1
0
mirror of https://github.com/samba-team/samba.git synced 2025-02-09 09:57:48 +03:00

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

2070 lines
55 KiB
C
Raw Normal View History

2009-09-17 18:17:55 +02:00
/*
ldb database library
Copyright (C) Simo Sorce 2006-2008
Copyright (C) Andrew Bartlett <abartlet@samba.org> 2005-2007
Copyright (C) Nadezhda Ivanova 2009
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* Name: ldb
*
* Component: DS Security descriptor module
*
* Description:
* - Calculate the security descriptor of a newly created object
* - Perform sd recalculation on a move operation
* - Handle sd modification invariants
*
* Author: Nadezhda Ivanova
*/
#include "includes.h"
#include <ldb_module.h>
#include "util/dlinklist.h"
#include "dsdb/samdb/samdb.h"
#include "librpc/ndr/libndr.h"
#include "librpc/gen_ndr/ndr_security.h"
#include "libcli/security/security.h"
#include "auth/auth.h"
#include "param/param.h"
#include "dsdb/samdb/ldb_modules/util.h"
#include "lib/util/util_tdb.h"
#include "lib/dbwrap/dbwrap.h"
#include "lib/dbwrap/dbwrap_rbt.h"
struct descriptor_changes {
struct descriptor_changes *prev, *next;
struct ldb_dn *nc_root;
struct GUID guid;
struct GUID parent_guid;
bool force_self;
bool force_children;
struct ldb_dn *stopped_dn;
size_t ref_count;
size_t sort_count;
};
struct descriptor_transaction {
TALLOC_CTX *mem;
struct {
/*
* We used to have a list of changes, appended with each
* DSDB_EXTENDED_SEC_DESC_PROPAGATION_OID operation.
*
* But the main problem was that a replication
* cycle (mainly the initial replication) calls
* DSDB_EXTENDED_SEC_DESC_PROPAGATION_OID for the
* same object[GUID] more than once. With
* DRSUAPI_DRS_GET_TGT we'll get the naming
* context head object and other top level
* containers, every often.
*
* It means we'll process objects more
* than once and waste a lot of time
* doing the same work again and again.
*
* We use an objectGUID based map in order to
* avoid registering objects more than once.
* In an domain with 22000 object it can
* reduce the work from 4 hours down to ~ 3.5 minutes.
*/
struct descriptor_changes *list;
struct db_context *map;
size_t num_registrations;
size_t num_registered;
size_t num_toplevel;
size_t num_processed;
} changes;
struct {
struct db_context *map;
size_t num_processed;
size_t num_skipped;
} objects;
};
struct descriptor_data {
struct descriptor_transaction transaction;
};
struct descriptor_context {
struct ldb_module *module;
struct ldb_request *req;
struct ldb_message *msg;
struct ldb_reply *search_res;
struct ldb_reply *search_oc_res;
struct ldb_val *parentsd_val;
struct ldb_message_element *sd_element;
struct ldb_val *sd_val;
uint32_t sd_flags;
int (*step_fn)(struct descriptor_context *);
};
static struct dom_sid *get_default_ag(TALLOC_CTX *mem_ctx,
struct ldb_dn *dn,
const struct security_token *token,
struct ldb_context *ldb)
{
TALLOC_CTX *tmp_ctx = talloc_new(mem_ctx);
const struct dom_sid *domain_sid = samdb_domain_sid(ldb);
struct dom_sid *da_sid = dom_sid_add_rid(tmp_ctx, domain_sid, DOMAIN_RID_ADMINS);
struct dom_sid *ea_sid = dom_sid_add_rid(tmp_ctx, domain_sid, DOMAIN_RID_ENTERPRISE_ADMINS);
struct dom_sid *sa_sid = dom_sid_add_rid(tmp_ctx, domain_sid, DOMAIN_RID_SCHEMA_ADMINS);
struct dom_sid *dag_sid;
struct ldb_dn *nc_root;
int ret;
ret = dsdb_find_nc_root(ldb, tmp_ctx, dn, &nc_root);
if (ret != LDB_SUCCESS) {
talloc_free(tmp_ctx);
return NULL;
}
if (ldb_dn_compare(nc_root, ldb_get_schema_basedn(ldb)) == 0) {
if (security_token_has_sid(token, sa_sid)) {
dag_sid = dom_sid_dup(mem_ctx, sa_sid);
} else if (security_token_has_sid(token, ea_sid)) {
dag_sid = dom_sid_dup(mem_ctx, ea_sid);
} else if (security_token_has_sid(token, da_sid)) {
dag_sid = dom_sid_dup(mem_ctx, da_sid);
} else if (security_token_is_system(token)) {
dag_sid = dom_sid_dup(mem_ctx, sa_sid);
} else {
dag_sid = NULL;
}
} else if (ldb_dn_compare(nc_root, ldb_get_config_basedn(ldb)) == 0) {
if (security_token_has_sid(token, ea_sid)) {
dag_sid = dom_sid_dup(mem_ctx, ea_sid);
} else if (security_token_has_sid(token, da_sid)) {
dag_sid = dom_sid_dup(mem_ctx, da_sid);
} else if (security_token_is_system(token)) {
dag_sid = dom_sid_dup(mem_ctx, ea_sid);
} else {
dag_sid = NULL;
}
} else if (ldb_dn_compare(nc_root, ldb_get_default_basedn(ldb)) == 0) {
if (security_token_has_sid(token, da_sid)) {
dag_sid = dom_sid_dup(mem_ctx, da_sid);
} else if (security_token_has_sid(token, ea_sid)) {
dag_sid = dom_sid_dup(mem_ctx, ea_sid);
} else if (security_token_is_system(token)) {
dag_sid = dom_sid_dup(mem_ctx, da_sid);
} else {
dag_sid = NULL;
}
} else {
dag_sid = NULL;
}
talloc_free(tmp_ctx);
return dag_sid;
}
static struct security_descriptor *get_sd_unpacked(struct ldb_module *module, TALLOC_CTX *mem_ctx,
const struct dsdb_class *objectclass)
{
struct ldb_context *ldb = ldb_module_get_ctx(module);
struct security_descriptor *sd;
const struct dom_sid *domain_sid = samdb_domain_sid(ldb);
if (!objectclass->defaultSecurityDescriptor || !domain_sid) {
return NULL;
}
sd = sddl_decode(mem_ctx,
objectclass->defaultSecurityDescriptor,
domain_sid);
return sd;
}
static struct dom_sid *get_default_group(TALLOC_CTX *mem_ctx,
struct ldb_context *ldb,
struct dom_sid *dag)
{
/*
* This depends on the function level of the DC
* which is 2008R2 in our case. Which means it is
* higher than 2003 and we should use the
* "default administrator group" also as owning group.
