1
0
mirror of https://github.com/samba-team/samba.git synced 2025-01-12 09:18:10 +03:00
samba-mirror/source4/rpc_server/backupkey/dcesrv_backupkey_heimdal.c

1859 lines
52 KiB
C
Raw Normal View History

/*
Unix SMB/CIFS implementation.
endpoint server for the backupkey interface
Copyright (C) Matthieu Patou <mat@samba.org> 2010
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "includes.h"
#include "rpc_server/dcerpc_server.h"
#include "librpc/gen_ndr/ndr_backupkey.h"
#include "dsdb/common/util.h"
#include "dsdb/samdb/samdb.h"
#include "lib/ldb/include/ldb_errors.h"
#include "../lib/util/util_ldb.h"
#include "param/param.h"
#include "auth/session.h"
#include "system/network.h"
#include <com_err.h>
#include <hx509.h>
#include <hcrypto/rsa.h>
#include <hcrypto/bn.h>
#include <hcrypto/sha.h>
#include <hcrypto/evp.h>
#include <hcrypto/hmac.h>
#include <der.h>
#include "../lib/tsocket/tsocket.h"
#include "../libcli/security/security.h"
#include "librpc/gen_ndr/ndr_security.h"
#include "lib/crypto/arcfour.h"
#include "libds/common/roles.h"
#include <gnutls/gnutls.h>
#include <gnutls/x509.h>
#if defined(HAVE_GCRYPT_H) && !defined(HAVE_GNUTLS3)
#include <gcrypt.h>
#endif
#define DCESRV_INTERFACE_BACKUPKEY_BIND(call, iface) \
dcesrv_interface_backupkey_bind(call, iface)
static NTSTATUS dcesrv_interface_backupkey_bind(struct dcesrv_call_state *dce_call,
const struct dcesrv_interface *iface)
{
return dcesrv_interface_bind_require_privacy(dce_call, iface);
}
static const unsigned rsa_with_var_num[] = { 1, 2, 840, 113549, 1, 1, 1 };
/* Equivalent to asn1_oid_id_pkcs1_rsaEncryption*/
static const AlgorithmIdentifier _hx509_signature_rsa_with_var_num = {
{ 7, discard_const_p(unsigned, rsa_with_var_num) }, NULL
};
static NTSTATUS set_lsa_secret(TALLOC_CTX *mem_ctx,
struct ldb_context *ldb,
const char *name,
const DATA_BLOB *lsa_secret)
{
struct ldb_message *msg;
struct ldb_result *res;
struct ldb_dn *domain_dn;
struct ldb_dn *system_dn;
struct ldb_val val;
int ret;
char *name2;
struct timeval now = timeval_current();
NTTIME nt_now = timeval_to_nttime(&now);
const char *attrs[] = {
NULL
};
domain_dn = ldb_get_default_basedn(ldb);
if (!domain_dn) {
return NT_STATUS_INTERNAL_ERROR;
}
msg = ldb_msg_new(mem_ctx);
if (msg == NULL) {
return NT_STATUS_NO_MEMORY;
}
/*
* This function is a lot like dcesrv_lsa_CreateSecret
* in the rpc_server/lsa directory
* The reason why we duplicate the effort here is that:
* * we want to keep the former function static
* * we want to avoid the burden of doing LSA calls
* when we can just manipulate the secrets directly
* * taillor the function to the particular needs of backup protocol
*/
system_dn = samdb_search_dn(ldb, msg, domain_dn, "(&(objectClass=container)(cn=System))");
if (system_dn == NULL) {
talloc_free(msg);
return NT_STATUS_NO_MEMORY;
}
name2 = talloc_asprintf(msg, "%s Secret", name);
if (name2 == NULL) {
talloc_free(msg);
return NT_STATUS_NO_MEMORY;
}
ret = ldb_search(ldb, mem_ctx, &res, system_dn, LDB_SCOPE_SUBTREE, attrs,
"(&(cn=%s)(objectclass=secret))",
ldb_binary_encode_string(mem_ctx, name2));
if (ret != LDB_SUCCESS || res->count != 0 ) {
DEBUG(2, ("Secret %s already exists !\n", name2));
talloc_free(msg);
return NT_STATUS_OBJECT_NAME_COLLISION;
}
/*
* We don't care about previous value as we are
* here only if the key didn't exists before
*/
msg->dn = ldb_dn_copy(mem_ctx, system_dn);
if (msg->dn == NULL) {
talloc_free(msg);
return NT_STATUS_NO_MEMORY;
}
if (!ldb_dn_add_child_fmt(msg->dn, "cn=%s", name2)) {
talloc_free(msg);
return NT_STATUS_NO_MEMORY;
}
ret = ldb_msg_add_string(msg, "cn", name2);
if (ret != LDB_SUCCESS) {
talloc_free(msg);
return NT_STATUS_NO_MEMORY;
}
ret = ldb_msg_add_string(msg, "objectClass", "secret");
if (ret != LDB_SUCCESS) {
talloc_free(msg);
return NT_STATUS_NO_MEMORY;
}
ret = samdb_msg_add_uint64(ldb, mem_ctx, msg, "priorSetTime", nt_now);
if (ret != LDB_SUCCESS) {
talloc_free(msg);
return NT_STATUS_NO_MEMORY;
}
val.data = lsa_secret->data;
val.length = lsa_secret->length;
ret = ldb_msg_add_value(msg, "currentValue", &val, NULL);
if (ret != LDB_SUCCESS) {
talloc_free(msg);
return NT_STATUS_NO_MEMORY;
}
ret = samdb_msg_add_uint64(ldb, mem_ctx, msg, "lastSetTime", nt_now);
if (ret != LDB_SUCCESS) {
talloc_free(msg);
return NT_STATUS_NO_MEMORY;
}
/*
* create the secret with DSDB_MODIFY_RELAX
* otherwise dsdb/samdb/ldb_modules/objectclass.c forbid
* the create of LSA secret object
*/
ret = dsdb_add(ldb, msg, DSDB_MODIFY_RELAX);
if (ret != LDB_SUCCESS) {
DEBUG(2,("Failed to create secret record %s: %s\n",
ldb_dn_get_linearized(msg->dn),
ldb_errstring(ldb)));
talloc_free(msg);
return NT_STATUS_ACCESS_DENIED;
}
talloc_free(msg);
return NT_STATUS_OK;
}
/* This function is pretty much like dcesrv_lsa_QuerySecret */
static NTSTATUS get_lsa_secret(TALLOC_CTX *mem_ctx,
struct ldb_context *ldb,
const char *name,
DATA_BLOB *lsa_secret)
{
TALLOC_CTX *tmp_mem;
struct ldb_result *res;
struct ldb_dn *domain_dn;
struct ldb_dn *system_dn;
const struct ldb_val *val;
uint8_t *data;
const char *attrs[] = {
"currentValue",
NULL
};
int ret;
lsa_secret->data = NULL;
lsa_secret->length = 0;
domain_dn = ldb_get_default_basedn(ldb);
if (!domain_dn) {
return NT_STATUS_INTERNAL_ERROR;
}
tmp_mem = talloc_new(mem_ctx);
if (tmp_mem == NULL) {
return NT_STATUS_NO_MEMORY;
}
system_dn = samdb_search_dn(ldb, tmp_mem, domain_dn, "(&(objectClass=container)(cn=System))");
if (system_dn == NULL) {
talloc_free(tmp_mem);
return NT_STATUS_NO_MEMORY;
}
ret = ldb_search(ldb, mem_ctx, &res, system_dn, LDB_SCOPE_SUBTREE, attrs,
"(&(cn=%s Secret)(objectclass=secret))",
ldb_binary_encode_string(tmp_mem, name));
if (ret != LDB_SUCCESS) {
talloc_free(tmp_mem);
return NT_STATUS_INTERNAL_DB_CORRUPTION;
}
if (res->count == 0) {
talloc_free(tmp_mem);
return NT_STATUS_RESOURCE_NAME_NOT_FOUND;
}
if (res->count > 1) {
DEBUG(2, ("Secret %s collision\n", name));
talloc_free(tmp_mem);
return NT_STATUS_INTERNAL_DB_CORRUPTION;
}
val = ldb_msg_find_ldb_val(res->msgs[0], "currentValue");
if (val == NULL) {
/*
* The secret object is here but we don't have the secret value
* The most common case is a RODC
*/
*lsa_secret = data_blob_null;
talloc_free(tmp_mem);
return NT_STATUS_OK;
}
data = val->data;
lsa_secret->data = talloc_move(mem_ctx, &data);
lsa_secret->length = val->length;
talloc_free(tmp_mem);
return NT_STATUS_OK;
}
static DATA_BLOB *reverse_and_get_blob(TALLOC_CTX *mem_ctx, BIGNUM *bn)
{
DATA_BLOB blob;
DATA_BLOB *rev = talloc(mem_ctx, DATA_BLOB);
uint32_t i;
blob.length = BN_num_bytes(bn);
blob.data = talloc_array(mem_ctx, uint8_t, blob.length);
if (blob.data == NULL) {
return NULL;
}
BN_bn2bin(bn, blob.data);
rev->data = talloc_array(mem_ctx, uint8_t, blob.length);
if (rev->data == NULL) {
return NULL;
}
for(i=0; i < blob.length; i++) {
rev->data[i] = blob.data[blob.length - i -1];
}
rev->length = blob.length;
talloc_free(blob.data);
return rev;
}
