or not.</para>
<para>To list all units installed in the file system, use the
<command>list-unit-files</command> command instead.</para>
<para>When listing units with <command>list-dependencies</command>, recursively show
dependencies of all dependent units (by default only dependencies of target units are
shown).</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-r</option></term>
<term><option>--recursive</option></term>
<listitem>
<para>When listing units, also show units of local
containers. Units of local containers will be prefixed with
the container name, separated by a single colon character
(<literal>:</literal>).</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>--reverse</option></term>
<listitem>
<para>Show reverse dependencies between units with
<command>list-dependencies</command>, i.e. follow
dependencies of type <varname>WantedBy=</varname>,
<varname>RequiredBy=</varname>,
<varname>PartOf=</varname>, <varname>BoundBy=</varname>,
instead of <varname>Wants=</varname> and similar.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>--after</option></term>
<listitem>
<para>With <command>list-dependencies</command>, show the
units that are ordered before the specified unit. In other
words, recursively list units following the
<varname>After=</varname> dependency.</para>
<para>Note that any <varname>After=</varname> dependency is
automatically mirrored to create a
<varname>Before=</varname> dependency. Temporal dependencies
may be specified explicitly, but are also created implicitly
for units which are <varname>WantedBy=</varname> targets
(see
<citerefentry><refentrytitle>systemd.target</refentrytitle><manvolnum>5</manvolnum></citerefentry>),
and as a result of other directives (for example
<varname>RequiresMountsFor=</varname>). Both explicitly
and implicitly introduced dependencies are shown with
<command>list-dependencies</command>.</para>
<para>When passed to the <command>list-jobs</command> command, for each printed job show which other jobs are
waiting for it. May be combined with <option>--before</option> to show both the jobs waiting for each job as
well as all jobs each job is waiting for.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>--before</option></term>
<listitem>
<para>With <command>list-dependencies</command>, show the
units that are ordered after the specified unit. In other
words, recursively list units following the
<varname>Before=</varname> dependency.</para>
<para>When passed to the <command>list-jobs</command> command, for each printed job show which other jobs it
is waiting for. May be combined with <option>--after</option> to show both the jobs waiting for each job as
well as all jobs each job is waiting for.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-l</option></term>
<term><option>--full</option></term>
<listitem>
<para>Do not ellipsize unit names, process tree entries,
journal output, or truncate unit descriptions in the output
of <command>status</command>, <command>list-units</command>,
<command>list-jobs</command>, and
<command>list-timers</command>.</para>
<para>Also, show installation targets in the output of
<command>is-enabled</command>.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>--value</option></term>
<listitem>
<para>When printing properties with <command>show</command>,
only print the value, and skip the property name and
<literal>=</literal>.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>--show-types</option></term>
<listitem>
<para>When showing sockets, show the type of the socket.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>--job-mode=</option></term>
<listitem>
<para>When queuing a new job, this option controls how to deal with
already queued jobs. It takes one of <literal>fail</literal>,
<literal>replace</literal>,
<literal>replace-irreversibly</literal>,
<literal>isolate</literal>,
<literal>ignore-dependencies</literal>,
<literal>ignore-requirements</literal> or
<literal>flush</literal>. Defaults to
<literal>replace</literal>, except when the
<command>isolate</command> command is used which implies the
<literal>isolate</literal> job mode.</para>
<para>If <literal>fail</literal> is specified and a requested
operation conflicts with a pending job (more specifically:
causes an already pending start job to be reversed into a stop
job or vice versa), cause the operation to fail.</para>
<para>If <literal>replace</literal> (the default) is
specified, any conflicting pending job will be replaced, as
necessary.</para>
<para>If <literal>replace-irreversibly</literal> is specified,
operate like <literal>replace</literal>, but also mark the new
jobs as irreversible. This prevents future conflicting
transactions from replacing these jobs (or even being enqueued
while the irreversible jobs are still pending). Irreversible
jobs can still be cancelled using the <command>cancel</command>
command. This job mode should be used on any transaction which
pulls in <filename>shutdown.target</filename>.</para>
<para><literal>isolate</literal> is only valid for start
operations and causes all other units to be stopped when the
specified unit is started. This mode is always used when the
<command>isolate</command> command is used.</para>
<para><literal>flush</literal> will cause all queued jobs to
be canceled when the new job is enqueued.</para>
<para>If <literal>ignore-dependencies</literal> is specified,
then all unit dependencies are ignored for this new job and
the operation is executed immediately. If passed, no required
units of the unit passed will be pulled in, and no ordering
dependencies will be honored. This is mostly a debugging and
rescue tool for the administrator and should not be used by
applications.</para>
<para><literal>ignore-requirements</literal> is similar to
<literal>ignore-dependencies</literal>, but only causes the
requirement dependencies to be ignored, the ordering
dependencies will still be honored.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>--fail</option></term>
<listitem>
<para>Shorthand for <option>--job-mode=</option>fail.</para>
<para>When used with the <command>kill</command> command,
if no units were killed, the operation results in an error.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-i</option></term>
<term><option>--ignore-inhibitors</option></term>
<listitem>
<para>When system shutdown or a sleep state is requested,
ignore inhibitor locks. Applications can establish inhibitor
locks to avoid that certain important operations (such as CD
burning or suchlike) are interrupted by system shutdown or a
sleep state. Any user may take these locks and privileged
users may override these locks. If any locks are taken,
shutdown and sleep state requests will normally fail
(regardless of whether privileged or not) and a list of active locks
is printed. However, if <option>--ignore-inhibitors</option>
is specified, the locks are ignored and not printed, and the
operation attempted anyway, possibly requiring additional
privileges.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-q</option></term>
<term><option>--quiet</option></term>
<listitem>
<para>Suppress printing of the results of various commands
and also the hints about truncated log lines. This does not
suppress output of commands for which the printed output is
the only result (like <command>show</command>). Errors are
always printed.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>--no-block</option></term>
<listitem>
<para>Do not synchronously wait for the requested operation
to finish. If this is not specified, the job will be
verified, enqueued and <command>systemctl</command> will
wait until the unit's start-up is completed. By passing this
argument, it is only verified and enqueued. This option may not be
combined with <option>--wait</option>.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>--wait</option></term>
<listitem>
<para>Synchronously wait for started units to terminate again.
This option may not be combined with <option>--no-block</option>.