*
* This matches dcpromo for a 2003 domain
* on a Windows 2008R2 DC.
*/
return dag;
}
static struct security_descriptor *descr_handle_sd_flags(TALLOC_CTX *mem_ctx,
struct security_descriptor *new_sd,
struct security_descriptor *old_sd,
uint32_t sd_flags)
{
struct security_descriptor *final_sd;
/* if there is no control or control == 0 modify everything */
if (!sd_flags) {
return new_sd;
}
final_sd = talloc_zero(mem_ctx, struct security_descriptor);
final_sd->revision = SECURITY_DESCRIPTOR_REVISION_1;
final_sd->type = SEC_DESC_SELF_RELATIVE;
if (sd_flags & (SECINFO_OWNER)) {
if (new_sd->owner_sid) {
final_sd->owner_sid = talloc_memdup(mem_ctx, new_sd->owner_sid, sizeof(struct dom_sid));
}
final_sd->type |= new_sd->type & SEC_DESC_OWNER_DEFAULTED;
}
else if (old_sd) {
if (old_sd->owner_sid) {
final_sd->owner_sid = talloc_memdup(mem_ctx, old_sd->owner_sid, sizeof(struct dom_sid));
}
final_sd->type |= old_sd->type & SEC_DESC_OWNER_DEFAULTED;
}
if (sd_flags & (SECINFO_GROUP)) {
if (new_sd->group_sid) {
final_sd->group_sid = talloc_memdup(mem_ctx, new_sd->group_sid, sizeof(struct dom_sid));
}
final_sd->type |= new_sd->type & SEC_DESC_GROUP_DEFAULTED;
}
else if (old_sd) {
if (old_sd->group_sid) {
final_sd->group_sid = talloc_memdup(mem_ctx, old_sd->group_sid, sizeof(struct dom_sid));
}
final_sd->type |= old_sd->type & SEC_DESC_GROUP_DEFAULTED;
}
if (sd_flags & (SECINFO_SACL)) {
final_sd->sacl = security_acl_dup(mem_ctx,new_sd->sacl);
final_sd->type |= new_sd->type & (SEC_DESC_SACL_PRESENT |
SEC_DESC_SACL_DEFAULTED|SEC_DESC_SACL_AUTO_INHERIT_REQ |
SEC_DESC_SACL_AUTO_INHERITED|SEC_DESC_SACL_PROTECTED |
SEC_DESC_SERVER_SECURITY);
}
else if (old_sd && old_sd->sacl) {
final_sd->sacl = security_acl_dup(mem_ctx,old_sd->sacl);
final_sd->type |= old_sd->type & (SEC_DESC_SACL_PRESENT |
SEC_DESC_SACL_DEFAULTED|SEC_DESC_SACL_AUTO_INHERIT_REQ |
SEC_DESC_SACL_AUTO_INHERITED|SEC_DESC_SACL_PROTECTED |
SEC_DESC_SERVER_SECURITY);
}
if (sd_flags & (SECINFO_DACL)) {
final_sd->dacl = security_acl_dup(mem_ctx,new_sd->dacl);
final_sd->type |= new_sd->type & (SEC_DESC_DACL_PRESENT |
SEC_DESC_DACL_DEFAULTED|SEC_DESC_DACL_AUTO_INHERIT_REQ |
SEC_DESC_DACL_AUTO_INHERITED|SEC_DESC_DACL_PROTECTED |
SEC_DESC_DACL_TRUSTED);
}
else if (old_sd && old_sd->dacl) {
final_sd->dacl = security_acl_dup(mem_ctx,old_sd->dacl);
final_sd->type |= old_sd->type & (SEC_DESC_DACL_PRESENT |
SEC_DESC_DACL_DEFAULTED|SEC_DESC_DACL_AUTO_INHERIT_REQ |
SEC_DESC_DACL_AUTO_INHERITED|SEC_DESC_DACL_PROTECTED |
SEC_DESC_DACL_TRUSTED);
}
/* not so sure about this */
final_sd->type |= new_sd->type & SEC_DESC_RM_CONTROL_VALID;
return final_sd;
}
static struct security_descriptor *get_new_descriptor_nonlinear(struct ldb_module *module,
struct ldb_dn *dn,
TALLOC_CTX *mem_ctx,
const struct dsdb_class *objectclass,
const struct ldb_val *parent,
const struct ldb_val *object,
const struct ldb_val *old_sd,
uint32_t sd_flags)
{
struct security_descriptor *user_descriptor = NULL, *parent_descriptor = NULL;
struct security_descriptor *old_descriptor = NULL;
struct security_descriptor *new_sd, *final_sd;
enum ndr_err_code ndr_err;
struct ldb_context *ldb = ldb_module_get_ctx(module);
struct auth_session_info *session_info
= ldb_get_opaque(ldb, DSDB_SESSION_INFO);
const struct dom_sid *domain_sid = samdb_domain_sid(ldb);
struct dom_sid *default_owner;
struct dom_sid *default_group;
struct security_descriptor *default_descriptor = NULL;
struct GUID *object_list = NULL;
if (objectclass != NULL) {
default_descriptor = get_sd_unpacked(module, mem_ctx, objectclass);
object_list = talloc_zero_array(mem_ctx, struct GUID, 2);
if (object_list == NULL) {
return NULL;
}
object_list[0] = objectclass->schemaIDGUID;
}
if (object) {