static BIGNUM *reverse_and_get_bignum(TALLOC_CTX *mem_ctx, DATA_BLOB *blob)
{
BIGNUM *ret;
DATA_BLOB rev;
uint32_t i;
rev.data = talloc_array(mem_ctx, uint8_t, blob->length);
if (rev.data == NULL) {
return NULL;
}
for(i=0; i < blob->length; i++) {
rev.data[i] = blob->data[blob->length - i -1];
}
rev.length = blob->length;
ret = BN_bin2bn(rev.data, rev.length, NULL);
talloc_free(rev.data);
return ret;
}
static NTSTATUS get_pk_from_raw_keypair_params(TALLOC_CTX *ctx,
struct bkrp_exported_RSA_key_pair *keypair,
hx509_private_key *pk)
{
hx509_context hctx;
RSA *rsa;
struct hx509_private_key_ops *ops;
hx509_private_key privkey = NULL;
hx509_context_init(&hctx);
ops = hx509_find_private_alg(&_hx509_signature_rsa_with_var_num.algorithm);
if (ops == NULL) {
DEBUG(2, ("Not supported algorithm\n"));
hx509_context_free(&hctx);
return NT_STATUS_INTERNAL_ERROR;
}
if (hx509_private_key_init(&privkey, ops, NULL) != 0) {
hx509_context_free(&hctx);
return NT_STATUS_NO_MEMORY;
}
rsa = RSA_new();
if (rsa ==NULL) {
hx509_private_key_free(&privkey);
hx509_context_free(&hctx);
return NT_STATUS_INVALID_PARAMETER;
}
rsa->n = reverse_and_get_bignum(ctx, &(keypair->modulus));
if (rsa->n == NULL) {
RSA_free(rsa);
hx509_private_key_free(&privkey);
hx509_context_free(&hctx);
return NT_STATUS_INVALID_PARAMETER;
}
rsa->d = reverse_and_get_bignum(ctx, &(keypair->private_exponent));
if (rsa->d == NULL) {
RSA_free(rsa);
hx509_private_key_free(&privkey);
hx509_context_free(&hctx);
return NT_STATUS_INVALID_PARAMETER;
}
rsa->p = reverse_and_get_bignum(ctx, &(keypair->prime1));
if (rsa->p == NULL) {
RSA_free(rsa);
hx509_private_key_free(&privkey);
hx509_context_free(&hctx);
return NT_STATUS_INVALID_PARAMETER;
}
rsa->q = reverse_and_get_bignum(ctx, &(keypair->prime2));
if (rsa->q == NULL) {
RSA_free(rsa);
hx509_private_key_free(&privkey);
hx509_context_free(&hctx);
return NT_STATUS_INVALID_PARAMETER;
}
rsa->dmp1 = reverse_and_get_bignum(ctx, &(keypair->exponent1));
if (rsa->dmp1 == NULL) {
RSA_free(rsa);
hx509_private_key_free(&privkey);
hx509_context_free(&hctx);
return NT_STATUS_INVALID_PARAMETER;
}
rsa->dmq1 = reverse_and_get_bignum(ctx, &(keypair->exponent2));
if (rsa->dmq1 == NULL) {
RSA_free(rsa);
hx509_private_key_free(&privkey);
hx509_context_free(&hctx);
return NT_STATUS_INVALID_PARAMETER;
}
rsa->iqmp = reverse_and_get_bignum(ctx, &(keypair->coefficient));
if (rsa->iqmp == NULL) {
RSA_free(rsa);
hx509_private_key_free(&privkey);
hx509_context_free(&hctx);
return NT_STATUS_INVALID_PARAMETER;
}
rsa->e = reverse_and_get_bignum(ctx, &(keypair->public_exponent));
if (rsa->e == NULL) {
RSA_free(rsa);
hx509_private_key_free(&privkey);
hx509_context_free(&hctx);
return NT_STATUS_INVALID_PARAMETER;
}
*pk = privkey;
hx509_private_key_assign_rsa(*pk, rsa);
hx509_context_free(&hctx);
return NT_STATUS_OK;
}
static WERROR get_and_verify_access_check(TALLOC_CTX *sub_ctx,
uint32_t version,
uint8_t *key_and_iv,
uint8_t *access_check,
uint32_t access_check_len,
struct auth_session_info *session_info)
{
heim_octet_string iv;
heim_octet_string access_check_os;
hx509_crypto crypto;
DATA_BLOB blob_us;
uint32_t key_len;
uint32_t iv_len;
int res;
enum ndr_err_code ndr_err;
hx509_context hctx;
struct dom_sid *access_sid = NULL;
struct dom_sid *caller_sid = NULL;
/* This one should not be freed */
const AlgorithmIdentifier *alg;
switch (version) {
case 2:
key_len = 24;
iv_len = 8;
alg = hx509_crypto_des_rsdi_ede3_cbc();
break;
case 3:
key_len = 32;
iv_len = 16;
alg =hx509_crypto_aes256_cbc();
break;
default:
return WERR_INVALID_DATA;
}
hx509_context_init(&hctx);
res = hx509_crypto_init(hctx, NULL,
&(alg->algorithm),
&crypto);
hx509_context_free(&hctx);
if (res != 0) {
return WERR_INVALID_DATA;
}
res = hx509_crypto_set_key_data(crypto, key_and_iv, key_len);
iv.data = talloc_memdup(sub_ctx, key_len + key_and_iv, iv_len);
iv.length = iv_len;
if (res != 0) {
hx509_crypto_destroy(crypto);
return WERR_INVALID_DATA;
}
hx509_crypto_set_padding(crypto, HX509_CRYPTO_PADDING_NONE);
res = hx509_crypto_decrypt(crypto,
access_check,
access_check_len,
&iv,
&access_check_os);
if (res != 0) {
hx509_crypto_destroy(crypto);
return WERR_INVALID_DATA;
}
blob_us.data = access_check_os.data;
blob_us.length = access_check_os.length;
hx509_crypto_destroy(crypto);
switch (version) {
case 2:
{
uint32_t hash_size = 20;
uint8_t hash[hash_size];
struct sha sctx;
struct bkrp_access_check_v2 uncrypted_accesscheckv2;
ndr_err = ndr_pull_struct_blob(&blob_us, sub_ctx, &uncrypted_accesscheckv2,
(ndr_pull_flags_fn_t)ndr_pull_bkrp_access_check_v2);
if (!NDR_ERR_CODE_IS_SUCCESS(ndr_err)) {
/* Unable to unmarshall */
der_free_octet_string(&access_check_os);
return WERR_INVALID_DATA;
}
if (uncrypted_accesscheckv2.magic != 0x1) {
/* wrong magic */
der_free_octet_string(&access_check_os);
return WERR_INVALID_DATA;
}
SHA1_Init(&sctx);
SHA1_Update(&sctx, blob_us.data, blob_us.length - hash_size);
SHA1_Final(hash, &sctx);
der_free_octet_string(&access_check_os);
/*
* We free it after the sha1 calculation because blob.data
* point to the same area
*/
if (memcmp(hash, uncrypted_accesscheckv2.hash, hash_size) != 0) {
DEBUG(2, ("Wrong hash value in the access check in backup key remote protocol\n"));
return WERR_INVALID_DATA;
}
access_sid = &(uncrypted_accesscheckv2.sid);
break;
}
case 3:
{
uint32_t hash_size = 64;
uint8_t hash[hash_size];
struct hc_sha512state sctx;
struct bkrp_access_check_v3 uncrypted_accesscheckv3;
ndr_err = ndr_pull_struct_blob(&blob_us, sub_ctx, &uncrypted_accesscheckv3,
(ndr_pull_flags_fn_t)ndr_pull_bkrp_access_check_v3);
if (!NDR_ERR_CODE_IS_SUCCESS(ndr_err)) {
/* Unable to unmarshall */
der_free_octet_string(&access_check_os);
return WERR_INVALID_DATA;
}
if (uncrypted_accesscheckv3.magic != 0x1) {
/* wrong magic */
der_free_octet_string(&access_check_os);
return WERR_INVALID_DATA;
}
SHA512_Init(&sctx);
SHA512_Update(&sctx, blob_us.data, blob_us.length - hash_size);
SHA512_Final(hash, &sctx);
der_free_octet_string(&access_check_os);
/*
* We free it after the sha1 calculation because blob.data
* point to the same area
*/
if (memcmp(hash, uncrypted_accesscheckv3.hash, hash_size) != 0) {
DEBUG(2, ("Wrong hash value in the access check in backup key remote protocol\n"));
return WERR_INVALID_DATA;
}
access_sid = &(uncrypted_accesscheckv3.sid);
break;
}
default:
/* Never reached normally as we filtered at the switch / case level */
return WERR_INVALID_DATA;
}
caller_sid = &session_info->security_token->sids[PRIMARY_USER_SID_INDEX];
if (!dom_sid_equal(caller_sid, access_sid)) {
return WERR_INVALID_ACCESS;
}
return WERR_OK;
}
/*
* We have some data, such as saved website or IMAP passwords that the
* client has in profile on-disk. This needs to be decrypted. This
* version gives the server the data over the network (protected by
* the X.509 certificate and public key encryption, and asks that it
* be decrypted returned for short-term use, protected only by the
* negotiated transport encryption.