Note that this will wait forever if any given unit never terminates
(by itself or by getting stopped explicitly); particularly services
which use <literal>RemainAfterExit=yes</literal>.</para>
</listitem>
</varlistentry>
<xi:include href="user-system-options.xml" xpointer="user" />
<xi:include href="user-system-options.xml" xpointer="system" />
<varlistentry>
<term><option>--failed</option></term>
<listitem>
<para>List units in failed state. This is equivalent to
<option>--state=failed</option>.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>--no-wall</option></term>
<listitem>
<para>Do not send wall message before halt, power-off and reboot.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>--global</option></term>
<listitem>
<para>When used with <command>enable</command> and
<command>disable</command>, operate on the global user
configuration directory, thus enabling or disabling a unit
file globally for all future logins of all users.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>--no-reload</option></term>
<listitem>
<para>When used with <command>enable</command> and
<command>disable</command>, do not implicitly reload daemon
configuration after executing the changes.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>--no-ask-password</option></term>
<listitem>
<para>When used with <command>start</command> and related
commands, disables asking for passwords. Background services
may require input of a password or passphrase string, for
example to unlock system hard disks or cryptographic
certificates. Unless this option is specified and the
command is invoked from a terminal,
<command>systemctl</command> will query the user on the
terminal for the necessary secrets. Use this option to
switch this behavior off. In this case, the password must be
supplied by some other means (for example graphical password
agents) or the service might fail. This also disables
querying the user for authentication for privileged
operations.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>--kill-who=</option></term>
<listitem>
<para>When used with <command>kill</command>, choose which
processes to send a signal to. Must be one of
<option>main</option>, <option>control</option> or
<option>all</option> to select whether to kill only the main
process, the control process or all processes of the
unit. The main process of the unit is the one that defines
the life-time of it. A control process of a unit is one that
is invoked by the manager to induce state changes of it. For
example, all processes started due to the
<varname>ExecStartPre=</varname>,
<varname>ExecStop=</varname> or
<varname>ExecReload=</varname> settings of service units are
control processes. Note that there is only one control
process per unit at a time, as only one state change is
executed at a time. For services of type
<varname>Type=forking</varname>, the initial process started
by the manager for <varname>ExecStart=</varname> is a
control process, while the process ultimately forked off by
that one is then considered the main process of the unit (if
it can be determined). This is different for service units
of other types, where the process forked off by the manager
for <varname>ExecStart=</varname> is always the main process
itself. A service unit consists of zero or one main process,
zero or one control process plus any number of additional
processes. Not all unit types manage processes of these
types however. For example, for mount units, control processes
are defined (which are the invocations of
<filename>&MOUNT_PATH;</filename> and
<filename>&UMOUNT_PATH;</filename>), but no main process
is defined. If omitted, defaults to
<option>all</option>.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-s</option></term>
<term><option>--signal=</option></term>
<listitem>
<para>When used with <command>kill</command>, choose which
signal to send to selected processes. Must be one of the
well-known signal specifiers such as <constant>SIGTERM</constant>, <constant>SIGINT</constant> or
<constant>SIGSTOP</constant>. If omitted, defaults to
<option>SIGTERM</option>.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-f</option></term>
<term><option>--force</option></term>
<listitem>
<para>When used with <command>enable</command>, overwrite
any existing conflicting symlinks.</para>
<para>When used with <command>edit</command>, create all of the
specified units which do not already exist.</para>
<para>When used with <command>halt</command>, <command>poweroff</command>, <command>reboot</command> or
<command>kexec</command>, execute the selected operation without shutting down all units. However, all
processes will be killed forcibly and all file systems are unmounted or remounted read-only. This is hence a
drastic but relatively safe option to request an immediate reboot. If <option>--force</option> is specified
twice for these operations (with the exception of <command>kexec</command>), they will be executed
immediately, without terminating any processes or unmounting any file systems. Warning: specifying
<option>--force</option> twice with any of these operations might result in data loss. Note that when
<option>--force</option> is specified twice the selected operation is executed by
<command>systemctl</command> itself, and the system manager is not contacted. This means the command should
succeed even when the system manager has crashed.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>--message=</option></term>
<listitem>
<para>When used with <command>halt</command>, <command>poweroff</command> or <command>reboot</command>, set a
short message explaining the reason for the operation. The message will be logged together with the default
shutdown message.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>--now</option></term>
<listitem>
<para>When used with <command>enable</command>, the units
will also be started. When used with <command>disable</command> or
<command>mask</command>, the units will also be stopped. The start
or stop operation is only carried out when the respective enable or
disable operation has been successful.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>--root=</option></term>
<listitem>
<para>When used with
<command>enable</command>/<command>disable</command>/<command>is-enabled</command>
(and related commands), use the specified root path when looking for unit
files. If this option is present, <command>systemctl</command> will operate on
the file system directly, instead of communicating with the <command>systemd</command>
daemon to carry out changes.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>--runtime</option></term>
<listitem>
<para>When used with <command>enable</command>,
<command>disable</command>, <command>edit</command>,
(and related commands), make changes only temporarily, so
that they are lost on the next reboot. This will have the
effect that changes are not made in subdirectories of
<filename>/etc</filename> but in <filename>/run</filename>,
with identical immediate effects, however, since the latter
is lost on reboot, the changes are lost too.</para>
<para>Similarly, when used with
<command>set-property</command>, make changes only
temporarily, so that they are lost on the next
reboot.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>--preset-mode=</option></term>
<listitem>
<para>Takes one of <literal>full</literal> (the default),
<literal>enable-only</literal>,
<literal>disable-only</literal>. When used with the
<command>preset</command> or <command>preset-all</command>
commands, controls whether units shall be disabled and
enabled according to the preset rules, or only enabled, or
only disabled.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-n</option></term>
<term><option>--lines=</option></term>
<listitem>
<para>When used with <command>status</command>, controls the
number of journal lines to show, counting from the most
recent ones. Takes a positive integer argument. Defaults to
10.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-o</option></term>
<term><option>--output=</option></term>
<listitem>
<para>When used with <command>status</command>, controls the
formatting of the journal entries that are shown. For the
available choices, see
<citerefentry><refentrytitle>journalctl</refentrytitle><manvolnum>1</manvolnum></citerefentry>.
Defaults to <literal>short</literal>.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>--firmware-setup</option></term>
<listitem>
<para>When used with the <command>reboot</command> command,
indicate to the system's firmware to boot into setup
mode. Note that this is currently only supported on some EFI
systems and only if the system was booted in EFI
mode.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>--plain</option></term>
<listitem>
<para>When used with <command>list-dependencies</command>,
<command>list-units</command> or <command>list-machines</command>,
the output is printed as a list instead of a tree, and the bullet
circles are omitted.</para>
</listitem>
</varlistentry>
<xi:include href="user-system-options.xml" xpointer="host" />
<xi:include href="user-system-options.xml" xpointer="machine" />
<xi:include href="standard-options.xml" xpointer="no-pager" />
<xi:include href="standard-options.xml" xpointer="no-legend" />
<xi:include href="standard-options.xml" xpointer="help" />
<xi:include href="standard-options.xml" xpointer="version" />
</variablelist>
</refsect1>
<refsect1>
<title>Commands</title>
<para>The following commands are understood:</para>
<refsect2>
<title>Unit Commands</title>
<variablelist>
<varlistentry>
<term><command>list-units <optional><replaceable>PATTERN</replaceable></optional></command></term>
<listitem>
<para>List units that <command>systemd</command> currently has in memory. This includes units that are
either referenced directly or through a dependency, units that are pinned by applications programmatically,
or units that were active in the past and have failed. By default only units which are active, have pending
jobs, or have failed are shown; this can be changed with option <option>--all</option>. If one or more
<replaceable>PATTERN</replaceable>s are specified, only units matching one of them are shown. The units
that are shown are additionally filtered by <option>--type=</option> and <option>--state=</option> if those
options are specified.</para>
<para>This is the default command.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><command>list-sockets <optional><replaceable>PATTERN</replaceable></optional></command></term>
<listitem>
<para>List socket units currently in memory, ordered by listening address. If one or more
<replaceable>PATTERN</replaceable>s are specified, only socket units matching one of them are
shown. Produces output similar to
<programlisting>
LISTEN UNIT ACTIVATES
/dev/initctl systemd-initctl.socket systemd-initctl.service
[::]:22 sshd.socket sshd.service
kobject-uevent 1 systemd-udevd-kernel.socket systemd-udevd.service
5 sockets listed.</programlisting>
Note: because the addresses might contains spaces, this output
is not suitable for programmatic consumption.
</para>
<para>Also see <option>--show-types</option>, <option>--all</option>, and <option>--state=</option>.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><command>list-timers <optional><replaceable>PATTERN</replaceable></optional></command></term>
<listitem>
<para>List timer units currently in memory, ordered by the time they elapse next. If one or more
<replaceable>PATTERN</replaceable>s are specified, only units matching one of them are shown.
