2018-01-10 05:25:22 +03:00
# -*- coding: utf-8 -*-
# Graph topology utilities and dot file generation
#
# Copyright (C) Andrew Bartlett 2018.
#
# Written by Douglas Bagnall <douglas.bagnall@catalyst.net.nz>
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
from __future__ import print_function
from samba import colour
import sys
FONT_SIZE = 10
def reformat_graph_label ( s ) :
""" Break DNs over multiple lines, for better shaped and arguably more
readable nodes . We try to split after commas , and if necessary
after hyphens or failing that in arbitrary places . """
if len ( s ) < 12 :
return s
s = s . replace ( ' , ' , ' , \n ' )
pieces = [ ]
for p in s . split ( ' \n ' ) :
while len ( p ) > 20 :
if ' - ' in p [ 2 : 20 ] :
q , p = p . split ( ' - ' , 1 )
else :
n = len ( p ) / 12
b = len ( p ) / n
q , p = p [ : b ] , p [ b : ]
pieces . append ( q + ' - ' )
if p :
pieces . append ( p )
return ' \\ n ' . join ( pieces )
def quote_graph_label ( s , reformat = False ) :
""" Escape a string as graphvis requires. """
# escaping inside quotes is simple in dot, because only " is escaped.
# there is no need to count backslashes in sequences like \\\\"
s = s . replace ( ' " ' , ' \" ' )
if reformat :
s = reformat_graph_label ( s )
return " %s " % s
def shorten_vertex_names ( edges , vertices , suffix = ' ,... ' , aggressive = False ) :
""" Replace the common suffix (in practice, the base DN) of a number of
vertices with a short string ( default " ,... " ) . If this seems
pointless because the replaced string is very short or the results
seem strange , the original vertices are retained .
: param edges : a sequence of vertex pairs to shorten
: param vertices : a sequence of vertices to shorten
: param suffix : the replacement string [ " ,... " ]
: return : tuple of ( edges , vertices , replacement )
If no change is made , the returned edges and vertices will be the
original lists and replacement will be None .
If a change is made , replacement will be a tuple ( new , original )
indicating the new suffix that replaces the old .
"""
vlist = list ( set ( x [ 0 ] for x in edges ) |
set ( x [ 1 ] for x in edges ) |
set ( vertices ) )
if len ( vlist ) < 2 :
return edges , vertices , None
# walk backwards along all the strings until we meet a character
# that is not shared by all.
i = - 1
try :
while True :
c = set ( x [ i ] for x in vlist )
if len ( c ) > 1 :
break
i - = 1
except IndexError :
# We have indexed beyond the start of a string, which should
# only happen if one node is a strict suffix of all others.
return edges , vertices , None
# add one to get to the last unanimous character.
i + = 1
# now, we actually really want to split on a comma. So we walk
# back to a comma.
x = vlist [ 0 ]
while i < len ( x ) and x [ i ] != ' , ' :
i + = 1
if i > = - len ( suffix ) :
# there is nothing to gain here
return edges , vertices , None
edges2 = [ ]
vertices2 = [ ]
for a , b in edges :
edges2 . append ( ( a [ : i ] + suffix , b [ : i ] + suffix ) )
for a in vertices :
vertices2 . append ( a [ : i ] + suffix )
replacements = [ ( suffix , a [ i : ] ) ]
if aggressive :
# Remove known common annoying strings
map = dict ( ( v , v ) for v in vertices2 )
for v in vertices2 :
if ' ,CN=Servers, ' not in v :
break
else :
map = dict ( ( k , v . replace ( ' ,CN=Servers, ' , ' ,**, ' ) )
2018-04-11 01:32:06 +03:00
for k , v in map . items ( ) )
2018-01-10 05:25:22 +03:00
replacements . append ( ( ' ** ' , ' CN=Servers ' ) )
for v in vertices2 :
if not v . startswith ( ' CN=NTDS Settings, ' ) :
break
else :
map = dict ( ( k , v . replace ( ' CN=NTDS Settings, ' , ' *, ' ) )
2018-04-11 01:32:06 +03:00
for k , v in map . items ( ) )
2018-01-10 05:25:22 +03:00
replacements . append ( ( ' * ' , ' CN=NTDS Settings ' ) )
edges2 = [ ( map . get ( a , a ) , map . get ( b , b ) ) for a , b in edges2 ]
vertices2 = [ map . get ( a , a ) for a in vertices2 ]
return edges2 , vertices2 , replacements
def compile_graph_key ( key_items , nodes_above = [ ] , elisions = None ,
prefix = ' key_ ' , width = 2 ) :
""" Generate a dot file snippet that acts as a legend for a graph.