*
* The data is NOT stored in the LSA, but a X.509 certificate, public
* and private keys used to encrypt the data will be stored. There is
* only one active encryption key pair and certificate per domain, it
* is pointed at with G$BCKUPKEY_PREFERRED in the LSA secrets store.
*
* The potentially multiple valid decrypting key pairs are in turn
* stored in the LSA secrets store as G$BCKUPKEY_keyGuidString.
*
*/
static WERROR bkrp_client_wrap_decrypt_data(struct dcesrv_call_state *dce_call,
TALLOC_CTX *mem_ctx,
struct bkrp_BackupKey *r,
struct ldb_context *ldb_ctx)
{
struct bkrp_client_side_wrapped uncrypt_request;
DATA_BLOB blob;
enum ndr_err_code ndr_err;
char *guid_string;
char *cert_secret_name;
DATA_BLOB lsa_secret;
DATA_BLOB *uncrypted_data = NULL;
NTSTATUS status;
uint32_t requested_version;
blob.data = r->in.data_in;
blob.length = r->in.data_in_len;
if (r->in.data_in_len < 4 || r->in.data_in == NULL) {
return WERR_INVALID_PARAMETER;
}
/*
* We check for the version here, so we can actually print the
* message as we are unlikely to parse it with NDR.
*/
requested_version = IVAL(r->in.data_in, 0);
if ((requested_version != BACKUPKEY_CLIENT_WRAP_VERSION2)
&& (requested_version != BACKUPKEY_CLIENT_WRAP_VERSION3)) {
DEBUG(1, ("Request for unknown BackupKey sub-protocol %d\n", requested_version));
return WERR_INVALID_PARAMETER;
}
ndr_err = ndr_pull_struct_blob(&blob, mem_ctx, &uncrypt_request,
(ndr_pull_flags_fn_t)ndr_pull_bkrp_client_side_wrapped);
if (!NDR_ERR_CODE_IS_SUCCESS(ndr_err)) {
return WERR_INVALID_PARAMETER;
}
if ((uncrypt_request.version != BACKUPKEY_CLIENT_WRAP_VERSION2)
&& (uncrypt_request.version != BACKUPKEY_CLIENT_WRAP_VERSION3)) {
DEBUG(1, ("Request for unknown BackupKey sub-protocol %d\n", uncrypt_request.version));
return WERR_INVALID_PARAMETER;
}
guid_string = GUID_string(mem_ctx, &uncrypt_request.guid);
if (guid_string == NULL) {
return WERR_NOT_ENOUGH_MEMORY;
}
cert_secret_name = talloc_asprintf(mem_ctx,
"BCKUPKEY_%s",
guid_string);
if (cert_secret_name == NULL) {
return WERR_NOT_ENOUGH_MEMORY;
}
status = get_lsa_secret(mem_ctx,
ldb_ctx,
cert_secret_name,
&lsa_secret);
if (!NT_STATUS_IS_OK(status)) {
DEBUG(10, ("Error while fetching secret %s\n", cert_secret_name));
return WERR_INVALID_DATA;
} else if (lsa_secret.length == 0) {
/* we do not have the real secret attribute, like if we are an RODC */
return WERR_INVALID_PARAMETER;
} else {
hx509_context hctx;
struct bkrp_exported_RSA_key_pair keypair;
hx509_private_key pk;
uint32_t i, res;
heim_octet_string reversed_secret;
heim_octet_string uncrypted_secret;
AlgorithmIdentifier alg;
DATA_BLOB blob_us;
WERROR werr;
ndr_err = ndr_pull_struct_blob(&lsa_secret, mem_ctx, &keypair, (ndr_pull_flags_fn_t)ndr_pull_bkrp_exported_RSA_key_pair);
if (!NDR_ERR_CODE_IS_SUCCESS(ndr_err)) {
DEBUG(2, ("Unable to parse the ndr encoded cert in key %s\n", cert_secret_name));
return WERR_FILE_NOT_FOUND;
}
status = get_pk_from_raw_keypair_params(mem_ctx, &keypair, &pk);
if (!NT_STATUS_IS_OK(status)) {
return WERR_INTERNAL_ERROR;
}
reversed_secret.data = talloc_array(mem_ctx, uint8_t,
uncrypt_request.encrypted_secret_len);
if (reversed_secret.data == NULL) {
hx509_private_key_free(&pk);
return WERR_NOT_ENOUGH_MEMORY;
}
/* The secret has to be reversed ... */
for(i=0; i< uncrypt_request.encrypted_secret_len; i++) {
uint8_t *reversed = (uint8_t *)reversed_secret.data;
uint8_t *uncrypt = uncrypt_request.encrypted_secret;
reversed[i] = uncrypt[uncrypt_request.encrypted_secret_len - 1 - i];
}
reversed_secret.length = uncrypt_request.encrypted_secret_len;
/*
* Let's try to decrypt the secret now that
* we have the private key ...
*/
hx509_context_init(&hctx);
res = hx509_private_key_private_decrypt(hctx, &reversed_secret,
&alg.algorithm, pk,
&uncrypted_secret);
hx509_context_free(&hctx);
hx509_private_key_free(&pk);
if (res != 0) {
/* We are not able to decrypt the secret, looks like something is wrong */
return WERR_INVALID_PARAMETER;
}
blob_us.data = uncrypted_secret.data;
blob_us.length = uncrypted_secret.length;
if (uncrypt_request.version == 2) {
struct bkrp_encrypted_secret_v2 uncrypted_secretv2;
ndr_err = ndr_pull_struct_blob(&blob_us, mem_ctx, &uncrypted_secretv2,
(ndr_pull_flags_fn_t)ndr_pull_bkrp_encrypted_secret_v2);
der_free_octet_string(&uncrypted_secret);
if (!NDR_ERR_CODE_IS_SUCCESS(ndr_err)) {
/* Unable to unmarshall */
return WERR_INVALID_DATA;
}
if (uncrypted_secretv2.magic != 0x20) {
/* wrong magic */
return WERR_INVALID_DATA;
}
werr = get_and_verify_access_check(mem_ctx, 2,
uncrypted_secretv2.payload_key,
uncrypt_request.access_check,
uncrypt_request.access_check_len,
dce_call->conn->auth_state.session_info);
if (!W_ERROR_IS_OK(werr)) {
return werr;
}
uncrypted_data = talloc(mem_ctx, DATA_BLOB);
if (uncrypted_data == NULL) {
return WERR_INVALID_DATA;
}
uncrypted_data->data = uncrypted_secretv2.secret;
uncrypted_data->length = uncrypted_secretv2.secret_len;
}
if (uncrypt_request.version == 3) {
struct bkrp_encrypted_secret_v3 uncrypted_secretv3;
ndr_err = ndr_pull_struct_blob(&blob_us, mem_ctx, &uncrypted_secretv3,
(ndr_pull_flags_fn_t)ndr_pull_bkrp_encrypted_secret_v3);
der_free_octet_string(&uncrypted_secret);
if (!NDR_ERR_CODE_IS_SUCCESS(ndr_err)) {
/* Unable to unmarshall */
return WERR_INVALID_DATA;
}
if (uncrypted_secretv3.magic1 != 0x30 ||
uncrypted_secretv3.magic2 != 0x6610 ||
uncrypted_secretv3.magic3 != 0x800e) {
/* wrong magic */
return WERR_INVALID_DATA;
}
/*
* Confirm that the caller is permitted to
* read this particular data. Because one key
* pair is used per domain, the caller could
* have stolen the profile data on-disk and
* would otherwise be able to read the
* passwords.