Produces output similar to
<programlisting>
NEXT LEFT LAST PASSED UNIT ACTIVATES
n/a n/a Thu 2017-02-23 13:40:29 EST 3 days ago ureadahead-stop.timer ureadahead-stop.service
Sun 2017-02-26 18:55:42 EST 1min 14s left Thu 2017-02-23 13:54:44 EST 3 days ago systemd-tmpfiles-clean.timer systemd-tmpfiles-clean.service
Sun 2017-02-26 20:37:16 EST 1h 42min left Sun 2017-02-26 11:56:36 EST 6h ago apt-daily.timer apt-daily.service
Sun 2017-02-26 20:57:49 EST 2h 3min left Sun 2017-02-26 11:56:36 EST 6h ago snapd.refresh.timer snapd.refresh.service
</programlisting>
</para>
<para><emphasis>NEXT</emphasis> shows the next time the timer will run.</para>
<para><emphasis>LEFT</emphasis> shows how long till the next time the timer runs.</para>
<para><emphasis>LAST</emphasis> shows the last time the timer ran.</para>
<para><emphasis>PASSED</emphasis> shows has long as passed since the timer laset ran.</para>
<para><emphasis>UNIT</emphasis> shows the name of the timer</para>
<para><emphasis>ACTIVATES</emphasis> shows the name the service the timer activates when it runs.</para>
<para>Also see <option>--all</option> and <option>--state=</option>.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><command>start <replaceable>PATTERN</replaceable></command></term>
<listitem>
<para>Start (activate) one or more units specified on the
command line.</para>
<para>Note that glob patterns operate on the set of primary names of units currently in memory. Units which
are not active and are not in a failed state usually are not in memory, and will not be matched by any
pattern. In addition, in case of instantiated units, systemd is often unaware of the instance name until
the instance has been started. Therefore, using glob patterns with <command>start</command> has limited
usefulness. Also, secondary alias names of units are not considered.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><command>stop <replaceable>PATTERN</replaceable></command></term>
<listitem>
<para>Stop (deactivate) one or more units specified on the
command line.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><command>reload <replaceable>PATTERN</replaceable></command></term>
<listitem>
<para>Asks all units listed on the command line to reload
their configuration. Note that this will reload the
service-specific configuration, not the unit configuration
file of systemd. If you want systemd to reload the
configuration file of a unit, use the
<command>daemon-reload</command> command. In other words:
for the example case of Apache, this will reload Apache's
<filename>httpd.conf</filename> in the web server, not the
<filename>apache.service</filename> systemd unit
file.</para>
<para>This command should not be confused with the
<command>daemon-reload</command> command.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><command>restart <replaceable>PATTERN</replaceable></command></term>
<listitem>
<para>Stop and then start one or more units specified on the
command line. If the units are not running yet, they will
be started.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><command>try-restart <replaceable>PATTERN</replaceable></command></term>
<listitem>
<para>Stop and then start one or more units specified on the
command line if the units are running. This does nothing
if units are not running.</para>
<!-- Note that we don't document condrestart here, as that is just compatibility support, and we generally
don't document that. -->
</listitem>
</varlistentry>
<varlistentry>
<term><command>reload-or-restart <replaceable>PATTERN</replaceable></command></term>
<listitem>
<para>Reload one or more units if they support it. If not,
restart them instead. If the units are not running yet, they
will be started.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><command>try-reload-or-restart <replaceable>PATTERN</replaceable></command></term>
<listitem>
<para>Reload one or more units if they support it. If not,
restart them instead. This does nothing if the units are not
running.</para>
<!-- Note that we don't document force-reload here, as that is just compatibility support, and we generally
don't document that. -->
</listitem>
</varlistentry>
<varlistentry>
<term><command>isolate <replaceable>NAME</replaceable></command></term>
<listitem>
<para>Start the unit specified on the command line and its dependencies
and stop all others, unless they have
<option>IgnoreOnIsolate=yes</option> (see
<citerefentry><refentrytitle>systemd.unit</refentrytitle><manvolnum>5</manvolnum></citerefentry>).
If a unit name with no extension is given, an extension of
<literal>.target</literal> will be assumed.</para>
<para>This is similar to changing the runlevel in a
traditional init system. The <command>isolate</command>
command will immediately stop processes that are not enabled
in the new unit, possibly including the graphical
environment or terminal you are currently using.</para>
<para>Note that this is allowed only on units where
<option>AllowIsolate=</option> is enabled. See
<citerefentry><refentrytitle>systemd.unit</refentrytitle><manvolnum>5</manvolnum></citerefentry>
for details.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><command>kill <replaceable>PATTERN</replaceable></command></term>
<listitem>
<para>Send a signal to one or more processes of the
unit. Use <option>--kill-who=</option> to select which
process to kill. Use <option>--signal=</option> to select
the signal to send.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><command>is-active <replaceable>PATTERN</replaceable></command></term>
<listitem>
<para>Check whether any of the specified units are active
(i.e. running). Returns an exit code
<constant>0</constant> if at least one is active, or
non-zero otherwise. Unless <option>--quiet</option> is
specified, this will also print the current unit state to
standard output.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><command>is-failed <replaceable>PATTERN</replaceable></command></term>
<listitem>
<para>Check whether any of the specified units are in a
"failed" state. Returns an exit code
<constant>0</constant> if at least one has failed,
non-zero otherwise. Unless <option>--quiet</option> is
specified, this will also print the current unit state to
standard output.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><command>status</command> <optional><replaceable>PATTERN</replaceable>…|<replaceable>PID</replaceable>…]</optional></term>
<listitem>
<para>Show terse runtime status information about one or
more units, followed by most recent log data from the
journal. If no units are specified, show system status. If
combined with <option>--all</option>, also show the status of
all units (subject to limitations specified with
<option>-t</option>). If a PID is passed, show information
about the unit the process belongs to.</para>
<para>This function is intended to generate human-readable
output. If you are looking for computer-parsable output,
use <command>show</command> instead. By default, this
function only shows 10 lines of output and ellipsizes
lines to fit in the terminal window. This can be changed
with <option>--lines</option> and <option>--full</option>,
see above. In addition, <command>journalctl
--unit=<replaceable>NAME</replaceable></command> or
<command>journalctl
--user-unit=<replaceable>NAME</replaceable></command> use
a similar filter for messages and might be more
convenient.
</para>
<para>Systemd implicitly loads units as necessary, so just running the <command>status</command> will
attempt to load a file. The command is thus not useful for determining if something was already loaded or
not. The units may possibly also be quickly unloaded after the operation is completed if there's no reason
to keep it in memory thereafter.
</para>
<example>
<title>Example output from systemctl status </title>
<programlisting>$ systemctl status bluetooth
● bluetooth.service - Bluetooth service
Loaded: loaded (/usr/lib/systemd/system/bluetooth.service; enabled; vendor preset: enabled)
Active: active (running) since Wed 2017-01-04 13:54:04 EST; 1 weeks 0 days ago
Docs: man:bluetoothd(8)
Main PID: 930 (bluetoothd)
Status: "Running"
Tasks: 1
Memory: 648.0K
CPU: 435ms
CGroup: /system.slice/bluetooth.service
└─930 /usr/lib/bluetooth/bluetoothd
Jan 12 10:46:45 example.com bluetoothd[8900]: Not enough free handles to register service
Jan 12 10:46:45 example.com bluetoothd[8900]: Current Time Service could not be registered
Jan 12 10:46:45 example.com bluetoothd[8900]: gatt-time-server: Input/output error (5)
</programlisting>
<para>The dot ("●") uses color on supported terminals to summarize the unit state at a glance. White
indicates an <literal>inactive</literal> or <literal>deactivating</literal> state. Red indicates a
<literal>failed</literal> or <literal>error</literal> state and green indicates an
<literal>active</literal>, <literal>reloading</literal> or <literal>activating</literal> state.