: param key_items : sequence of items ( is_vertex , style , label )
: param nodes_above : list of vertices ( pushes key into right position )
: param elision : tuple ( short , full ) indicating suffix replacement
: param prefix : string used to generate key node names [ " key_ " ]
: param width : default width of node lines
Each item in key_items is a tuple of ( is_vertex , style , label ) .
is_vertex is a boolean indicating whether the item is a vertex
( True ) or edge ( False ) . Style is a dot style string for the edge
or vertex . label is the text associated with the key item .
"""
edge_lines = [ ]
edge_names = [ ]
vertex_lines = [ ]
vertex_names = [ ]
order_lines = [ ]
for i , item in enumerate ( key_items ) :
is_vertex , style , label = item
tag = ' %s %d _ ' % ( prefix , i )
label = quote_graph_label ( label )
name = ' %s _label ' % tag
if is_vertex :
order_lines . append ( name )
vertex_names . append ( name )
vertex_lines . append ( ' %s [label= " %s " ; %s ] ' %
( name , label , style ) )
else :
edge_names . append ( name )
e1 = ' %s e1 ' % tag
e2 = ' %s e2 ' % tag
order_lines . append ( name )
edge_lines . append ( ' subgraph cluster_ %s { ' % tag )
edge_lines . append ( ' %s [label=src; color= " #000000 " ; group= " %s _g " ] ' %
( e1 , tag ) )
edge_lines . append ( ' %s [label=dest; color= " #000000 " ; group= " %s _g " ] ' %
( e2 , tag ) )
edge_lines . append ( ' %s -> %s [constraint = false; %s ] ' % ( e1 , e2 ,
style ) )
edge_lines . append ( ( ' %s [shape=plaintext; style=solid; width= %f ; '
' label= " %s \\ r " ] ' ) %
( name , width , label ) )
edge_lines . append ( ' } ' )
elision_str = ' '
if elisions :
for i , elision in enumerate ( reversed ( elisions ) ) :
order_lines . append ( ' elision %d ' % i )
short , long = elision
if short [ 0 ] == ' , ' and long [ 0 ] == ' , ' :
short = short [ 1 : ]
long = long [ 1 : ]
elision_str + = ( ' \n elision %d [shape=plaintext; style=solid; '
' label= " \ “ %s ” means “ %s ” \\ r " ] \n '
% ( ( i , short , long ) ) )
above_lines = [ ]
if order_lines :
for n in nodes_above :
above_lines . append ( ' " %s " -> %s [style=invis] ' %
( n , order_lines [ 0 ] ) )
s = ( ' subgraph cluster_key { \n '
' label= " Key " ; \n '
' subgraph cluster_key_nodes { \n '
' label= " " ; \n '
' color = " invis " ; \n '
' %s \n '
' } \n '
' subgraph cluster_key_edges { \n '
' label= " " ; \n '
' color = " invis " ; \n '
' %s \n '
' { %s } \n '
' } \n '
' %s \n '
' } \n '
' %s \n '
' %s [style=invis; weight=9] '
' \n '
% ( ' ; \n ' . join ( vertex_lines ) ,
' \n ' . join ( edge_lines ) ,
' ' . join ( edge_names ) ,
elision_str ,
' ; \n ' . join ( above_lines ) ,
' -> ' . join ( order_lines ) ,
) )
return s
def dot_graph ( vertices , edges ,
directed = False ,
title = None ,
reformat_labels = True ,
vertex_colors = None ,
edge_colors = None ,
edge_labels = None ,
vertex_styles = None ,
edge_styles = None ,
graph_name = None ,
shorten_names = False ,
key_items = None ,
vertex_clusters = None ) :
""" Generate a Graphviz representation of a list of vertices and edges.
: param vertices : list of vertex names ( optional ) .