*/
werr = get_and_verify_access_check(mem_ctx, 3,
uncrypted_secretv3.payload_key,
uncrypt_request.access_check,
uncrypt_request.access_check_len,
dce_call->conn->auth_state.session_info);
if (!W_ERROR_IS_OK(werr)) {
return werr;
}
uncrypted_data = talloc(mem_ctx, DATA_BLOB);
if (uncrypted_data == NULL) {
return WERR_INVALID_DATA;
}
uncrypted_data->data = uncrypted_secretv3.secret;
uncrypted_data->length = uncrypted_secretv3.secret_len;
}
/*
* Yeah if we are here all looks pretty good:
* - hash is ok
* - user sid is the same as the one in access check
* - we were able to decrypt the whole stuff
*/
}
if (uncrypted_data->data == NULL) {
return WERR_INVALID_DATA;
}
/* There is a magic value a the beginning of the data
* we can use an adhoc structure but as the
* parent structure is just an array of bytes it a lot of work
* work just prepending 4 bytes
*/
*(r->out.data_out) = talloc_zero_array(mem_ctx, uint8_t, uncrypted_data->length + 4);
W_ERROR_HAVE_NO_MEMORY(*(r->out.data_out));
memcpy(4+*(r->out.data_out), uncrypted_data->data, uncrypted_data->length);
*(r->out.data_out_len) = uncrypted_data->length + 4;
return WERR_OK;
}
/*
* Strictly, this function no longer uses Heimdal in order to generate an RSA
* key, but GnuTLS.
*
* The resulting key is then imported into Heimdal's RSA structure.
*
* We use GnuTLS because it can reliably generate 2048 bit keys every time.
* Windows clients strictly require 2048, no more since it won't fit and no
* less either. Heimdal would almost always generate a smaller key.
*/
static WERROR create_heimdal_rsa_key(TALLOC_CTX *ctx, hx509_context *hctx,
hx509_private_key *pk, RSA **rsa)
{
int ret;
uint8_t *p0 = NULL;
const uint8_t *p;
size_t len;
int bits = 2048;
int RSA_returned_bits;
gnutls_x509_privkey_t gtls_key;
WERROR werr;
*rsa = NULL;
ret = gnutls_global_init();
if (ret != GNUTLS_E_SUCCESS) {
DBG_ERR("TLS error: %s\n", gnutls_strerror(ret));
return WERR_INTERNAL_ERROR;
}
#if defined(HAVE_GCRYPT_H) && !defined(HAVE_GNUTLS3)
DEBUG(3,("Enabling QUICK mode in gcrypt\n"));
gcry_control(GCRYCTL_ENABLE_QUICK_RANDOM, 0);
#endif
ret = gnutls_x509_privkey_init(&gtls_key);
if (ret != 0) {
gnutls_global_deinit();
return WERR_INTERNAL_ERROR;
}
/*
* Unlike Heimdal's RSA_generate_key_ex(), this generates a
* 2048 bit key 100% of the time. The heimdal code had a ~1/8
* chance of doing so, chewing vast quantities of computation
* and entropy in the process.
*/
ret = gnutls_x509_privkey_generate(gtls_key, GNUTLS_PK_RSA, bits, 0);
if (ret != 0) {
werr = WERR_INTERNAL_ERROR;
goto done;
}
/* No need to check error code, this SHOULD fail */
gnutls_x509_privkey_export(gtls_key, GNUTLS_X509_FMT_DER, NULL, &len);
if (len < 1) {
werr = WERR_INTERNAL_ERROR;
goto done;
}
p0 = talloc_size(ctx, len);
if (p0 == NULL) {
werr = WERR_NOT_ENOUGH_MEMORY;
goto done;
}
p = p0;
/*
* Only this GnuTLS export function correctly exports the key,
* we can't use gnutls_rsa_params_export_raw() because while
* it appears to be fixed in more recent versions, in the
* Ubuntu 14.04 version 2.12.23 (at least) it incorrectly
* exports one of the key parameters (qInv). Additionally, we
* would have to work around subtle differences in big number
* representations.
*
* We need access to the RSA parameters directly (in the
* parameter RSA **rsa) as the caller has to manually encode
* them in a non-standard data structure.
*/
ret = gnutls_x509_privkey_export(gtls_key, GNUTLS_X509_FMT_DER, p0, &len);
if (ret != 0) {
werr = WERR_INTERNAL_ERROR;
goto done;
}
/*
* To dump the key we can use :
* rk_dumpdata("h5lkey", p0, len);
*/
ret = hx509_parse_private_key(*hctx, &_hx509_signature_rsa_with_var_num ,
p0, len, HX509_KEY_FORMAT_DER, pk);
if (ret != 0) {
werr = WERR_INTERNAL_ERROR;
goto done;
}
*rsa = d2i_RSAPrivateKey(NULL, &p, len);
TALLOC_FREE(p0);
if (*rsa == NULL) {
hx509_private_key_free(pk);
werr = WERR_INTERNAL_ERROR;
goto done;
}
RSA_returned_bits = BN_num_bits((*rsa)->n);
DEBUG(6, ("GnuTLS returned an RSA private key with %d bits\n", RSA_returned_bits));
if (RSA_returned_bits != bits) {
DEBUG(0, ("GnuTLS unexpectedly returned an RSA private key with %d bits, needed %d\n", RSA_returned_bits, bits));
hx509_private_key_free(pk);
werr = WERR_INTERNAL_ERROR;
goto done;
}
werr = WERR_OK;
done:
if (p0 != NULL) {
memset(p0, 0, len);
TALLOC_FREE(p0);
}
gnutls_x509_privkey_deinit(gtls_key);
gnutls_global_deinit();
return werr;
}
static WERROR self_sign_cert(TALLOC_CTX *ctx, hx509_context *hctx, hx509_request *req,
time_t lifetime, hx509_private_key *private_key,
hx509_cert *cert, DATA_BLOB *guidblob)
{
SubjectPublicKeyInfo spki;
hx509_name subject = NULL;
hx509_ca_tbs tbs;
struct heim_bit_string uniqueid;
struct heim_integer serialnumber;
int ret, i;
uniqueid.data = talloc_memdup(ctx, guidblob->data, guidblob->length);
if (uniqueid.data == NULL) {
return WERR_NOT_ENOUGH_MEMORY;
}
/* uniqueid is a bit string in which each byte represent 1 bit (1 or 0)
* so as 1 byte is 8 bits we need to provision 8 times more space as in the
* blob
*/
uniqueid.length = 8 * guidblob->length;
serialnumber.data = talloc_array(ctx, uint8_t,
guidblob->length);
if (serialnumber.data == NULL) {
talloc_free(uniqueid.data);
return WERR_NOT_ENOUGH_MEMORY;
}
/* Native AD generates certificates with serialnumber in reversed notation */
for (i = 0; i < guidblob->length; i++) {
uint8_t *reversed = (uint8_t *)serialnumber.data;
uint8_t *uncrypt = guidblob->data;
reversed[i] = uncrypt[guidblob->length - 1 - i];
}
serialnumber.length = guidblob->length;
serialnumber.negative = 0;
memset(&spki, 0, sizeof(spki));
ret = hx509_request_get_name(*hctx, *req, &subject);
if (ret !=0) {
goto fail_subject;
}
ret = hx509_request_get_SubjectPublicKeyInfo(*hctx, *req, &spki);
if (ret !=0) {
goto fail_spki;
}
ret = hx509_ca_tbs_init(*hctx, &tbs);
if (ret !=0) {