</para>
<para>The "Loaded:" line in the output will show <literal>loaded</literal> if the unit has been loaded into
memory. Other possible values for "Loaded:" include: <literal>error</literal> if there was a problem
loading it, <literal>not-found</literal>, and <literal>masked</literal>. Along with showing the path to
the unit file, this line will also show the enablement state. Enabled commands start at boot. See the
full table of possible enablement states — including the definition of <literal>masked</literal> — in the
documentation for the <command>is-enabled</command> command.
</para>
<para>The "Active:" line shows active state. The value is usually <literal>active</literal> or
<literal>inactive</literal>. Active could mean started, bound, plugged in, etc depending on the unit type.
The unit could also be in process of changing states, reporting a state of <literal>activating</literal> or
<literal>deactivating</literal>. A special <literal>failed</literal> state is entered when the service
failed in some way, such as a crash, exiting with an error code or timing out. If the failed state is
entered the cause will be logged for later reference.</para>
</example>
</listitem>
</varlistentry>
<varlistentry>
<term><command>show</command> <optional><replaceable>PATTERN</replaceable>…|<replaceable>JOB</replaceable></optional></term>
<listitem>
<para>Show properties of one or more units, jobs, or the manager itself. If no argument is specified,
properties of the manager will be shown. If a unit name is specified, properties of the unit are shown, and
if a job ID is specified, properties of the job are shown. By default, empty properties are suppressed. Use
<option>--all</option> to show those too. To select specific properties to show, use
<option>--property=</option>. This command is intended to be used whenever computer-parsable output is
required. Use <command>status</command> if you are looking for formatted human-readable output.</para>
<para>Many properties shown by <command>systemctl show</command> map directly to configuration settings of
the system and service manager and its unit files. Note that the properties shown by the command are
generally more low-level, normalized versions of the original configuration settings and expose runtime
state in addition to configuration. For example, properties shown for service units include the service's
current main process identifier as <literal>MainPID</literal> (which is runtime state), and time settings
are always exposed as properties ending in the <literal>…USec</literal> suffix even if a matching
configuration options end in <literal>…Sec</literal>, because microseconds is the normalized time unit used
by the system and service manager.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><command>cat <replaceable>PATTERN</replaceable></command></term>
<listitem>
<para>Show backing files of one or more units. Prints the
"fragment" and "drop-ins" (source files) of units. Each
file is preceded by a comment which includes the file
name. Note that this shows the contents of the backing files
on disk, which may not match the system manager's
understanding of these units if any unit files were
updated on disk and the <command>daemon-reload</command>
command wasn't issued since.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><command>set-property <replaceable>NAME</replaceable> <replaceable>ASSIGNMENT</replaceable></command></term>
<listitem>
<para>Set the specified unit properties at runtime where
this is supported. This allows changing configuration
parameter properties such as resource control settings at
runtime. Not all properties may be changed at runtime, but
many resource control settings (primarily those in
<citerefentry><refentrytitle>systemd.resource-control</refentrytitle><manvolnum>5</manvolnum></citerefentry>)
may. The changes are applied instantly, and stored on disk
for future boots, unless <option>--runtime</option> is
passed, in which case the settings only apply until the
next reboot. The syntax of the property assignment follows
closely the syntax of assignments in unit files.</para>
<para>Example: <command>systemctl set-property foobar.service CPUShares=777</command></para>
<para>If the specified unit appears to be inactive, the
changes will be only stored on disk as described
previously hence they will be effective when the unit will
be started.</para>
<para>Note that this command allows changing multiple
properties at the same time, which is preferable over
setting them individually. Like unit file configuration
settings, assigning the empty list to list parameters will
reset the list.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><command>help <replaceable>PATTERN</replaceable>…|<replaceable>PID</replaceable></command></term>
<listitem>
<para>Show manual pages for one or more units, if
available. If a PID is given, the manual pages for the unit
the process belongs to are shown.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><command>reset-failed [<replaceable>PATTERN</replaceable>…]</command></term>
<listitem>
<para>Reset the <literal>failed</literal> state of the
specified units, or if no unit name is passed, reset the state of all
units. When a unit fails in some way (i.e. process exiting
with non-zero error code, terminating abnormally or timing
out), it will automatically enter the
<literal>failed</literal> state and its exit code and status
is recorded for introspection by the administrator until the
service is restarted or reset with this command.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<command>list-dependencies</command>
<optional><replaceable>NAME</replaceable></optional>
</term>
<listitem>
<para>Shows units required and wanted by the specified
unit. This recursively lists units following the
<varname>Requires=</varname>,
<varname>Requisite=</varname>,
<varname>ConsistsOf=</varname>,
<varname>Wants=</varname>, <varname>BindsTo=</varname>
dependencies. If no unit is specified,
<filename>default.target</filename> is implied.</para>
<para>By default, only target units are recursively
expanded. When <option>--all</option> is passed, all other
units are recursively expanded as well.</para>
<para>Options <option>--reverse</option>,
<option>--after</option>, <option>--before</option>
may be used to change what types of dependencies
are shown.</para>
</listitem>
</varlistentry>
</variablelist>
</refsect2>
<refsect2>
<title>Unit File Commands</title>
<variablelist>
<varlistentry>
<term><command>list-unit-files <optional><replaceable>PATTERN…</replaceable></optional></command></term>
<listitem>
<para>List unit files installed on the system, in combination with their enablement state (as reported by
<command>is-enabled</command>). If one or more <replaceable>PATTERN</replaceable>s are specified, only unit
files whose name matches one of them are shown (patterns matching unit file system paths are not
supported).</para>
</listitem>
</varlistentry>
<varlistentry>
<term><command>enable <replaceable>NAME</replaceable></command></term>
<term><command>enable <replaceable>PATH</replaceable></command></term>
<listitem>
<para>Enable one or more units or unit instances. This will create a set of symlinks, as encoded in the
<literal>[Install]</literal> sections of the indicated unit files. After the symlinks have been created,
the system manager configuration is reloaded (in a way equivalent to <command>daemon-reload</command>), in
order to ensure the changes are taken into account immediately. Note that this does
<emphasis>not</emphasis> have the effect of also starting any of the units being enabled. If this is
desired, combine this command with the <option>--now</option> switch, or invoke <command>start</command>
with appropriate arguments later. Note that in case of unit instance enablement (i.e. enablement of units of
the form <filename>foo@bar.service</filename>), symlinks named the same as instances are created in the
unit configuration directory, however they point to the single template unit file they are instantiated
from.</para>
<para>This command expects either valid unit names (in which case various unit file directories are
automatically searched for unit files with appropriate names), or absolute paths to unit files (in which
case these files are read directly). If a specified unit file is located outside of the usual unit file
directories, an additional symlink is created, linking it into the unit configuration path, thus ensuring
it is found when requested by commands such as <command>start</command>.</para>
<para>This command will print the file system operations executed. This output may be suppressed by passing
<option>--quiet</option>.
</para>
<para>Note that this operation creates only the symlinks suggested in the <literal>[Install]</literal>
section of the unit files. While this command is the recommended way to manipulate the unit configuration
directory, the administrator is free to make additional changes manually by placing or removing symlinks
below this directory. This is particularly useful to create configurations that deviate from the suggested
default installation. In this case, the administrator must make sure to invoke
<command>daemon-reload</command> manually as necessary, in order to ensure the changes are taken into
account.