user_descriptor = talloc(mem_ctx, struct security_descriptor);
if (!user_descriptor) {
return NULL;
}
ndr_err = ndr_pull_struct_blob(object, user_descriptor,
user_descriptor,
(ndr_pull_flags_fn_t)ndr_pull_security_descriptor);
if (!NDR_ERR_CODE_IS_SUCCESS(ndr_err)) {
talloc_free(user_descriptor);
return NULL;
}
} else {
user_descriptor = default_descriptor;
}
if (old_sd) {
old_descriptor = talloc(mem_ctx, struct security_descriptor);
if (!old_descriptor) {
return NULL;
}
ndr_err = ndr_pull_struct_blob(old_sd, old_descriptor,
old_descriptor,
(ndr_pull_flags_fn_t)ndr_pull_security_descriptor);
if (!NDR_ERR_CODE_IS_SUCCESS(ndr_err)) {
talloc_free(old_descriptor);
return NULL;
}
}
if (parent) {
parent_descriptor = talloc(mem_ctx, struct security_descriptor);
if (!parent_descriptor) {
return NULL;
}
ndr_err = ndr_pull_struct_blob(parent, parent_descriptor,
parent_descriptor,
(ndr_pull_flags_fn_t)ndr_pull_security_descriptor);
if (!NDR_ERR_CODE_IS_SUCCESS(ndr_err)) {
talloc_free(parent_descriptor);
return NULL;
}
}
if (user_descriptor && default_descriptor &&
(user_descriptor->dacl == NULL))
{
user_descriptor->dacl = default_descriptor->dacl;
user_descriptor->type |= default_descriptor->type & (
SEC_DESC_DACL_PRESENT |
SEC_DESC_DACL_DEFAULTED|SEC_DESC_DACL_AUTO_INHERIT_REQ |
SEC_DESC_DACL_AUTO_INHERITED|SEC_DESC_DACL_PROTECTED |
SEC_DESC_DACL_TRUSTED);
}
if (user_descriptor && default_descriptor &&
(user_descriptor->sacl == NULL))
{
user_descriptor->sacl = default_descriptor->sacl;
user_descriptor->type |= default_descriptor->type & (
SEC_DESC_SACL_PRESENT |
SEC_DESC_SACL_DEFAULTED|SEC_DESC_SACL_AUTO_INHERIT_REQ |
SEC_DESC_SACL_AUTO_INHERITED|SEC_DESC_SACL_PROTECTED |
SEC_DESC_SERVER_SECURITY);
}
if (!(sd_flags & SECINFO_OWNER) && user_descriptor) {
user_descriptor->owner_sid = NULL;
/*
* We need the correct owner sid
* when calculating the DACL or SACL
*/
if (old_descriptor) {
user_descriptor->owner_sid = old_descriptor->owner_sid;
}
}
if (!(sd_flags & SECINFO_GROUP) && user_descriptor) {
user_descriptor->group_sid = NULL;
/*
* We need the correct group sid
* when calculating the DACL or SACL
*/
if (old_descriptor) {
user_descriptor->group_sid = old_descriptor->group_sid;
}
}
if (!(sd_flags & SECINFO_DACL) && user_descriptor) {
user_descriptor->dacl = NULL;
/*
* We add SEC_DESC_DACL_PROTECTED so that
* create_security_descriptor() skips
* the unused inheritance calculation
*/
user_descriptor->type |= SEC_DESC_DACL_PROTECTED;
}
if (!(sd_flags & SECINFO_SACL) && user_descriptor) {
user_descriptor->sacl = NULL;
/*
* We add SEC_DESC_SACL_PROTECTED so that
* create_security_descriptor() skips
* the unused inheritance calculation
*/
user_descriptor->type |= SEC_DESC_SACL_PROTECTED;
}
default_owner = get_default_ag(mem_ctx, dn,
session_info->security_token, ldb);
default_group = get_default_group(mem_ctx, ldb, default_owner);
new_sd = create_security_descriptor(mem_ctx,
parent_descriptor,
user_descriptor,
true,
object_list,
SEC_DACL_AUTO_INHERIT |
SEC_SACL_AUTO_INHERIT,
session_info->security_token,
default_owner, default_group,
map_generic_rights_ds);
if (!new_sd) {
return NULL;
}
final_sd = descr_handle_sd_flags(mem_ctx, new_sd, old_descriptor, sd_flags);
if (!final_sd) {
return NULL;
}
if (final_sd->dacl) {
final_sd->dacl->revision = SECURITY_ACL_REVISION_ADS;
}
if (final_sd->sacl) {
final_sd->sacl->revision = SECURITY_ACL_REVISION_ADS;
}
{
TALLOC_CTX *tmp_ctx = talloc_new(mem_ctx);
DBG_DEBUG("Object %s created with descriptor %s\n\n",
ldb_dn_get_linearized(dn),
sddl_encode(tmp_ctx, final_sd, domain_sid));
TALLOC_FREE(tmp_ctx);
}
return final_sd;
}
static DATA_BLOB *get_new_descriptor(struct ldb_module *module,
struct ldb_dn *dn,
TALLOC_CTX *mem_ctx,
const struct dsdb_class *objectclass,
const struct ldb_val *parent,