goto fail_tbs;
}
ret = hx509_ca_tbs_set_spki(*hctx, tbs, &spki);
if (ret !=0) {
goto fail;
}
ret = hx509_ca_tbs_set_subject(*hctx, tbs, subject);
if (ret !=0) {
goto fail;
}
ret = hx509_ca_tbs_set_notAfter_lifetime(*hctx, tbs, lifetime);
if (ret !=0) {
goto fail;
}
ret = hx509_ca_tbs_set_unique(*hctx, tbs, &uniqueid, &uniqueid);
if (ret !=0) {
goto fail;
}
ret = hx509_ca_tbs_set_serialnumber(*hctx, tbs, &serialnumber);
if (ret !=0) {
goto fail;
}
ret = hx509_ca_sign_self(*hctx, tbs, *private_key, cert);
if (ret !=0) {
goto fail;
}
hx509_name_free(&subject);
free_SubjectPublicKeyInfo(&spki);
hx509_ca_tbs_free(&tbs);
return WERR_OK;
fail:
hx509_ca_tbs_free(&tbs);
fail_tbs:
free_SubjectPublicKeyInfo(&spki);
fail_spki:
hx509_name_free(&subject);
fail_subject:
talloc_free(uniqueid.data);
talloc_free(serialnumber.data);
return WERR_INTERNAL_ERROR;
}
static WERROR create_req(TALLOC_CTX *ctx, hx509_context *hctx, hx509_request *req,
hx509_private_key *signer,RSA **rsa, const char *dn)
{
int ret;
SubjectPublicKeyInfo key;
hx509_name name;
WERROR werr;
werr = create_heimdal_rsa_key(ctx, hctx, signer, rsa);
if (!W_ERROR_IS_OK(werr)) {
return werr;
}
hx509_request_init(*hctx, req);
ret = hx509_parse_name(*hctx, dn, &name);
if (ret != 0) {
RSA_free(*rsa);
hx509_private_key_free(signer);
hx509_request_free(req);
hx509_name_free(&name);
return WERR_INTERNAL_ERROR;
}
ret = hx509_request_set_name(*hctx, *req, name);
if (ret != 0) {
RSA_free(*rsa);
hx509_private_key_free(signer);
hx509_request_free(req);
hx509_name_free(&name);
return WERR_INTERNAL_ERROR;
}
hx509_name_free(&name);
ret = hx509_private_key2SPKI(*hctx, *signer, &key);
if (ret != 0) {
RSA_free(*rsa);
hx509_private_key_free(signer);
hx509_request_free(req);
return WERR_INTERNAL_ERROR;
}
ret = hx509_request_set_SubjectPublicKeyInfo(*hctx, *req, &key);
if (ret != 0) {
RSA_free(*rsa);
hx509_private_key_free(signer);
free_SubjectPublicKeyInfo(&key);
hx509_request_free(req);
return WERR_INTERNAL_ERROR;
}
free_SubjectPublicKeyInfo(&key);
return WERR_OK;
}
/* Return an error when we fail to generate a certificate */
static WERROR generate_bkrp_cert(TALLOC_CTX *ctx, struct dcesrv_call_state *dce_call, struct ldb_context *ldb_ctx, const char *dn)
{
heim_octet_string data;
WERROR werr;
RSA *rsa;
hx509_context hctx;
hx509_private_key pk;
hx509_request req;
hx509_cert cert;
DATA_BLOB blob;
DATA_BLOB blobkeypair;
DATA_BLOB *tmp;
int ret;
bool ok = true;
struct GUID guid = GUID_random();
NTSTATUS status;
char *secret_name;
struct bkrp_exported_RSA_key_pair keypair;
enum ndr_err_code ndr_err;
uint32_t nb_seconds_validity = 3600 * 24 * 365;
DEBUG(6, ("Trying to generate a certificate\n"));
hx509_context_init(&hctx);
werr = create_req(ctx, &hctx, &req, &pk, &rsa, dn);
if (!W_ERROR_IS_OK(werr)) {
hx509_context_free(&hctx);
return werr;
}
status = GUID_to_ndr_blob(&guid, ctx, &blob);
if (!NT_STATUS_IS_OK(status)) {
hx509_context_free(&hctx);
hx509_private_key_free(&pk);
RSA_free(rsa);
return WERR_INVALID_DATA;
}
werr = self_sign_cert(ctx, &hctx, &req, nb_seconds_validity, &pk, &cert, &blob);
if (!W_ERROR_IS_OK(werr)) {
hx509_private_key_free(&pk);
hx509_context_free(&hctx);
return WERR_INVALID_DATA;
}
ret = hx509_cert_binary(hctx, cert, &data);
if (ret !=0) {
hx509_cert_free(cert);
hx509_private_key_free(&pk);
hx509_context_free(&hctx);
return WERR_INVALID_DATA;
}
keypair.cert.data = talloc_memdup(ctx, data.data, data.length);
keypair.cert.length = data.length;
/*
* Heimdal's bignum are big endian and the
* structure expect it to be in little endian
* so we reverse the buffer to make it work
*/
tmp = reverse_and_get_blob(ctx, rsa->e);
if (tmp == NULL) {
ok = false;
} else {
keypair.public_exponent = *tmp;
SMB_ASSERT(tmp->length <= 4);
/*
* The value is now in little endian but if can happen that the length is
* less than 4 bytes.
* So if we have less than 4 bytes we pad with zeros so that it correctly
* fit into the structure.
*/
if (tmp->length < 4) {
/*
* We need the expo to fit 4 bytes
*/
keypair.public_exponent.data = talloc_zero_array(ctx, uint8_t, 4);
memcpy(keypair.public_exponent.data, tmp->data, tmp->length);
keypair.public_exponent.length = 4;
}
}
tmp = reverse_and_get_blob(ctx,rsa->d);
if (tmp == NULL) {
ok = false;
} else {
keypair.private_exponent = *tmp;
}
tmp = reverse_and_get_blob(ctx,rsa->n);
if (tmp == NULL) {
ok = false;
} else {
keypair.modulus = *tmp;
}
tmp = reverse_and_get_blob(ctx,rsa->p);
if (tmp == NULL) {
ok = false;
} else {
keypair.prime1 = *tmp;
}
tmp = reverse_and_get_blob(ctx,rsa->q);
if (tmp == NULL) {
ok = false;
} else {
keypair.prime2 = *tmp;
}
tmp = reverse_and_get_blob(ctx,rsa->dmp1);
if (tmp == NULL) {
ok = false;
} else {
keypair.exponent1 = *tmp;
}
tmp = reverse_and_get_blob(ctx,rsa->dmq1);
if (tmp == NULL) {
ok = false;
} else {
keypair.exponent2 = *tmp;
}
tmp = reverse_and_get_blob(ctx,rsa->iqmp);
if (tmp == NULL) {
ok = false;
} else {
keypair.coefficient = *tmp;
}
/* One of the keypair allocation was wrong */
if (ok == false) {
der_free_octet_string(&data);
hx509_cert_free(cert);
hx509_private_key_free(&pk);
hx509_context_free(&hctx);
RSA_free(rsa);
return WERR_INVALID_DATA;
}
keypair.certificate_len = keypair.cert.length;
ndr_err = ndr_push_struct_blob(&blobkeypair, ctx, &keypair, (ndr_push_flags_fn_t)ndr_push_bkrp_exported_RSA_key_pair);
if (!NDR_ERR_CODE_IS_SUCCESS(ndr_err)) {
der_free_octet_string(&data);
hx509_cert_free(cert);
hx509_private_key_free(&pk);
hx509_context_free(&hctx);
RSA_free(rsa);
return WERR_INVALID_DATA;
}
secret_name = talloc_asprintf(ctx, "BCKUPKEY_%s", GUID_string(ctx, &guid));
if (secret_name == NULL) {
der_free_octet_string(&data);
hx509_cert_free(cert);
hx509_private_key_free(&pk);
hx509_context_free(&hctx);
RSA_free(rsa);
return WERR_OUTOFMEMORY;
}
status = set_lsa_secret(ctx, ldb_ctx, secret_name, &blobkeypair);