</para>
<para>Enabling units should not be confused with starting (activating) units, as done by the
<command>start</command> command. Enabling and starting units is orthogonal: units may be enabled without
being started and started without being enabled. Enabling simply hooks the unit into various suggested
places (for example, so that the unit is automatically started on boot or when a particular kind of
hardware is plugged in). Starting actually spawns the daemon process (in case of service units), or binds
the socket (in case of socket units), and so on.</para>
<para>Depending on whether <option>--system</option>, <option>--user</option>, <option>--runtime</option>,
or <option>--global</option> is specified, this enables the unit for the system, for the calling user only,
for only this boot of the system, or for all future logins of all users. Note that in the last case, no
systemd daemon configuration is reloaded.</para>
<para>Using <command>enable</command> on masked units is not supported and results in an error.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><command>disable <replaceable>NAME</replaceable></command></term>
<listitem>
<para>Disables one or more units. This removes all symlinks to the unit files backing the specified units
from the unit configuration directory, and hence undoes any changes made by <command>enable</command> or
<command>link</command>. Note that this removes <emphasis>all</emphasis> symlinks to matching unit files,
including manually created symlinks, and not just those actually created by <command>enable</command> or
<command>link</command>. Note that while <command>disable</command> undoes the effect of
<command>enable</command>, the two commands are otherwise not symmetric, as <command>disable</command> may
remove more symlinks than a prior <command>enable</command> invocation of the same unit created.</para>
<para>This command expects valid unit names only, it does not accept paths to unit files.</para>
<para>In addition to the units specified as arguments, all units are disabled that are listed in the
<varname>Also=</varname> setting contained in the <literal>[Install]</literal> section of any of the unit
files being operated on.</para>
<para>This command implicitly reloads the system manager configuration after completing the operation. Note
that this command does not implicitly stop the units that are being disabled. If this is desired, either
combine this command with the <option>--now</option> switch, or invoke the <command>stop</command> command
with appropriate arguments later.</para>
<para>This command will print information about the file system operations (symlink removals)
executed. This output may be suppressed by passing <option>--quiet</option>.
</para>
<para>This command honors <option>--system</option>, <option>--user</option>, <option>--runtime</option>
and <option>--global</option> in a similar way as <command>enable</command>.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><command>reenable <replaceable>NAME</replaceable></command></term>
<listitem>
<para>Reenable one or more units, as specified on the command line. This is a combination of
<command>disable</command> and <command>enable</command> and is useful to reset the symlinks a unit file is
enabled with to the defaults configured in its <literal>[Install]</literal> section. This command expects
a unit name only, it does not accept paths to unit files.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><command>preset <replaceable>NAME</replaceable></command></term>
<listitem>
<para>Reset the enable/disable status one or more unit files, as specified on
the command line, to the defaults configured in the preset policy files. This
has the same effect as <command>disable</command> or
<command>enable</command>, depending how the unit is listed in the preset
files.</para>
<para>Use <option>--preset-mode=</option> to control whether units shall be
enabled and disabled, or only enabled, or only disabled.</para>
<para>If the unit carries no install information, it will be silently ignored
by this command. <replaceable>NAME</replaceable> must be the real unit name,
any alias names are ignored silently.</para>
<para>For more information on the preset policy format, see
<citerefentry><refentrytitle>systemd.preset</refentrytitle><manvolnum>5</manvolnum></citerefentry>.
For more information on the concept of presets, please consult the
<ulink url="https://www.freedesktop.org/wiki/Software/systemd/Preset">Preset</ulink>
document.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><command>preset-all</command></term>
<listitem>
<para>Resets all installed unit files to the defaults
configured in the preset policy file (see above).</para>
<para>Use <option>--preset-mode=</option> to control
whether units shall be enabled and disabled, or only
enabled, or only disabled.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><command>is-enabled <replaceable>NAME</replaceable></command></term>
<listitem>
<para>Checks whether any of the specified unit files are
enabled (as with <command>enable</command>). Returns an
exit code of 0 if at least one is enabled, non-zero
otherwise. Prints the current enable status (see table).
To suppress this output, use <option>--quiet</option>.
To show installation targets, use <option>--full</option>.
</para>
<table>
<title>
<command>is-enabled</command> output
</title>
<tgroup cols='3'>
<thead>
<row>
<entry>Name</entry>
<entry>Description</entry>
<entry>Exit Code</entry>
</row>
</thead>
<tbody>
<row>
<entry><literal>enabled</literal></entry>
<entry morerows='1'>Enabled via <filename>.wants/</filename>, <filename>.requires/</filename> or <varname>Alias=</varname> symlinks (permanently in <filename>/etc/systemd/system/</filename>, or transiently in <filename>/run/systemd/system/</filename>).</entry>
<entry morerows='1'>0</entry>
</row>
<row>
<entry><literal>enabled-runtime</literal></entry>
</row>
<row>
<entry><literal>linked</literal></entry>
<entry morerows='1'>Made available through one or more symlinks to the unit file (permanently in <filename>/etc/systemd/system/</filename> or transiently in <filename>/run/systemd/system/</filename>), even though the unit file might reside outside of the unit file search path.</entry>
<entry morerows='1'>&gt; 0</entry>
</row>
<row>
<entry><literal>linked-runtime</literal></entry>
</row>
<row>
<entry><literal>masked</literal></entry>
<entry morerows='1'>Completely disabled, so that any start operation on it fails (permanently in <filename>/etc/systemd/system/</filename> or transiently in <filename>/run/systemd/systemd/</filename>).</entry>
<entry morerows='1'>&gt; 0</entry>
</row>
<row>
<entry><literal>masked-runtime</literal></entry>
</row>
<row>
<entry><literal>static</literal></entry>
<entry>The unit file is not enabled, and has no provisions for enabling in the <literal>[Install]</literal> unit file section.</entry>
<entry>0</entry>
</row>
<row>
<entry><literal>indirect</literal></entry>
<entry>The unit file itself is not enabled, but it has a non-empty <varname>Also=</varname> setting in the <literal>[Install]</literal> unit file section, listing other unit files that might be enabled, or it has an alias under a different name through a symlink that is not specified in Also=. For template unit file, an instance different than the one specified in <varname>DefaultInstance=</varname> is enabled.</entry>
<entry>0</entry>
</row>
<row>
<entry><literal>disabled</literal></entry>
<entry>The unit file is not enabled, but contains an <literal>[Install]</literal> section with installation instructions.</entry>
<entry>&gt; 0</entry>
</row>
<row>
<entry><literal>generated</literal></entry>
<entry>The unit file was generated dynamically via a generator tool. See <citerefentry><refentrytitle>systemd.generator</refentrytitle><manvolnum>7</manvolnum></citerefentry>. Generated unit files may not be enabled, they are enabled implicitly by their generator.</entry>
<entry>0</entry>
</row>
<row>
<entry><literal>transient</literal></entry>
<entry>The unit file has been created dynamically with the runtime API. Transient units may not be enabled.</entry>
<entry>0</entry>
</row>
<row>
<entry><literal>bad</literal></entry>
<entry>The unit file is invalid or another error occurred. Note that <command>is-enabled</command> will not actually return this state, but print an error message instead. However the unit file listing printed by <command>list-unit-files</command> might show it.</entry>
<entry>&gt; 0</entry>
</row>
</tbody>
</tgroup>
</table>
</listitem>
</varlistentry>
<varlistentry>
<term><command>mask <replaceable>NAME</replaceable></command></term>
<listitem>
<para>Mask one or more units, as specified on the command line. This will link these unit files to
<filename>/dev/null</filename>, making it impossible to start them. This is a stronger version of
<command>disable</command>, since it prohibits all kinds of activation of the unit, including enablement
and manual activation. Use this option with care. This honors the <option>--runtime</option> option to only
mask temporarily until the next reboot of the system. The <option>--now</option> option may be used to
ensure that the units are also stopped. This command expects valid unit names only, it does not accept unit
file paths.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><command>unmask <replaceable>NAME</replaceable></command></term>
<listitem>
<para>Unmask one or more unit files, as specified on the command line. This will undo the effect of
<command>mask</command>. This command expects valid unit names only, it does not accept unit file
paths.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><command>link <replaceable>PATH</replaceable></command></term>