const struct ldb_val *object,
const struct ldb_val *old_sd,
uint32_t sd_flags)
{
struct security_descriptor *final_sd = NULL;
enum ndr_err_code ndr_err;
DATA_BLOB *linear_sd = talloc(mem_ctx, DATA_BLOB);
if (!linear_sd) {
return NULL;
}
final_sd = get_new_descriptor_nonlinear(module,
dn,
mem_ctx,
objectclass,
parent,
object,
old_sd,
sd_flags);
if (final_sd == NULL) {
return NULL;
}
ndr_err = ndr_push_struct_blob(linear_sd, mem_ctx,
final_sd,
(ndr_push_flags_fn_t)ndr_push_security_descriptor);
if (!NDR_ERR_CODE_IS_SUCCESS(ndr_err)) {
return NULL;
}
return linear_sd;
}
static DATA_BLOB *descr_get_descriptor_to_show(struct ldb_module *module,
TALLOC_CTX *mem_ctx,
struct ldb_val *sd,
uint32_t sd_flags)
{
struct security_descriptor *old_sd, *final_sd;
DATA_BLOB *linear_sd;
enum ndr_err_code ndr_err;
old_sd = talloc(mem_ctx, struct security_descriptor);
if (!old_sd) {
return NULL;
}
ndr_err = ndr_pull_struct_blob(sd, old_sd,
old_sd,
(ndr_pull_flags_fn_t)ndr_pull_security_descriptor);
if (!NDR_ERR_CODE_IS_SUCCESS(ndr_err)) {
talloc_free(old_sd);
return NULL;
}
final_sd = descr_handle_sd_flags(mem_ctx, old_sd, NULL, sd_flags);
if (!final_sd) {
return NULL;
}
linear_sd = talloc(mem_ctx, DATA_BLOB);
if (!linear_sd) {
return NULL;
}
ndr_err = ndr_push_struct_blob(linear_sd, mem_ctx,
final_sd,
(ndr_push_flags_fn_t)ndr_push_security_descriptor);
if (!NDR_ERR_CODE_IS_SUCCESS(ndr_err)) {
return NULL;
}
return linear_sd;
}
static struct descriptor_context *descriptor_init_context(struct ldb_module *module,
struct ldb_request *req)
{
struct ldb_context *ldb;
struct descriptor_context *ac;
ldb = ldb_module_get_ctx(module);
ac = talloc_zero(req, struct descriptor_context);
if (ac == NULL) {
ldb_set_errstring(ldb, "Out of Memory");
return NULL;
}
ac->module = module;
ac->req = req;
return ac;
}
static int descriptor_search_callback(struct ldb_request *req, struct ldb_reply *ares)
{
struct descriptor_context *ac;
struct ldb_val *sd_val = NULL;
struct ldb_message_element *sd_el;
DATA_BLOB *show_sd;
int ret = LDB_SUCCESS;
ac = talloc_get_type(req->context, struct descriptor_context);
if (!ares) {
ret = LDB_ERR_OPERATIONS_ERROR;
goto fail;
}
if (ares->error != LDB_SUCCESS) {
return ldb_module_done(ac->req, ares->controls,
ares->response, ares->error);
}
switch (ares->type) {
case LDB_REPLY_ENTRY:
sd_el = ldb_msg_find_element(ares->message, "nTSecurityDescriptor");
if (sd_el) {
sd_val = sd_el->values;
}
if (sd_val) {
show_sd = descr_get_descriptor_to_show(ac->module, ac->req,
sd_val, ac->sd_flags);
if (!show_sd) {
ret = LDB_ERR_OPERATIONS_ERROR;
goto fail;
}
ldb_msg_remove_attr(ares->message, "nTSecurityDescriptor");
ret = ldb_msg_add_steal_value(ares->message, "nTSecurityDescriptor", show_sd);
if (ret != LDB_SUCCESS) {
goto fail;
}
}
return ldb_module_send_entry(ac->req, ares->message, ares->controls);
case LDB_REPLY_REFERRAL:
return ldb_module_send_referral(ac->req, ares->referral);
case LDB_REPLY_DONE:
return ldb_module_done(ac->req, ares->controls,
ares->response, ares->error);
}
fail:
talloc_free(ares);
return ldb_module_done(ac->req, NULL, NULL, ret);
}
static bool can_write_owner(TALLOC_CTX *mem_ctx,
struct ldb_context *ldb,
struct ldb_dn *dn,
const struct security_token *security_token,
const struct dom_sid *owner_sid)
{
const struct dom_sid *default_owner = NULL;
/* If the user possesses SE_RESTORE_PRIVILEGE, the write is allowed. */
bool ok = security_token_has_privilege(security_token, SEC_PRIV_RESTORE);
if (ok) {
return true;
}
/* The user can write their own SID to a security descriptor. */
ok = security_token_is_sid(security_token, owner_sid);
if (ok) {
return true;
}
/*
* The user can write the SID of the "default administrators group" that
* they are a member of.