: param edges : list of ( vertex , vertex ) pairs
: param directed : bool : whether the graph is directed
: param title : optional title for the graph
: param reformat_labels : whether to wrap long vertex labels
: param vertex_colors : if not None , a sequence of colours for the vertices
: param edge_colors : if not None , colours for the edges
: param edge_labels : if not None , labels for the edges
: param vertex_styles : if not None , DOT style strings for vertices
: param edge_styles : if not None , DOT style strings for edges
: param graph_name : if not None , name of graph
: param shorten_names : if True , remove common DN suffixes
: param key : ( is_vertex , style , description ) tuples
: param vertex_clusters : list of subgraph cluster names
Colour , style , and label lists must be the same length as the
corresponding list of edges or vertices ( or None ) .
Colours can be HTML RGB strings ( " #FF0000 " ) or common names
( " red " ) , or some other formats you don ' t want to think about.
If ` vertices ` is None , only the vertices mentioned in the edges
are shown , and their appearance can be modified using the
vertex_colors and vertex_styles arguments . Vertices appearing in
the edges but not in the ` vertices ` list will be shown but their
styles can not be modified .
"""
out = [ ]
write = out . append
if vertices is None :
vertices = set ( x [ 0 ] for x in edges ) | set ( x [ 1 ] for x in edges )
if shorten_names :
edges , vertices , elisions = shorten_vertex_names ( edges , vertices )
else :
elisions = None
if graph_name is None :
graph_name = ' A_samba_tool_production '
if directed :
graph_type = ' digraph '
connector = ' -> '
else :
graph_type = ' graph '
connector = ' -- '
write ( ' /* generated by samba */ ' )
write ( ' %s %s { ' % ( graph_type , graph_name ) )
if title is not None :
write ( ' label= " %s " ; ' % ( title , ) )
write ( ' fontsize= %s ; \n ' % ( FONT_SIZE ) )
write ( ' node[fontname=Helvetica; fontsize= %s ]; \n ' % ( FONT_SIZE ) )
prev_cluster = None
cluster_n = 0
quoted_vertices = [ ]
for i , v in enumerate ( vertices ) :
v = quote_graph_label ( v , reformat_labels )
quoted_vertices . append ( v )
attrs = [ ]
if vertex_clusters and vertex_clusters [ i ] :
cluster = vertex_clusters [ i ]
if cluster != prev_cluster :
if prev_cluster is not None :
write ( " } " )
prev_cluster = cluster
n = quote_graph_label ( cluster )
if cluster :
write ( ' subgraph cluster_ %d { ' % cluster_n )
cluster_n + = 1
write ( ' style = " rounded,dotted " ; ' )
write ( ' node [style= " filled " ; fillcolor=white]; ' )
write ( ' label = " %s " ; ' % n )
if vertex_styles and vertex_styles [ i ] :
attrs . append ( vertex_styles [ i ] )
if vertex_colors and vertex_colors [ i ] :
attrs . append ( ' color= " %s " ' % quote_graph_label ( vertex_colors [ i ] ) )
if attrs :
write ( ' " %s " [ %s ]; ' % ( v , ' , ' . join ( attrs ) ) )
else :
write ( ' " %s " ; ' % ( v , ) )
if prev_cluster :
write ( " } " )
for i , edge in enumerate ( edges ) :
a , b = edge
if a is None :
a = " Missing source value "
if b is None :
b = " Missing destination value "
a = quote_graph_label ( a , reformat_labels )
b = quote_graph_label ( b , reformat_labels )
attrs = [ ]
if edge_labels :