if (!NT_STATUS_IS_OK(status)) {
DEBUG(2, ("Failed to save the secret %s\n", secret_name));
}
talloc_free(secret_name);
GUID_to_ndr_blob(&guid, ctx, &blob);
status = set_lsa_secret(ctx, ldb_ctx, "BCKUPKEY_PREFERRED", &blob);
if (!NT_STATUS_IS_OK(status)) {
DEBUG(2, ("Failed to save the secret BCKUPKEY_PREFERRED\n"));
}
der_free_octet_string(&data);
hx509_cert_free(cert);
hx509_private_key_free(&pk);
hx509_context_free(&hctx);
RSA_free(rsa);
return WERR_OK;
}
static WERROR bkrp_retrieve_client_wrap_key(struct dcesrv_call_state *dce_call, TALLOC_CTX *mem_ctx,
struct bkrp_BackupKey *r, struct ldb_context *ldb_ctx)
{
struct GUID guid;
char *guid_string;
DATA_BLOB lsa_secret;
enum ndr_err_code ndr_err;
NTSTATUS status;
/*
* here we basicaly need to return our certificate
* search for lsa secret BCKUPKEY_PREFERRED first
*/
status = get_lsa_secret(mem_ctx,
ldb_ctx,
"BCKUPKEY_PREFERRED",
&lsa_secret);
if (NT_STATUS_EQUAL(status, NT_STATUS_RESOURCE_NAME_NOT_FOUND)) {
/* Ok we can be in this case if there was no certs */
struct loadparm_context *lp_ctx = dce_call->conn->dce_ctx->lp_ctx;
char *dn = talloc_asprintf(mem_ctx, "CN=%s",
lpcfg_realm(lp_ctx));
WERROR werr = generate_bkrp_cert(mem_ctx, dce_call, ldb_ctx, dn);
if (!W_ERROR_IS_OK(werr)) {
return WERR_INVALID_PARAMETER;
}
status = get_lsa_secret(mem_ctx,
ldb_ctx,
"BCKUPKEY_PREFERRED",
&lsa_secret);
if (!NT_STATUS_IS_OK(status)) {
/* Ok we really don't manage to get this certs ...*/
DEBUG(2, ("Unable to locate BCKUPKEY_PREFERRED after cert generation\n"));
return WERR_FILE_NOT_FOUND;
}
} else if (!NT_STATUS_IS_OK(status)) {
return WERR_INTERNAL_ERROR;
}
if (lsa_secret.length == 0) {
DEBUG(1, ("No secret in BCKUPKEY_PREFERRED, are we an undetected RODC?\n"));
return WERR_INTERNAL_ERROR;
} else {
char *cert_secret_name;
status = GUID_from_ndr_blob(&lsa_secret, &guid);
if (!NT_STATUS_IS_OK(status)) {
return WERR_FILE_NOT_FOUND;
}
guid_string = GUID_string(mem_ctx, &guid);
if (guid_string == NULL) {
/* We return file not found because the client
* expect this error
*/
return WERR_FILE_NOT_FOUND;
}
cert_secret_name = talloc_asprintf(mem_ctx,
"BCKUPKEY_%s",
guid_string);
status = get_lsa_secret(mem_ctx,
ldb_ctx,
cert_secret_name,
&lsa_secret);
if (!NT_STATUS_IS_OK(status)) {
return WERR_FILE_NOT_FOUND;
}
if (lsa_secret.length != 0) {
struct bkrp_exported_RSA_key_pair keypair;
ndr_err = ndr_pull_struct_blob(&lsa_secret, mem_ctx, &keypair,
(ndr_pull_flags_fn_t)ndr_pull_bkrp_exported_RSA_key_pair);
if (!NDR_ERR_CODE_IS_SUCCESS(ndr_err)) {
return WERR_FILE_NOT_FOUND;
}
*(r->out.data_out_len) = keypair.cert.length;
*(r->out.data_out) = talloc_memdup(mem_ctx, keypair.cert.data, keypair.cert.length);
W_ERROR_HAVE_NO_MEMORY(*(r->out.data_out));
return WERR_OK;
} else {
DEBUG(1, ("No or broken secret called %s\n", cert_secret_name));
return WERR_INTERNAL_ERROR;
}
}
return WERR_NOT_SUPPORTED;
}
static WERROR generate_bkrp_server_wrap_key(TALLOC_CTX *ctx, struct ldb_context *ldb_ctx)
{
struct GUID guid = GUID_random();
enum ndr_err_code ndr_err;
DATA_BLOB blob_wrap_key, guid_blob;
struct bkrp_dc_serverwrap_key wrap_key;
NTSTATUS status;
char *secret_name;
TALLOC_CTX *frame = talloc_stackframe();
generate_random_buffer(wrap_key.key, sizeof(wrap_key.key));
ndr_err = ndr_push_struct_blob(&blob_wrap_key, ctx, &wrap_key, (ndr_push_flags_fn_t)ndr_push_bkrp_dc_serverwrap_key);
if (!NDR_ERR_CODE_IS_SUCCESS(ndr_err)) {
TALLOC_FREE(frame);
return WERR_INVALID_DATA;
}
secret_name = talloc_asprintf(frame, "BCKUPKEY_%s", GUID_string(ctx, &guid));
if (secret_name == NULL) {
TALLOC_FREE(frame);
return WERR_NOT_ENOUGH_MEMORY;
}
status = set_lsa_secret(frame, ldb_ctx, secret_name, &blob_wrap_key);
if (!NT_STATUS_IS_OK(status)) {
DEBUG(2, ("Failed to save the secret %s\n", secret_name));
TALLOC_FREE(frame);
return WERR_INTERNAL_ERROR;
}
status = GUID_to_ndr_blob(&guid, frame, &guid_blob);
if (!NT_STATUS_IS_OK(status)) {
DEBUG(2, ("Failed to save the secret %s\n", secret_name));
TALLOC_FREE(frame);
}
status = set_lsa_secret(frame, ldb_ctx, "BCKUPKEY_P", &guid_blob);
if (!NT_STATUS_IS_OK(status)) {
DEBUG(2, ("Failed to save the secret %s\n", secret_name));
TALLOC_FREE(frame);
return WERR_INTERNAL_ERROR;
}
TALLOC_FREE(frame);
return WERR_OK;
}
/*
* Find the specified decryption keys from the LSA secrets store as
* G$BCKUPKEY_keyGuidString.
*/
static WERROR bkrp_do_retrieve_server_wrap_key(TALLOC_CTX *mem_ctx, struct ldb_context *ldb_ctx,
struct bkrp_dc_serverwrap_key *server_key,
struct GUID *guid)
{
NTSTATUS status;
DATA_BLOB lsa_secret;
char *secret_name;
char *guid_string;
enum ndr_err_code ndr_err;
guid_string = GUID_string(mem_ctx, guid);
if (guid_string == NULL) {
/* We return file not found because the client
* expect this error
*/
return WERR_FILE_NOT_FOUND;
}
secret_name = talloc_asprintf(mem_ctx, "BCKUPKEY_%s", guid_string);
if (secret_name == NULL) {
return WERR_NOT_ENOUGH_MEMORY;
}
status = get_lsa_secret(mem_ctx, ldb_ctx, secret_name, &lsa_secret);
if (!NT_STATUS_IS_OK(status)) {
DEBUG(10, ("Error while fetching secret %s\n", secret_name));
return WERR_INVALID_DATA;
}
if (lsa_secret.length == 0) {
/* RODC case, we do not have secrets locally */
DEBUG(1, ("Unable to fetch value for secret %s, are we an undetected RODC?\n",
secret_name));
return WERR_INTERNAL_ERROR;
}
ndr_err = ndr_pull_struct_blob(&lsa_secret, mem_ctx, server_key,
(ndr_pull_flags_fn_t)ndr_pull_bkrp_dc_serverwrap_key);
if (!NDR_ERR_CODE_IS_SUCCESS(ndr_err)) {
DEBUG(2, ("Unable to parse the ndr encoded server wrap key %s\n", secret_name));
return WERR_INVALID_DATA;
}
return WERR_OK;
}
/*
* Find the current, preferred ServerWrap Key by looking at
* G$BCKUPKEY_P in the LSA secrets store.
*
* Then find the current decryption keys from the LSA secrets store as
* G$BCKUPKEY_keyGuidString.