<listitem>
<para>Link a unit file that is not in the unit file search paths into the unit file search path. This
command expects an absolute path to a unit file. The effect of this may be undone with
<command>disable</command>. The effect of this command is that a unit file is made available for commands
such as <command>start</command>, even though it is not installed directly in the unit search path.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><command>revert <replaceable>NAME</replaceable></command></term>
<listitem>
<para>Revert one or more unit files to their vendor versions. This command removes drop-in configuration
files that modify the specified units, as well as any user-configured unit file that overrides a matching
vendor supplied unit file. Specifically, for a unit <literal>foo.service</literal> the matching directories
<literal>foo.service.d/</literal> with all their contained files are removed, both below the persistent and
runtime configuration directories (i.e. below <filename>/etc/systemd/system</filename> and
<filename>/run/systemd/system</filename>); if the unit file has a vendor-supplied version (i.e. a unit file
located below <filename>/usr</filename>) any matching persistent or runtime unit file that overrides it is
removed, too. Note that if a unit file has no vendor-supplied version (i.e. is only defined below
<filename>/etc/systemd/system</filename> or <filename>/run/systemd/system</filename>, but not in a unit
file stored below <filename>/usr</filename>), then it is not removed. Also, if a unit is masked, it is
unmasked.</para>
<para>Effectively, this command may be used to undo all changes made with <command>systemctl
edit</command>, <command>systemctl set-property</command> and <command>systemctl mask</command> and puts
the original unit file with its settings back in effect.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><command>add-wants <replaceable>TARGET</replaceable>
<replaceable>NAME</replaceable></command></term>
<term><command>add-requires <replaceable>TARGET</replaceable>
<replaceable>NAME</replaceable></command></term>
<listitem>
<para>Adds <literal>Wants=</literal> or <literal>Requires=</literal>
dependencies, respectively, to the specified
<replaceable>TARGET</replaceable> for one or more units. </para>
<para>This command honors <option>--system</option>,
<option>--user</option>, <option>--runtime</option> and
<option>--global</option> in a way similar to
<command>enable</command>.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><command>edit <replaceable>NAME</replaceable></command></term>
<listitem>
<para>Edit a drop-in snippet or a whole replacement file if
<option>--full</option> is specified, to extend or override the
specified unit.</para>
<para>Depending on whether <option>--system</option> (the default),
<option>--user</option>, or <option>--global</option> is specified,
this command creates a drop-in file for each unit either for the system,
for the calling user, or for all futures logins of all users. Then,
the editor (see the "Environment" section below) is invoked on
temporary files which will be written to the real location if the
editor exits successfully.</para>
<para>If <option>--full</option> is specified, this will copy the
original units instead of creating drop-in files.</para>
<para>If <option>--force</option> is specified and any units do
not already exist, new unit files will be opened for editing.</para>
<para>If <option>--runtime</option> is specified, the changes will
be made temporarily in <filename>/run</filename> and they will be
lost on the next reboot.</para>
<para>If the temporary file is empty upon exit, the modification of
the related unit is canceled.</para>
<para>After the units have been edited, systemd configuration is
reloaded (in a way that is equivalent to <command>daemon-reload</command>).
</para>
<para>Note that this command cannot be used to remotely edit units
and that you cannot temporarily edit units which are in
<filename>/etc</filename>, since they take precedence over
<filename>/run</filename>.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><command>get-default</command></term>
<listitem>
<para>Return the default target to boot into. This returns
the target unit name <filename>default.target</filename>
is aliased (symlinked) to.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><command>set-default <replaceable>NAME</replaceable></command></term>
<listitem>
<para>Set the default target to boot into. This sets
(symlinks) the <filename>default.target</filename> alias
to the given target unit.</para>
</listitem>
</varlistentry>
</variablelist>
</refsect2>
<refsect2>
<title>Machine Commands</title>
<variablelist>
<varlistentry>
<term><command>list-machines <optional><replaceable>PATTERN</replaceable></optional></command></term>
<listitem>
<para>List the host and all running local containers with
their state. If one or more
<replaceable>PATTERN</replaceable>s are specified, only
containers matching one of them are shown.
</para>
</listitem>
</varlistentry>
</variablelist>
</refsect2>
<refsect2>
<title>Job Commands</title>
<variablelist>
<varlistentry>
<term><command>list-jobs <optional><replaceable>PATTERN…</replaceable></optional></command></term>
<listitem>
<para>List jobs that are in progress. If one or more
<replaceable>PATTERN</replaceable>s are specified, only
jobs for units matching one of them are shown.</para>
<para>When combined with <option>--after</option> or <option>--before</option> the list is augmented with
information on which other job each job is waiting for, and which other jobs are waiting for it, see
above.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><command>cancel <replaceable>JOB</replaceable></command></term>
<listitem>
<para>Cancel one or more jobs specified on the command line
by their numeric job IDs. If no job ID is specified, cancel
all pending jobs.</para>
</listitem>
</varlistentry>
</variablelist>
</refsect2>
<refsect2>
<title>Environment Commands</title>
<variablelist>
<varlistentry>
<term><command>show-environment</command></term>
<listitem>
<para>Dump the systemd manager environment block. This is the environment
block that is passed to all processes the manager spawns. The environment
block will be dumped in straight-forward form suitable for sourcing into
most shells. If no special characters or whitespace is present in the variable
values, no escaping is performed, and the assignments have the form
<literal>VARIABLE=value</literal>. If whitespace or characters which have
special meaning to the shell are present, dollar-single-quote escaping is
used, and assignments have the form <literal>VARIABLE=$'value'</literal>.
This syntax is known to be supported by
<citerefentry project='die-net'><refentrytitle>bash</refentrytitle><manvolnum>1</manvolnum></citerefentry>,
<citerefentry project='die-net'><refentrytitle>zsh</refentrytitle><manvolnum>1</manvolnum></citerefentry>,
<citerefentry project='die-net'><refentrytitle>ksh</refentrytitle><manvolnum>1</manvolnum></citerefentry>,
and
<citerefentry project='die-net'><refentrytitle>busybox</refentrytitle><manvolnum>1</manvolnum></citerefentry>'s
<citerefentry project='die-net'><refentrytitle>ash</refentrytitle><manvolnum>1</manvolnum></citerefentry>,
but not
<citerefentry project='die-net'><refentrytitle>dash</refentrytitle><manvolnum>1</manvolnum></citerefentry>
or
<citerefentry project='die-net'><refentrytitle>fish</refentrytitle><manvolnum>1</manvolnum></citerefentry>.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><command>set-environment <replaceable>VARIABLE=VALUE</replaceable></command></term>
<listitem>
<para>Set one or more systemd manager environment variables,
as specified on the command line.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><command>unset-environment <replaceable>VARIABLE</replaceable></command></term>
<listitem>
<para>Unset one or more systemd manager environment
variables. If only a variable name is specified, it will be
removed regardless of its value. If a variable and a value
are specified, the variable is only removed if it has the
specified value.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<command>import-environment</command>
<optional><replaceable>VARIABLE…</replaceable></optional>
</term>
<listitem>
<para>Import all, one or more environment variables set on
the client into the systemd manager environment block. If
no arguments are passed, the entire environment block is
imported. Otherwise, a list of one or more environment
variable names should be passed, whose client-side values
are then imported into the manager's environment
block.</para>
</listitem>
</varlistentry>
</variablelist>
</refsect2>
<refsect2>
<title>Manager Lifecycle Commands</title>
<variablelist>
<varlistentry>
<term><command>daemon-reload</command></term>
<listitem>
<para>Reload the systemd manager configuration. This will
rerun all generators (see
<citerefentry><refentrytitle>systemd.generator</refentrytitle><manvolnum>7</manvolnum></citerefentry>),
reload all unit files, and recreate the entire dependency
tree. While the daemon is being reloaded, all sockets
systemd listens on behalf of user configuration will stay
accessible.</para>
<para>This command should not be confused with the
<command>reload</command> command.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><command>daemon-reexec</command></term>
<listitem>
<para>Reexecute the systemd manager. This will serialize the
manager state, reexecute the process and deserialize the
state again. This command is of little use except for
debugging and package upgrades. Sometimes, it might be
helpful as a heavy-weight <command>daemon-reload</command>.