*/
default_owner = get_default_ag(mem_ctx, dn,
security_token, ldb);
if (default_owner != NULL) {
ok = security_token_is_sid(security_token, owner_sid);
}
return ok;
}
static int descriptor_add(struct ldb_module *module, struct ldb_request *req)
{
struct ldb_context *ldb = ldb_module_get_ctx(module);
struct ldb_request *add_req;
struct ldb_message *msg;
struct ldb_result *parent_res;
const struct ldb_val *parent_sd = NULL;
const struct ldb_val *user_sd = NULL;
struct ldb_dn *dn = req->op.add.message->dn;
struct ldb_dn *parent_dn, *nc_root;
struct ldb_message_element *objectclass_element, *sd_element;
int ret;
const struct dsdb_schema *schema;
DATA_BLOB *sd;
const struct dsdb_class *objectclass;
static const char * const parent_attrs[] = { "nTSecurityDescriptor", NULL };
uint32_t instanceType;
bool isNC = false;
enum ndr_err_code ndr_err;
struct dsdb_control_calculated_default_sd *control_sd = NULL;
uint32_t sd_flags = dsdb_request_sd_flags(req, NULL);
struct security_descriptor *user_descriptor = NULL;
/* do not manipulate our control entries */
if (ldb_dn_is_special(dn)) {
return ldb_next_request(module, req);
}
user_sd = ldb_msg_find_ldb_val(req->op.add.message, "nTSecurityDescriptor");
sd_element = ldb_msg_find_element(req->op.add.message, "nTSecurityDescriptor");
/* nTSecurityDescriptor without a value is an error, letting through so it is handled */
if (user_sd == NULL && sd_element) {
return ldb_next_request(module, req);
}
ldb_debug(ldb, LDB_DEBUG_TRACE,"descriptor_add: %s\n", ldb_dn_get_linearized(dn));
instanceType = ldb_msg_find_attr_as_uint(req->op.add.message, "instanceType", 0);
if (instanceType & INSTANCE_TYPE_IS_NC_HEAD) {
isNC = true;
}
if (!isNC) {
ret = dsdb_find_nc_root(ldb, req, dn, &nc_root);
if (ret != LDB_SUCCESS) {
ldb_debug(ldb, LDB_DEBUG_TRACE,"descriptor_add: Could not find NC root for %s\n",
ldb_dn_get_linearized(dn));
return ret;
}
if (ldb_dn_compare(dn, nc_root) == 0) {
DEBUG(0, ("Found DN %s being a NC by the old method\n", ldb_dn_get_linearized(dn)));
isNC = true;
}
}
if (isNC) {
DEBUG(2, ("DN: %s is a NC\n", ldb_dn_get_linearized(dn)));
}
if (!isNC) {
/* if the object has a parent, retrieve its SD to
* use for calculation. Unfortunately we do not yet have
* instanceType, so we use dsdb_find_nc_root. */
parent_dn = ldb_dn_get_parent(req, dn);
if (parent_dn == NULL) {
return ldb_oom(ldb);
}
/* we aren't any NC */
ret = dsdb_module_search_dn(module, req, &parent_res, parent_dn,
parent_attrs,
DSDB_FLAG_NEXT_MODULE |
DSDB_FLAG_AS_SYSTEM |
DSDB_SEARCH_SHOW_RECYCLED,
req);
if (ret != LDB_SUCCESS) {
ldb_debug(ldb, LDB_DEBUG_TRACE,"descriptor_add: Could not find SD for %s\n",
ldb_dn_get_linearized(parent_dn));
return ret;
}
if (parent_res->count != 1) {
return ldb_operr(ldb);
}
parent_sd = ldb_msg_find_ldb_val(parent_res->msgs[0], "nTSecurityDescriptor");
}
schema = dsdb_get_schema(ldb, req);
objectclass_element = ldb_msg_find_element(req->op.add.message, "objectClass");
if (objectclass_element == NULL) {
return ldb_operr(ldb);
}
objectclass = dsdb_get_last_structural_class(schema,
objectclass_element);
if (objectclass == NULL) {
return ldb_operr(ldb);
}
/*
* The SD_FLAG control is ignored on add
* and we default to all bits set.
*/
sd_flags = SECINFO_OWNER|SECINFO_GROUP|SECINFO_SACL|SECINFO_DACL;
control_sd = talloc(req, struct dsdb_control_calculated_default_sd);
if (control_sd == NULL) {
return ldb_operr(ldb);
}
control_sd->specified_sd = false;
control_sd->specified_sacl = false;
if (user_sd != NULL) {
user_descriptor = talloc(req, struct security_descriptor);
if (user_descriptor == NULL) {
return ldb_operr(ldb);
}
ndr_err = ndr_pull_struct_blob(user_sd, user_descriptor,
user_descriptor,
(ndr_pull_flags_fn_t)ndr_pull_security_descriptor);
if (!NDR_ERR_CODE_IS_SUCCESS(ndr_err)) {
talloc_free(user_descriptor);
return ldb_operr(ldb);
}
/*
* calculate the permissions needed, since in acl we no longer have
* access to the original user descriptor
*/
control_sd->specified_sd = true;
control_sd->specified_sacl = user_descriptor->sacl != NULL;
if (user_descriptor->owner_sid != NULL) {
/* Verify the owner of the security descriptor. */
const struct auth_session_info *session_info
= ldb_get_opaque(ldb, DSDB_SESSION_INFO);
bool ok = can_write_owner(req,
ldb,
dn,
session_info->security_token,
user_descriptor->owner_sid);
talloc_free(user_descriptor);
if (!ok) {
return dsdb_module_werror(module,
LDB_ERR_CONSTRAINT_VIOLATION,
WERR_INVALID_OWNER,
"invalid addition of owner SID");
}
}
}
sd = get_new_descriptor(module, dn, req,
objectclass, parent_sd,
user_sd, NULL, sd_flags);
if (sd == NULL) {
return ldb_operr(ldb);
}
control_sd->default_sd = get_new_descriptor_nonlinear(module,
dn,
req,
objectclass,
parent_sd,
NULL,
NULL,
sd_flags);
if (control_sd->default_sd == NULL) {
return ldb_operr(ldb);
}
msg = ldb_msg_copy_shallow(req, req->op.add.message);
if (msg == NULL) {
return ldb_oom(ldb);