label = quote_graph_label ( edge_labels [ i ] )
attrs . append ( ' label= " %s " ' % label )
if edge_colors :
attrs . append ( ' color= " %s " ' % quote_graph_label ( edge_colors [ i ] ) )
if edge_styles :
attrs . append ( edge_styles [ i ] ) # no quoting
if attrs :
write ( ' " %s " %s " %s " [ %s ]; ' % ( a , connector , b , ' , ' . join ( attrs ) ) )
else :
write ( ' " %s " %s " %s " ; ' % ( a , connector , b ) )
if key_items :
key = compile_graph_key ( key_items , nodes_above = quoted_vertices ,
elisions = elisions )
write ( key )
write ( ' } \n ' )
return ' \n ' . join ( out )
COLOUR_SETS = {
' ansi ' : {
' alternate rows ' : ( colour . DARK_WHITE , colour . BLACK ) ,
' disconnected ' : colour . RED ,
' connected ' : colour . GREEN ,
' transitive ' : colour . DARK_YELLOW ,
' header ' : colour . UNDERLINE ,
' reset ' : colour . C_NORMAL ,
} ,
' ansi-heatmap ' : {
' alternate rows ' : ( colour . DARK_WHITE , colour . BLACK ) ,
' disconnected ' : colour . REV_RED ,
' connected ' : colour . REV_GREEN ,
' transitive ' : colour . REV_DARK_YELLOW ,
' header ' : colour . UNDERLINE ,
' reset ' : colour . C_NORMAL ,
} ,
' xterm-256color ' : {
' alternate rows ' : ( colour . xterm_256_colour ( 39 ) ,
colour . xterm_256_colour ( 45 ) ) ,
#'alternate rows': (colour.xterm_256_colour(246),
# colour.xterm_256_colour(247)),
' disconnected ' : colour . xterm_256_colour ( 124 , bg = True ) ,
' connected ' : colour . xterm_256_colour ( 112 ) ,
' transitive ' : colour . xterm_256_colour ( 214 ) ,
' transitive scale ' : ( colour . xterm_256_colour ( 190 ) ,
colour . xterm_256_colour ( 226 ) ,
colour . xterm_256_colour ( 220 ) ,
colour . xterm_256_colour ( 214 ) ,
colour . xterm_256_colour ( 208 ) ,
) ,
' header ' : colour . UNDERLINE ,
' reset ' : colour . C_NORMAL ,
} ,
' xterm-256color-heatmap ' : {
' alternate rows ' : ( colour . xterm_256_colour ( 171 ) ,
colour . xterm_256_colour ( 207 ) ) ,
#'alternate rows': (colour.xterm_256_colour(246),
# colour.xterm_256_colour(247)),
' disconnected ' : colour . xterm_256_colour ( 124 , bg = True ) ,
' connected ' : colour . xterm_256_colour ( 112 , bg = True ) ,
' transitive ' : colour . xterm_256_colour ( 214 , bg = True ) ,
' transitive scale ' : ( colour . xterm_256_colour ( 190 , bg = True ) ,
colour . xterm_256_colour ( 226 , bg = True ) ,
colour . xterm_256_colour ( 220 , bg = True ) ,
colour . xterm_256_colour ( 214 , bg = True ) ,
colour . xterm_256_colour ( 208 , bg = True ) ,
) ,
' header ' : colour . UNDERLINE ,
' reset ' : colour . C_NORMAL ,
} ,
None : {
' alternate rows ' : ( ' ' , ) ,
' disconnected ' : ' ' ,
' connected ' : ' ' ,
' transitive ' : ' ' ,
' header ' : ' ' ,
' reset ' : ' ' ,
}
}
def find_transitive_distance ( vertices , edges ) :
all_vertices = ( set ( vertices ) |
set ( e [ 0 ] for e in edges ) |
set ( e [ 1 ] for e in edges ) )
if all_vertices != set ( vertices ) :
print ( " there are unknown vertices: %s " %
( all_vertices - set ( vertices ) ) ,
file = sys . stderr )
# with n vertices, we are always less than n hops away from
# anywhere else.
inf = len ( all_vertices )
distances = { }
for v in all_vertices :
distances [ v ] = { v : 0 }
for src , dest in edges :
distances [ src ] [ dest ] = distances [ src ] . get ( dest , 1 )