While the daemon is being reexecuted, all sockets systemd listening
on behalf of user configuration will stay accessible.
</para>
</listitem>
</varlistentry>
</variablelist>
</refsect2>
<refsect2>
<title>System Commands</title>
<variablelist>
<varlistentry>
<term><command>is-system-running</command></term>
<listitem>
<para>Checks whether the system is operational. This
returns success (exit code 0) when the system is fully up
and running, specifically not in startup, shutdown or
maintenance mode, and with no failed services. Failure is
returned otherwise (exit code non-zero). In addition, the
current state is printed in a short string to standard
output, see the table below. Use <option>--quiet</option> to
suppress this output.</para>
<table>
<title><command>is-system-running</command> output</title>
<tgroup cols='3'>
<colspec colname='name'/>
<colspec colname='description'/>
<colspec colname='exit-code'/>
<thead>
<row>
<entry>Name</entry>
<entry>Description</entry>
<entry>Exit Code</entry>
</row>
</thead>
<tbody>
<row>
<entry><varname>initializing</varname></entry>
<entry><para>Early bootup, before
<filename>basic.target</filename> is reached
or the <varname>maintenance</varname> state entered.
</para></entry>
<entry>&gt; 0</entry>
</row>
<row>
<entry><varname>starting</varname></entry>
<entry><para>Late bootup, before the job queue
becomes idle for the first time, or one of the
rescue targets are reached.</para></entry>
<entry>&gt; 0</entry>
</row>
<row>
<entry><varname>running</varname></entry>
<entry><para>The system is fully
operational.</para></entry>
<entry>0</entry>
</row>
<row>
<entry><varname>degraded</varname></entry>
<entry><para>The system is operational but one or more
units failed.</para></entry>
<entry>&gt; 0</entry>
</row>
<row>
<entry><varname>maintenance</varname></entry>
<entry><para>The rescue or emergency target is
active.</para></entry>
<entry>&gt; 0</entry>
</row>
<row>
<entry><varname>stopping</varname></entry>
<entry><para>The manager is shutting
down.</para></entry>
<entry>&gt; 0</entry>
</row>
<row>
<entry><varname>offline</varname></entry>
<entry><para>The manager is not
running. Specifically, this is the operational
state if an incompatible program is running as
system manager (PID 1).</para></entry>
<entry>&gt; 0</entry>
</row>
<row>
<entry><varname>unknown</varname></entry>
<entry><para>The operational state could not be
determined, due to lack of resources or another
error cause.</para></entry>
<entry>&gt; 0</entry>
</row>
</tbody>
</tgroup>
</table>
</listitem>
</varlistentry>
<varlistentry>
<term><command>default</command></term>
<listitem>
<para>Enter default mode. This is equivalent to <command>systemctl isolate default.target</command>. This
operation is blocking by default, use <option>--no-block</option> to request asynchronous behavior.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><command>rescue</command></term>
<listitem>
<para>Enter rescue mode. This is equivalent to <command>systemctl isolate rescue.target</command>. This
operation is blocking by default, use <option>--no-block</option> to request asynchronous behavior.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><command>emergency</command></term>
<listitem>
<para>Enter emergency mode. This is equivalent to <command>systemctl isolate
emergency.target</command>. This operation is blocking by default, use <option>--no-block</option> to
request asynchronous behavior.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><command>halt</command></term>
<listitem>
<para>Shut down and halt the system. This is mostly equivalent to <command>systemctl start halt.target
--job-mode=replace-irreversibly --no-block</command>, but also prints a wall message to all users. This command is
asynchronous; it will return after the halt operation is enqueued, without waiting for it to complete. Note
that this operation will simply halt the OS kernel after shutting down, leaving the hardware powered
on. Use <command>systemctl poweroff</command> for powering off the system (see below).</para>
<para>If combined with <option>--force</option>, shutdown of all running services is skipped, however all
processes are killed and all file systems are unmounted or mounted read-only, immediately followed by the
system halt. If <option>--force</option> is specified twice, the operation is immediately executed without
terminating any processes or unmounting any file systems. This may result in data loss. Note that when
<option>--force</option> is specified twice the halt operation is executed by <command>systemctl</command>
itself, and the system manager is not contacted. This means the command should succeed even when the system
manager has crashed.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><command>poweroff</command></term>
<listitem>
<para>Shut down and power-off the system. This is mostly equivalent to <command>systemctl start
poweroff.target --job-mode=replace-irreversibly --no-block</command>, but also prints a wall message to all
users. This command is asynchronous; it will return after the power-off operation is enqueued, without
waiting for it to complete.</para>
<para>If combined with <option>--force</option>, shutdown of all running services is skipped, however all
processes are killed and all file systems are unmounted or mounted read-only, immediately followed by the
powering off. If <option>--force</option> is specified twice, the operation is immediately executed without
terminating any processes or unmounting any file systems. This may result in data loss. Note that when
<option>--force</option> is specified twice the power-off operation is executed by
<command>systemctl</command> itself, and the system manager is not contacted. This means the command should
succeed even when the system manager has crashed.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><command>reboot <optional><replaceable>arg</replaceable></optional></command></term>
<listitem>
<para>Shut down and reboot the system. This is mostly equivalent to <command>systemctl start reboot.target
--job-mode=replace-irreversibly --no-block</command>, but also prints a wall message to all users. This
command is asynchronous; it will return after the reboot operation is enqueued, without waiting for it to
complete.</para>
<para>If combined with <option>--force</option>, shutdown of all running services is skipped, however all
processes are killed and all file systems are unmounted or mounted read-only, immediately followed by the
reboot. If <option>--force</option> is specified twice, the operation is immediately executed without
terminating any processes or unmounting any file systems. This may result in data loss. Note that when
<option>--force</option> is specified twice the reboot operation is executed by
<command>systemctl</command> itself, and the system manager is not contacted. This means the command should
succeed even when the system manager has crashed.</para>
<para>If the optional argument <replaceable>arg</replaceable> is given, it will be passed as the optional
argument to the <citerefentry><refentrytitle>reboot</refentrytitle><manvolnum>2</manvolnum></citerefentry>
system call. The value is architecture and firmware specific. As an example, <literal>recovery</literal>
might be used to trigger system recovery, and <literal>fota</literal> might be used to trigger a
<quote>firmware over the air</quote> update.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><command>kexec</command></term>
<listitem>
<para>Shut down and reboot the system via <command>kexec</command>. This is equivalent to
<command>systemctl start kexec.target --job-mode=replace-irreversibly --no-block</command>. This command is
asynchronous; it will return after the reboot operation is enqueued, without waiting for it to
complete.</para>
<para>If combined with <option>--force</option>, shutdown of all running services is skipped, however all
processes are killed and all file systems are unmounted or mounted read-only, immediately followed by the