}
if (sd_element != NULL) {
sd_element->values[0] = *sd;
} else {
ret = ldb_msg_add_steal_value(msg,
"nTSecurityDescriptor",
sd);
if (ret != LDB_SUCCESS) {
return ret;
}
}
ret = ldb_build_add_req(&add_req, ldb, req,
msg,
req->controls,
req, dsdb_next_callback,
req);
LDB_REQ_SET_LOCATION(add_req);
if (ret != LDB_SUCCESS) {
return ldb_error(ldb, ret,
"descriptor_add: Error creating new add request.");
}
dom_sid_parse("S-1-0-0", control_sd->default_sd->owner_sid);
ret = ldb_request_add_control(add_req,
DSDB_CONTROL_CALCULATED_DEFAULT_SD_OID,
false, (void *)control_sd);
if (ret != LDB_SUCCESS) {
return ldb_module_operr(module);
}
return ldb_next_request(module, add_req);
}
static int descriptor_modify(struct ldb_module *module, struct ldb_request *req)
{
struct ldb_context *ldb = ldb_module_get_ctx(module);
struct ldb_request *mod_req;
struct ldb_message *msg;
struct ldb_result *current_res, *parent_res;
const struct ldb_val *old_sd = NULL;
const struct ldb_val *parent_sd = NULL;
const struct ldb_val *user_sd = NULL;
struct ldb_dn *dn = req->op.mod.message->dn;
struct ldb_dn *parent_dn;
struct ldb_message_element *objectclass_element, *sd_element;
int ret;
uint32_t instanceType;
bool explicit_sd_flags = false;
uint32_t sd_flags = dsdb_request_sd_flags(req, &explicit_sd_flags);
const struct dsdb_schema *schema;
DATA_BLOB *sd;
const struct dsdb_class *objectclass;
static const char * const parent_attrs[] = { "nTSecurityDescriptor", NULL };
static const char * const current_attrs[] = { "nTSecurityDescriptor",
"instanceType",
"objectClass", NULL };
struct GUID parent_guid = { .time_low = 0 };
struct ldb_control *sd_propagation_control;
int cmp_ret = -1;
/* do not manipulate our control entries */
if (ldb_dn_is_special(dn)) {
return ldb_next_request(module, req);
}
sd_propagation_control = ldb_request_get_control(req,
DSDB_CONTROL_SEC_DESC_PROPAGATION_OID);
if (sd_propagation_control != NULL) {
if (sd_propagation_control->data != module) {
return ldb_operr(ldb);
}
if (req->op.mod.message->num_elements != 0) {
return ldb_operr(ldb);
}
if (explicit_sd_flags) {
return ldb_operr(ldb);
}
if (sd_flags != 0xF) {
return ldb_operr(ldb);
}
if (sd_propagation_control->critical == 0) {
return ldb_operr(ldb);
}
sd_propagation_control->critical = 0;
}
sd_element = ldb_msg_find_element(req->op.mod.message, "nTSecurityDescriptor");
if (sd_propagation_control == NULL && sd_element == NULL) {
return ldb_next_request(module, req);
}
/*
* nTSecurityDescriptor with DELETE is not supported yet.
* TODO: handle this correctly.
*/
if (sd_propagation_control == NULL &&
LDB_FLAG_MOD_TYPE(sd_element->flags) == LDB_FLAG_MOD_DELETE)
{
return ldb_module_error(module,
LDB_ERR_UNWILLING_TO_PERFORM,
"MOD_DELETE for nTSecurityDescriptor "
"not supported yet");
}
user_sd = ldb_msg_find_ldb_val(req->op.mod.message, "nTSecurityDescriptor");
/* nTSecurityDescriptor without a value is an error, letting through so it is handled */
if (sd_propagation_control == NULL && user_sd == NULL) {
return ldb_next_request(module, req);
}
if (sd_flags & SECINFO_OWNER && user_sd != NULL) {
/* Verify the new owner of the security descriptor. */
struct security_descriptor *user_descriptor = NULL;
enum ndr_err_code ndr_err;
const struct auth_session_info *session_info;
bool ok;
user_descriptor = talloc(req, struct security_descriptor);
if (user_descriptor == NULL) {
return ldb_operr(ldb);
}
ndr_err = ndr_pull_struct_blob(user_sd, user_descriptor,
user_descriptor,
(ndr_pull_flags_fn_t)ndr_pull_security_descriptor);
if (!NDR_ERR_CODE_IS_SUCCESS(ndr_err)) {
talloc_free(user_descriptor);
return ldb_operr(ldb);
}
session_info = ldb_get_opaque(ldb, DSDB_SESSION_INFO);
ok = can_write_owner(req,
ldb,
dn,
session_info->security_token,
user_descriptor->owner_sid);
talloc_free(user_descriptor);
if (!ok) {
return dsdb_module_werror(module,
LDB_ERR_CONSTRAINT_VIOLATION,
WERR_INVALID_OWNER,
"invalid modification of owner SID");
}
}
ldb_debug(ldb, LDB_DEBUG_TRACE,"descriptor_modify: %s\n", ldb_dn_get_linearized(dn));
ret = dsdb_module_search_dn(module, req, &current_res, dn,
current_attrs,
DSDB_FLAG_NEXT_MODULE |
DSDB_FLAG_AS_SYSTEM |
DSDB_SEARCH_SHOW_RECYCLED |
DSDB_SEARCH_SHOW_EXTENDED_DN,
req);
if (ret != LDB_SUCCESS) {
ldb_debug(ldb, LDB_DEBUG_ERROR,"descriptor_modify: Could not find %s\n",
ldb_dn_get_linearized(dn));
return ret;
}
instanceType = ldb_msg_find_attr_as_uint(current_res->msgs[0],
"instanceType", 0);
/* if the object has a parent, retrieve its SD to
* use for calculation */
if (!ldb_dn_is_null(current_res->msgs[0]->dn) &&
!(instanceType & INSTANCE_TYPE_IS_NC_HEAD)) {
NTSTATUS status;
parent_dn = ldb_dn_get_parent(req, dn);
if (parent_dn == NULL) {
return ldb_oom(ldb);
}
ret = dsdb_module_search_dn(module, req, &parent_res, parent_dn,
parent_attrs,
DSDB_FLAG_NEXT_MODULE |
DSDB_FLAG_AS_SYSTEM |
DSDB_SEARCH_SHOW_RECYCLED |
DSDB_SEARCH_SHOW_EXTENDED_DN,
req);