# This algorithm (and implementation) seems very suboptimal.
# potentially O(n^4), though n is smallish.
for i in range ( inf ) :
changed = False
new_distances = { }
2018-04-11 01:32:06 +03:00
for v , d in distances . items ( ) :
2018-01-10 05:25:22 +03:00
new_d = d . copy ( )
new_distances [ v ] = new_d
2018-04-11 01:32:06 +03:00
for dest , cost in d . items ( ) :
for leaf , cost2 in distances [ dest ] . items ( ) :
2018-01-10 05:25:22 +03:00
new_cost = cost + cost2
old_cost = d . get ( leaf , inf )
if new_cost < old_cost :
new_d [ leaf ] = new_cost
changed = True
distances = new_distances
if not changed :
break
# filter out unwanted vertices and infinite links
answer = { }
for v in vertices :
answer [ v ] = { }
for v2 in vertices :
a = distances [ v ] . get ( v2 , inf )
if a < inf :
answer [ v ] [ v2 ] = a
return answer
def get_transitive_colourer ( colours , n_vertices ) :
if ' transitive scale ' in colours :
scale = colours [ ' transitive scale ' ]
m = len ( scale )
n = 1 + int ( n_vertices * * 0.5 )
def f ( link ) :
2018-04-10 06:48:35 +03:00
return scale [ min ( link * m / / n , m - 1 ) ]
2018-01-10 05:25:22 +03:00
else :
def f ( link ) :
return colours [ ' transitive ' ]
return f
def distance_matrix ( vertices , edges ,
utf8 = False ,
colour = None ,
shorten_names = False ,
generate_key = False ) :
lines = [ ]
write = lines . append
if utf8 :
vertical = ' │ '
horizontal = ' ─ '
corner = ' ╭ '
#diagonal = '╲'
diagonal = ' · '
#missing = '🕱'
missing = ' - '
else :
vertical , horizontal , corner , diagonal , missing = ' |-,0- '
colours = COLOUR_SETS [ colour ]
if vertices is None :
vertices = sorted ( set ( x [ 0 ] for x in edges ) | set ( x [ 1 ] for x in edges ) )
if shorten_names :
edges , vertices , replacements = shorten_vertex_names ( edges ,
vertices ,
' + ' ,
aggressive = True )
vlen = max ( 6 , max ( len ( v ) for v in vertices ) )
# first, the key for the columns
colour_cycle = colours . get ( ' alternate rows ' , ( ' ' , ) )
c_header = colours . get ( ' header ' , ' ' )
c_disconn = colours . get ( ' disconnected ' , ' ' )
c_conn = colours . get ( ' connected ' , ' ' )
c_reset = colours . get ( ' reset ' , ' ' )
colour_transitive = get_transitive_colourer ( colours , len ( vertices ) )
vspace = ' ' * vlen
verticals = ' '
write ( " %*s %s %s destination %s " % ( vlen , ' ' ,
' ' * len ( vertices ) ,
c_header ,
c_reset ) )
for i , v in enumerate ( vertices ) :
j = len ( vertices ) - i
c = colour_cycle [ i % len ( colour_cycle ) ]
if j == 1 :
start = ' %s %s source %s ' % ( vspace [ : - 6 ] , c_header , c_reset )
else :
start = vspace
write ( ' %s %s %s %s %s %s %s %s ' % ( start ,
verticals ,
c_reset ,
c ,
corner ,
horizontal * j ,
v ,
c_reset
) )
verticals + = c + vertical
connections = find_transitive_distance ( vertices , edges )
for i , v in enumerate ( vertices ) :
c = colour_cycle [ i % len ( colour_cycle ) ]
links = connections [ v ]
row = [ ]
for v2 in vertices :
link = links . get ( v2 )
if link is None :
row . append ( ' %s %s ' % ( c_disconn , missing ) )
continue
if link == 0 :
row . append ( ' %s %s %s %s ' % ( c_reset , c , diagonal , c_reset ) )
elif link == 1 :
row . append ( ' %s 1 %s ' % ( c_conn , c_reset ) )
else :
ct = colour_transitive ( link )
if link > 9 :
link = ' + '
row . append ( ' %s %s %s ' % ( ct , link , c_reset ) )
write ( ' %s %*s %s %s %s ' % ( c , vlen , v , c_reset ,
' ' . join ( row ) , c_reset ) )
if shorten_names :
write ( ' ' )
for substitute , original in reversed ( replacements ) :
write ( " ' %s %s %s ' stands for ' %s %s %s ' " % ( colour_cycle [ 0 ] ,
substitute ,
c_reset ,
colour_cycle [ 0 ] ,
original ,
c_reset ) )
if generate_key :
write ( ' ' )
write ( " Data can get from %s source %s to %s destination %s in the "
" indicated number of steps. " % ( c_header , c_reset ,
c_header , c_reset ) )
write ( " %s %s %s means zero steps (it is the same DC) " %
( colour_cycle [ 0 ] , diagonal , c_reset ) )
write ( " %s 1 %s means a direct link " % ( c_conn , c_reset ) )
write ( " %s 2 %s means a transitive link involving two steps "
" (i.e. one intermediate DC) " %
( colour_transitive ( 2 ) , c_reset ) )
write ( " %s %s %s means there is no connection, even through other DCs " %
( c_disconn , missing , c_reset ) )
return ' \n ' . join ( lines )