*/
static WERROR bkrp_do_retrieve_default_server_wrap_key(TALLOC_CTX *mem_ctx,
struct ldb_context *ldb_ctx,
struct bkrp_dc_serverwrap_key *server_key,
struct GUID *returned_guid)
{
NTSTATUS status;
DATA_BLOB guid_binary;
status = get_lsa_secret(mem_ctx, ldb_ctx, "BCKUPKEY_P", &guid_binary);
if (!NT_STATUS_IS_OK(status)) {
DEBUG(10, ("Error while fetching secret BCKUPKEY_P to find current GUID\n"));
return WERR_FILE_NOT_FOUND;
} else if (guid_binary.length == 0) {
/* RODC case, we do not have secrets locally */
DEBUG(1, ("Unable to fetch value for secret BCKUPKEY_P, are we an undetected RODC?\n"));
return WERR_INTERNAL_ERROR;
}
status = GUID_from_ndr_blob(&guid_binary, returned_guid);
if (!NT_STATUS_IS_OK(status)) {
return WERR_FILE_NOT_FOUND;
}
return bkrp_do_retrieve_server_wrap_key(mem_ctx, ldb_ctx,
server_key, returned_guid);
}
static WERROR bkrp_server_wrap_decrypt_data(struct dcesrv_call_state *dce_call, TALLOC_CTX *mem_ctx,
struct bkrp_BackupKey *r ,struct ldb_context *ldb_ctx)
{
WERROR werr;
struct bkrp_server_side_wrapped decrypt_request;
DATA_BLOB sid_blob, encrypted_blob, symkey_blob;
DATA_BLOB blob;
enum ndr_err_code ndr_err;
struct bkrp_dc_serverwrap_key server_key;
struct bkrp_rc4encryptedpayload rc4payload;
struct dom_sid *caller_sid;
uint8_t symkey[20]; /* SHA-1 hash len */
uint8_t mackey[20]; /* SHA-1 hash len */
uint8_t mac[20]; /* SHA-1 hash len */
unsigned int hash_len;
HMAC_CTX ctx;
blob.data = r->in.data_in;
blob.length = r->in.data_in_len;
if (r->in.data_in_len == 0 || r->in.data_in == NULL) {
return WERR_INVALID_PARAMETER;
}
ndr_err = ndr_pull_struct_blob_all(&blob, mem_ctx, &decrypt_request,
(ndr_pull_flags_fn_t)ndr_pull_bkrp_server_side_wrapped);
if (!NDR_ERR_CODE_IS_SUCCESS(ndr_err)) {
return WERR_INVALID_PARAMETER;
}
if (decrypt_request.magic != BACKUPKEY_SERVER_WRAP_VERSION) {
return WERR_INVALID_PARAMETER;
}
werr = bkrp_do_retrieve_server_wrap_key(mem_ctx, ldb_ctx, &server_key,
&decrypt_request.guid);
if (!W_ERROR_IS_OK(werr)) {
return werr;
}
dump_data_pw("server_key: \n", server_key.key, sizeof(server_key.key));
dump_data_pw("r2: \n", decrypt_request.r2, sizeof(decrypt_request.r2));
/*
* This is *not* the leading 64 bytes, as indicated in MS-BKRP 3.1.4.1.1
* BACKUPKEY_BACKUP_GUID, it really is the whole key
*/
HMAC(EVP_sha1(), server_key.key, sizeof(server_key.key),
decrypt_request.r2, sizeof(decrypt_request.r2),
symkey, &hash_len);
dump_data_pw("symkey: \n", symkey, hash_len);
/* rc4 decrypt sid and secret using sym key */
symkey_blob = data_blob_const(symkey, sizeof(symkey));
encrypted_blob = data_blob_const(decrypt_request.rc4encryptedpayload,
decrypt_request.ciphertext_length);
arcfour_crypt_blob(encrypted_blob.data, encrypted_blob.length, &symkey_blob);
ndr_err = ndr_pull_struct_blob_all(&encrypted_blob, mem_ctx, &rc4payload,
(ndr_pull_flags_fn_t)ndr_pull_bkrp_rc4encryptedpayload);
if (!NDR_ERR_CODE_IS_SUCCESS(ndr_err)) {
return WERR_INVALID_PARAMETER;
}
if (decrypt_request.payload_length != rc4payload.secret_data.length) {
return WERR_INVALID_PARAMETER;
}
dump_data_pw("r3: \n", rc4payload.r3, sizeof(rc4payload.r3));
/*
* This is *not* the leading 64 bytes, as indicated in MS-BKRP 3.1.4.1.1
* BACKUPKEY_BACKUP_GUID, it really is the whole key
*/
HMAC(EVP_sha1(), server_key.key, sizeof(server_key.key),
rc4payload.r3, sizeof(rc4payload.r3),
mackey, &hash_len);
dump_data_pw("mackey: \n", mackey, sizeof(mackey));
ndr_err = ndr_push_struct_blob(&sid_blob, mem_ctx, &rc4payload.sid,
(ndr_push_flags_fn_t)ndr_push_dom_sid);
if (!NDR_ERR_CODE_IS_SUCCESS(ndr_err)) {
return WERR_INTERNAL_ERROR;
}
HMAC_CTX_init(&ctx);
HMAC_Init_ex(&ctx, mackey, hash_len, EVP_sha1(), NULL);
/* SID field */
HMAC_Update(&ctx, sid_blob.data, sid_blob.length);
/* Secret field */
HMAC_Update(&ctx, rc4payload.secret_data.data, rc4payload.secret_data.length);
HMAC_Final(&ctx, mac, &hash_len);
HMAC_CTX_cleanup(&ctx);
dump_data_pw("mac: \n", mac, sizeof(mac));
dump_data_pw("rc4payload.mac: \n", rc4payload.mac, sizeof(rc4payload.mac));
if (memcmp(mac, rc4payload.mac, sizeof(mac)) != 0) {
return WERR_INVALID_ACCESS;
}
caller_sid = &dce_call->conn->auth_state.session_info->security_token->sids[PRIMARY_USER_SID_INDEX];
if (!dom_sid_equal(&rc4payload.sid, caller_sid)) {
return WERR_INVALID_ACCESS;
}
*(r->out.data_out) = rc4payload.secret_data.data;
*(r->out.data_out_len) = rc4payload.secret_data.length;
return WERR_OK;
}
/*
* For BACKUPKEY_RESTORE_GUID we need to check the first 4 bytes to
* determine what type of restore is wanted.
*
* See MS-BKRP 3.1.4.1.4 BACKUPKEY_RESTORE_GUID point 1.
*/
static WERROR bkrp_generic_decrypt_data(struct dcesrv_call_state *dce_call, TALLOC_CTX *mem_ctx,
struct bkrp_BackupKey *r, struct ldb_context *ldb_ctx)
{
if (r->in.data_in_len < 4 || r->in.data_in == NULL) {
return WERR_INVALID_PARAMETER;
}
if (IVAL(r->in.data_in, 0) == BACKUPKEY_SERVER_WRAP_VERSION) {
return bkrp_server_wrap_decrypt_data(dce_call, mem_ctx, r, ldb_ctx);
}
return bkrp_client_wrap_decrypt_data(dce_call, mem_ctx, r, ldb_ctx);
}
/*
* We have some data, such as saved website or IMAP passwords that the
* client would like to put into the profile on-disk. This needs to
* be encrypted. This version gives the server the data over the
* network (protected only by the negotiated transport encryption),
* and asks that it be encrypted and returned for long-term storage.
*
* The data is NOT stored in the LSA, but a key to encrypt the data
* will be stored. There is only one active encryption key per domain,
* it is pointed at with G$BCKUPKEY_P in the LSA secrets store.
*
* The potentially multiple valid decryptiong keys (and the encryption
* key) are in turn stored in the LSA secrets store as
* G$BCKUPKEY_keyGuidString.