if (ret != LDB_SUCCESS) {
ldb_debug(ldb, LDB_DEBUG_ERROR, "descriptor_modify: Could not find SD for %s\n",
ldb_dn_get_linearized(parent_dn));
return ret;
}
if (parent_res->count != 1) {
return ldb_operr(ldb);
}
parent_sd = ldb_msg_find_ldb_val(parent_res->msgs[0], "nTSecurityDescriptor");
status = dsdb_get_extended_dn_guid(parent_res->msgs[0]->dn,
&parent_guid,
"GUID");
if (!NT_STATUS_IS_OK(status)) {
return ldb_operr(ldb);
}
}
schema = dsdb_get_schema(ldb, req);
objectclass_element = ldb_msg_find_element(current_res->msgs[0], "objectClass");
if (objectclass_element == NULL) {
return ldb_operr(ldb);
}
objectclass = dsdb_get_last_structural_class(schema,
objectclass_element);
if (objectclass == NULL) {
return ldb_operr(ldb);
}
old_sd = ldb_msg_find_ldb_val(current_res->msgs[0], "nTSecurityDescriptor");
if (old_sd == NULL) {
return ldb_operr(ldb);
}
if (sd_propagation_control != NULL) {
/*
* This just triggers a recalculation of the
* inherited aces.
*/
user_sd = old_sd;
}
sd = get_new_descriptor(module, current_res->msgs[0]->dn, req,
objectclass, parent_sd,
user_sd, old_sd, sd_flags);
if (sd == NULL) {
return ldb_operr(ldb);
}
msg = ldb_msg_copy_shallow(req, req->op.mod.message);
if (msg == NULL) {
return ldb_oom(ldb);
}
cmp_ret = data_blob_cmp(old_sd, sd);
if (sd_propagation_control != NULL) {
if (cmp_ret == 0) {
/*
* The nTSecurityDescriptor is unchanged,
* which means we can stop the processing.
*
* We mark the control as critical again,
* as we have not processed it, so the caller
* can tell that the descriptor was unchanged.
*/
sd_propagation_control->critical = 1;
return ldb_module_done(req, NULL, NULL, LDB_SUCCESS);
}
ret = ldb_msg_append_value(msg, "nTSecurityDescriptor",
sd, LDB_FLAG_MOD_REPLACE);
if (ret != LDB_SUCCESS) {
return ldb_oom(ldb);
}
} else if (cmp_ret != 0) {
struct GUID guid;
struct ldb_dn *nc_root;
NTSTATUS status;
ret = dsdb_find_nc_root(ldb,
msg,
current_res->msgs[0]->dn,
&nc_root);
if (ret != LDB_SUCCESS) {
return ldb_oom(ldb);
}
status = dsdb_get_extended_dn_guid(current_res->msgs[0]->dn,
&guid,
"GUID");
if (!NT_STATUS_IS_OK(status)) {
return ldb_operr(ldb);
}
/*
* Force SD propagation on children of this record
*/
ret = dsdb_module_schedule_sd_propagation(module,
nc_root,
guid,
parent_guid,
false);
if (ret != LDB_SUCCESS) {
return ldb_operr(ldb);
}
sd_element->values[0] = *sd;
} else {
sd_element->values[0] = *sd;
}
ret = ldb_build_mod_req(&mod_req, ldb, req,
msg,
req->controls,
req,
dsdb_next_callback,
req);
LDB_REQ_SET_LOCATION(mod_req);
if (ret != LDB_SUCCESS) {
return ret;
}
return ldb_next_request(module, mod_req);
}
static int descriptor_search(struct ldb_module *module, struct ldb_request *req)
{
int ret;
struct ldb_context *ldb;
struct ldb_request *down_req;
struct descriptor_context *ac;
bool explicit_sd_flags = false;
uint32_t sd_flags = dsdb_request_sd_flags(req, &explicit_sd_flags);
bool show_sd = explicit_sd_flags;
if (!show_sd &&
ldb_attr_in_list(req->op.search.attrs, "nTSecurityDescriptor"))
{
show_sd = true;
}
if (!show_sd) {
return ldb_next_request(module, req);
}
ldb = ldb_module_get_ctx(module);
ac = descriptor_init_context(module, req);
if (ac == NULL) {
return ldb_operr(ldb);
}
ac->sd_flags = sd_flags;
ret = ldb_build_search_req_ex(&down_req, ldb, ac,
req->op.search.base,
req->op.search.scope,
req->op.search.tree,
req->op.search.attrs,
req->controls,
ac, descriptor_search_callback,
ac->req);
LDB_REQ_SET_LOCATION(down_req);
if (ret != LDB_SUCCESS) {
return ret;
}
return ldb_next_request(ac->module, down_req);
}
static int descriptor_rename_callback(struct ldb_request *req,
struct ldb_reply *ares)
{
struct descriptor_context *ac = NULL;
struct ldb_context *ldb = NULL;
struct ldb_dn *newdn = req->op.rename.newdn;
struct GUID guid;
struct ldb_dn *nc_root;
struct GUID parent_guid = { .time_low = 0 };
int ret;
ac = talloc_get_type_abort(req->context, struct descriptor_context);
ldb = ldb_module_get_ctx(ac->module);
if (!ares) {
return ldb_module_done(ac->req, NULL, NULL,
LDB_ERR_OPERATIONS_ERROR);
}
if (ares->error != LDB_SUCCESS) {
return ldb_module_done(ac->req, ares->controls,
ares->response, ares->error);
}
if (ares->type != LDB_REPLY_DONE) {
return ldb_module_done(ac->req, NULL, NULL,
LDB_ERR_OPERATIONS_ERROR);
}
ret = dsdb_module_guid_by_dn(ac->module,
newdn,
&guid,
req);
if (ret != LDB_SUCCESS) {
return ldb_module_done(ac->req, NULL, NULL,
ret);
}
ret = dsdb_find_nc_root(ldb, req, newdn, &nc_root);
if (ret != LDB_SUCCESS) {
return ldb_module_done(ac->req, NULL, NULL,
ret);
}
/*
* After a successful rename, force SD propagation on this
* record (get a new inherited SD from the potentially new
* parent
*
* We don't know the parent guid here (it is filled in as
* all-zero in the initialiser above), but we're not in a hot
* code path here, as the "descriptor" module is located above
* the "repl_meta_data", only originating changes are handled
* here.