reboot.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><command>exit <optional><replaceable>EXIT_CODE</replaceable></optional></command></term>
<listitem>
<para>Ask the service manager to quit. This is only supported for user service managers (i.e. in
conjunction with the <option>--user</option> option) or in containers and is equivalent to
<command>poweroff</command> otherwise. This command is asynchronous; it will return after the exit
operation is enqueued, without waiting for it to complete.</para>
<para>The service manager will exit with the specified exit code, if
<replaceable>EXIT_CODE</replaceable> is passed.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><command>switch-root <replaceable>ROOT</replaceable> <optional><replaceable>INIT</replaceable></optional></command></term>
<listitem>
<para>Switches to a different root directory and executes a new system manager process below it. This is
intended for usage in initial RAM disks ("initrd"), and will transition from the initrd's system manager
process (a.k.a. "init" process) to the main system manager process which is loaded from the actual host
volume. This call takes two arguments: the directory that is to become the new root directory, and the path
to the new system manager binary below it to execute as PID 1. If the latter is omitted or the empty
string, a systemd binary will automatically be searched for and used as init. If the system manager path is
omitted, equal to the empty string or identical to the path to the systemd binary, the state of the
initrd's system manager process is passed to the main system manager, which allows later introspection of
the state of the services involved in the initrd boot phase.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><command>suspend</command></term>
<listitem>
<para>Suspend the system. This will trigger activation of the special target unit
<filename>suspend.target</filename>. This command is asynchronous, and will return after the suspend
operation is successfully enqueued. It will not wait for the suspend/resume cycle to complete.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><command>hibernate</command></term>
<listitem>
<para>Hibernate the system. This will trigger activation of the special target unit
<filename>hibernate.target</filename>. This command is asynchronous, and will return after the hibernation
operation is successfully enqueued. It will not wait for the hibernate/thaw cycle to complete.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><command>hybrid-sleep</command></term>
<listitem>
<para>Hibernate and suspend the system. This will trigger activation of the special target unit
<filename>hybrid-sleep.target</filename>. This command is asynchronous, and will return after the hybrid
sleep operation is successfully enqueued. It will not wait for the sleep/wake-up cycle to complete.</para>
</listitem>
</varlistentry>
</variablelist>
</refsect2>
<refsect2>
<title>Parameter Syntax</title>
<para>Unit commands listed above take either a single unit name (designated as <replaceable>NAME</replaceable>),
or multiple unit specifications (designated as <replaceable>PATTERN</replaceable>…). In the first case, the
unit name with or without a suffix must be given. If the suffix is not specified (unit name is "abbreviated"),
systemctl will append a suitable suffix, <literal>.service</literal> by default, and a type-specific suffix in
case of commands which operate only on specific unit types. For example,
<programlisting># systemctl start sshd</programlisting> and
<programlisting># systemctl start sshd.service</programlisting>
are equivalent, as are
<programlisting># systemctl isolate default</programlisting>
and
<programlisting># systemctl isolate default.target</programlisting>
Note that (absolute) paths to device nodes are automatically converted to device unit names, and other (absolute)
paths to mount unit names.
<programlisting># systemctl status /dev/sda
# systemctl status /home</programlisting>
are equivalent to:
<programlisting># systemctl status dev-sda.device
# systemctl status home.mount</programlisting>
In the second case, shell-style globs will be matched against the primary names of all units currently in memory;
literal unit names, with or without a suffix, will be treated as in the first case. This means that literal unit
names always refer to exactly one unit, but globs may match zero units and this is not considered an
error.</para>
<para>Glob patterns use
<citerefentry project='man-pages'><refentrytitle>fnmatch</refentrytitle><manvolnum>3</manvolnum></citerefentry>,
so normal shell-style globbing rules are used, and
<literal>*</literal>, <literal>?</literal>,
<literal>[]</literal> may be used. See
<citerefentry project='man-pages'><refentrytitle>glob</refentrytitle><manvolnum>7</manvolnum></citerefentry>
for more details. The patterns are matched against the primary names of
units currently in memory, and patterns which do not match anything
are silently skipped. For example:
<programlisting># systemctl stop sshd@*.service</programlisting>
will stop all <filename>sshd@.service</filename> instances. Note that alias names of units, and units that aren't
in memory are not considered for glob expansion.
</para>
<para>For unit file commands, the specified <replaceable>NAME</replaceable> should be the name of the unit file
(possibly abbreviated, see above), or the absolute path to the unit file:
<programlisting># systemctl enable foo.service</programlisting>
or
<programlisting># systemctl link /path/to/foo.service</programlisting>
</para>
</refsect2>
</refsect1>
<refsect1>
<title>Exit status</title>
<para>On success, 0 is returned, a non-zero failure
code otherwise.</para>
</refsect1>
<refsect1>
<title>Environment</title>
<variablelist class='environment-variables'>
<varlistentry>
<term><varname>$SYSTEMD_EDITOR</varname></term>
<listitem><para>Editor to use when editing units; overrides
<varname>$EDITOR</varname> and <varname>$VISUAL</varname>. If neither
<varname>$SYSTEMD_EDITOR</varname> nor <varname>$EDITOR</varname> nor
<varname>$VISUAL</varname> are present or if it is set to an empty
string or if their execution failed, systemctl will try to execute well
known editors in this order:
<citerefentry project='die-net'><refentrytitle>editor</refentrytitle><manvolnum>1</manvolnum></citerefentry>,
<citerefentry project='die-net'><refentrytitle>nano</refentrytitle><manvolnum>1</manvolnum></citerefentry>,
<citerefentry project='die-net'><refentrytitle>vim</refentrytitle><manvolnum>1</manvolnum></citerefentry>,
<citerefentry project='die-net'><refentrytitle>vi</refentrytitle><manvolnum>1</manvolnum></citerefentry>.
</para></listitem>
</varlistentry>
</variablelist>
<xi:include href="less-variables.xml" xpointer="pager"/>
<xi:include href="less-variables.xml" xpointer="less"/>
<xi:include href="less-variables.xml" xpointer="lesscharset"/>
</refsect1>
<refsect1>
<title>See Also</title>
<para>
<citerefentry><refentrytitle>systemd</refentrytitle><manvolnum>1</manvolnum></citerefentry>,
<citerefentry><refentrytitle>journalctl</refentrytitle><manvolnum>1</manvolnum></citerefentry>,
<citerefentry><refentrytitle>loginctl</refentrytitle><manvolnum>1</manvolnum></citerefentry>,
<citerefentry><refentrytitle>machinectl</refentrytitle><manvolnum>1</manvolnum></citerefentry>,
<citerefentry><refentrytitle>systemd.unit</refentrytitle><manvolnum>5</manvolnum></citerefentry>,
<citerefentry><refentrytitle>systemd.resource-control</refentrytitle><manvolnum>5</manvolnum></citerefentry>,
<citerefentry><refentrytitle>systemd.special</refentrytitle><manvolnum>7</manvolnum></citerefentry>,
<citerefentry project='man-pages'><refentrytitle>wall</refentrytitle><manvolnum>1</manvolnum></citerefentry>,
<citerefentry><refentrytitle>systemd.preset</refentrytitle><manvolnum>5</manvolnum></citerefentry>,
<citerefentry><refentrytitle>systemd.generator</refentrytitle><manvolnum>7</manvolnum></citerefentry>,
<citerefentry project='man-pages'><refentrytitle>glob</refentrytitle><manvolnum>7</manvolnum></citerefentry>
</para>
</refsect1>
</refentry>