*
*/
static WERROR bkrp_server_wrap_encrypt_data(struct dcesrv_call_state *dce_call, TALLOC_CTX *mem_ctx,
struct bkrp_BackupKey *r ,struct ldb_context *ldb_ctx)
{
DATA_BLOB sid_blob, encrypted_blob, symkey_blob, server_wrapped_blob;
WERROR werr;
struct dom_sid *caller_sid;
uint8_t symkey[20]; /* SHA-1 hash len */
uint8_t mackey[20]; /* SHA-1 hash len */
unsigned int hash_len;
struct bkrp_rc4encryptedpayload rc4payload;
HMAC_CTX ctx;
struct bkrp_dc_serverwrap_key server_key;
enum ndr_err_code ndr_err;
struct bkrp_server_side_wrapped server_side_wrapped;
struct GUID guid;
if (r->in.data_in_len == 0 || r->in.data_in == NULL) {
return WERR_INVALID_PARAMETER;
}
werr = bkrp_do_retrieve_default_server_wrap_key(mem_ctx,
ldb_ctx, &server_key,
&guid);
if (!W_ERROR_IS_OK(werr)) {
if (W_ERROR_EQUAL(werr, WERR_FILE_NOT_FOUND)) {
/* Generate the server wrap key since one wasn't found */
werr = generate_bkrp_server_wrap_key(mem_ctx,
ldb_ctx);
if (!W_ERROR_IS_OK(werr)) {
return WERR_INVALID_PARAMETER;
}
werr = bkrp_do_retrieve_default_server_wrap_key(mem_ctx,
ldb_ctx,
&server_key,
&guid);
if (W_ERROR_EQUAL(werr, WERR_FILE_NOT_FOUND)) {
/* Ok we really don't manage to get this secret ...*/
return WERR_FILE_NOT_FOUND;
}
} else {
/* In theory we should NEVER reach this point as it
should only appear in a rodc server */
/* we do not have the real secret attribute */
return WERR_INVALID_PARAMETER;
}
}
caller_sid = &dce_call->conn->auth_state.session_info->security_token->sids[PRIMARY_USER_SID_INDEX];
dump_data_pw("server_key: \n", server_key.key, sizeof(server_key.key));
/*
* This is the key derivation step, so that the HMAC and RC4
* operations over the user-supplied data are not able to
* disclose the master key. By using random data, the symkey
* and mackey values are unique for this operation, and
* discovering these (by reversing the RC4 over the
* attacker-controlled data) does not return something able to
* be used to decyrpt the encrypted data of other users
*/
generate_random_buffer(server_side_wrapped.r2, sizeof(server_side_wrapped.r2));
dump_data_pw("r2: \n", server_side_wrapped.r2, sizeof(server_side_wrapped.r2));
generate_random_buffer(rc4payload.r3, sizeof(rc4payload.r3));
dump_data_pw("r3: \n", rc4payload.r3, sizeof(rc4payload.r3));
/*
* This is *not* the leading 64 bytes, as indicated in MS-BKRP 3.1.4.1.1
* BACKUPKEY_BACKUP_GUID, it really is the whole key
*/
HMAC(EVP_sha1(), server_key.key, sizeof(server_key.key),
server_side_wrapped.r2, sizeof(server_side_wrapped.r2),
symkey, &hash_len);
dump_data_pw("symkey: \n", symkey, hash_len);
/*
* This is *not* the leading 64 bytes, as indicated in MS-BKRP 3.1.4.1.1
* BACKUPKEY_BACKUP_GUID, it really is the whole key
*/
HMAC(EVP_sha1(), server_key.key, sizeof(server_key.key),
rc4payload.r3, sizeof(rc4payload.r3),
mackey, &hash_len);
dump_data_pw("mackey: \n", mackey, sizeof(mackey));
ndr_err = ndr_push_struct_blob(&sid_blob, mem_ctx, caller_sid,
(ndr_push_flags_fn_t)ndr_push_dom_sid);
if (!NDR_ERR_CODE_IS_SUCCESS(ndr_err)) {
return WERR_INTERNAL_ERROR;
}
rc4payload.secret_data.data = r->in.data_in;
rc4payload.secret_data.length = r->in.data_in_len;
HMAC_CTX_init(&ctx);
HMAC_Init_ex(&ctx, mackey, 20, EVP_sha1(), NULL);
/* SID field */
HMAC_Update(&ctx, sid_blob.data, sid_blob.length);
/* Secret field */
HMAC_Update(&ctx, rc4payload.secret_data.data, rc4payload.secret_data.length);
HMAC_Final(&ctx, rc4payload.mac, &hash_len);
HMAC_CTX_cleanup(&ctx);
dump_data_pw("rc4payload.mac: \n", rc4payload.mac, sizeof(rc4payload.mac));
rc4payload.sid = *caller_sid;
ndr_err = ndr_push_struct_blob(&encrypted_blob, mem_ctx, &rc4payload,
(ndr_push_flags_fn_t)ndr_push_bkrp_rc4encryptedpayload);
if (!NDR_ERR_CODE_IS_SUCCESS(ndr_err)) {
return WERR_INTERNAL_ERROR;
}
/* rc4 encrypt sid and secret using sym key */
symkey_blob = data_blob_const(symkey, sizeof(symkey));
arcfour_crypt_blob(encrypted_blob.data, encrypted_blob.length, &symkey_blob);
/* create server wrap structure */
server_side_wrapped.payload_length = rc4payload.secret_data.length;
server_side_wrapped.ciphertext_length = encrypted_blob.length;
server_side_wrapped.guid = guid;
server_side_wrapped.rc4encryptedpayload = encrypted_blob.data;
ndr_err = ndr_push_struct_blob(&server_wrapped_blob, mem_ctx, &server_side_wrapped,
(ndr_push_flags_fn_t)ndr_push_bkrp_server_side_wrapped);
if (!NDR_ERR_CODE_IS_SUCCESS(ndr_err)) {
return WERR_INTERNAL_ERROR;
}
*(r->out.data_out) = server_wrapped_blob.data;
*(r->out.data_out_len) = server_wrapped_blob.length;
return WERR_OK;
}
static WERROR dcesrv_bkrp_BackupKey(struct dcesrv_call_state *dce_call,
TALLOC_CTX *mem_ctx, struct bkrp_BackupKey *r)
{
WERROR error = WERR_INVALID_PARAMETER;
struct ldb_context *ldb_ctx;
bool is_rodc;
const char *addr = "unknown";
/* At which level we start to add more debug of what is done in the protocol */
const int debuglevel = 4;
if (DEBUGLVL(debuglevel)) {
const struct tsocket_address *remote_address;
remote_address = dcesrv_connection_get_remote_address(dce_call->conn);
if (tsocket_address_is_inet(remote_address, "ip")) {
addr = tsocket_address_inet_addr_string(remote_address, mem_ctx);
W_ERROR_HAVE_NO_MEMORY(addr);
}
}
if (lpcfg_server_role(dce_call->conn->dce_ctx->lp_ctx) != ROLE_ACTIVE_DIRECTORY_DC) {
return WERR_NOT_SUPPORTED;
}
ldb_ctx = samdb_connect(mem_ctx, dce_call->event_ctx,
dce_call->conn->dce_ctx->lp_ctx,
system_session(dce_call->conn->dce_ctx->lp_ctx), 0);
if (samdb_rodc(ldb_ctx, &is_rodc) != LDB_SUCCESS) {
talloc_unlink(mem_ctx, ldb_ctx);
return WERR_INVALID_PARAMETER;
}
if (!is_rodc) {
if(strncasecmp(GUID_string(mem_ctx, r->in.guidActionAgent),
BACKUPKEY_RESTORE_GUID, strlen(BACKUPKEY_RESTORE_GUID)) == 0) {
DEBUG(debuglevel, ("Client %s requested to decrypt a wrapped secret\n", addr));
error = bkrp_generic_decrypt_data(dce_call, mem_ctx, r, ldb_ctx);
}
if (strncasecmp(GUID_string(mem_ctx, r->in.guidActionAgent),
BACKUPKEY_RETRIEVE_BACKUP_KEY_GUID, strlen(BACKUPKEY_RETRIEVE_BACKUP_KEY_GUID)) == 0) {
DEBUG(debuglevel, ("Client %s requested certificate for client wrapped secret\n", addr));
error = bkrp_retrieve_client_wrap_key(dce_call, mem_ctx, r, ldb_ctx);
}
if (strncasecmp(GUID_string(mem_ctx, r->in.guidActionAgent),
BACKUPKEY_RESTORE_GUID_WIN2K, strlen(BACKUPKEY_RESTORE_GUID_WIN2K)) == 0) {
DEBUG(debuglevel, ("Client %s requested to decrypt a server side wrapped secret\n", addr));
error = bkrp_server_wrap_decrypt_data(dce_call, mem_ctx, r, ldb_ctx);
}
if (strncasecmp(GUID_string(mem_ctx, r->in.guidActionAgent),
BACKUPKEY_BACKUP_GUID, strlen(BACKUPKEY_BACKUP_GUID)) == 0) {
DEBUG(debuglevel, ("Client %s requested a server wrapped secret\n", addr));
error = bkrp_server_wrap_encrypt_data(dce_call, mem_ctx, r, ldb_ctx);
}
}
/*else: I am a RODC so I don't handle backup key protocol */
talloc_unlink(mem_ctx, ldb_ctx);
return error;
}
/* include the generated boilerplate */
#include "librpc/gen_ndr/ndr_backupkey_s.c"