*
* If it turns out to be a problem we may search for the new
* parent guid.
*/
ret = dsdb_module_schedule_sd_propagation(ac->module,
nc_root,
guid,
parent_guid,
true);
if (ret != LDB_SUCCESS) {
ret = ldb_operr(ldb);
return ldb_module_done(ac->req, NULL, NULL,
ret);
}
return ldb_module_done(ac->req, ares->controls,
ares->response, ares->error);
}
static int descriptor_rename(struct ldb_module *module, struct ldb_request *req)
{
struct descriptor_context *ac = NULL;
struct ldb_context *ldb = ldb_module_get_ctx(module);
struct ldb_dn *olddn = req->op.rename.olddn;
struct ldb_dn *newdn = req->op.rename.newdn;
struct ldb_request *down_req;
int ret;
/* do not manipulate our control entries */
if (ldb_dn_is_special(req->op.rename.olddn)) {
return ldb_next_request(module, req);
}
ldb_debug(ldb, LDB_DEBUG_TRACE,"descriptor_rename: %s\n",
ldb_dn_get_linearized(olddn));
if (ldb_dn_compare(olddn, newdn) == 0) {
/* No special work required for a case-only rename */
return ldb_next_request(module, req);
}
ac = descriptor_init_context(module, req);
if (ac == NULL) {
return ldb_operr(ldb);
}
ret = ldb_build_rename_req(&down_req, ldb, ac,
req->op.rename.olddn,
req->op.rename.newdn,
req->controls,
ac, descriptor_rename_callback,
req);
LDB_REQ_SET_LOCATION(down_req);
if (ret != LDB_SUCCESS) {
return ret;
}
return ldb_next_request(module, down_req);
}
static void descriptor_changes_parser(TDB_DATA key, TDB_DATA data, void *private_data)
{
struct descriptor_changes **c_ptr = (struct descriptor_changes **)private_data;
uintptr_t ptr = 0;
SMB_ASSERT(data.dsize == sizeof(ptr));
memcpy(&ptr, data.dptr, data.dsize);
*c_ptr = talloc_get_type_abort((void *)ptr, struct descriptor_changes);
}
static void descriptor_object_parser(TDB_DATA key, TDB_DATA data, void *private_data)
{
SMB_ASSERT(data.dsize == 0);
}
static int descriptor_extended_sec_desc_propagation(struct ldb_module *module,
struct ldb_request *req)
{
struct descriptor_data *descriptor_private =
talloc_get_type_abort(ldb_module_get_private(module),
struct descriptor_data);
struct descriptor_transaction *t = &descriptor_private->transaction;
struct ldb_context *ldb = ldb_module_get_ctx(module);
struct dsdb_extended_sec_desc_propagation_op *op;
struct descriptor_changes *c = NULL;
TDB_DATA key;
NTSTATUS status;
op = talloc_get_type(req->op.extended.data,
struct dsdb_extended_sec_desc_propagation_op);
if (op == NULL) {
ldb_debug(ldb, LDB_DEBUG_FATAL,
"descriptor_extended_sec_desc_propagation: "
"invalid extended data\n");
return LDB_ERR_PROTOCOL_ERROR;
}
if (t->mem == NULL) {
return ldb_module_operr(module);
}
if (GUID_equal(&op->parent_guid, &op->guid)) {
/*
* This is an unexpected situation,
* it should never happen!
*/
DBG_ERR("ERROR: Object %s is its own parent (nc_root=%s)\n",
GUID_string(t->mem, &op->guid),
ldb_dn_get_extended_linearized(t->mem, op->nc_root, 1));
return ldb_module_operr(module);
}
/*
* First we check if we already have an registration
* for the given object.
*/
key = make_tdb_data((const void*)&op->guid, sizeof(op->guid));
status = dbwrap_parse_record(t->changes.map, key,
descriptor_changes_parser, &c);
if (NT_STATUS_EQUAL(status, NT_STATUS_NOT_FOUND)) {
c = NULL;
status = NT_STATUS_OK;
}
if (!NT_STATUS_IS_OK(status)) {
ldb_debug(ldb, LDB_DEBUG_FATAL,
"dbwrap_parse_record() - %s\n",
nt_errstr(status));
return ldb_module_operr(module);
}
if (c == NULL) {
/*
* Create a new structure if we
* don't know about the object yet.
*/
c = talloc_zero(t->mem, struct descriptor_changes);
if (c == NULL) {
return ldb_module_oom(module);
}
c->nc_root = ldb_dn_copy(c, op->nc_root);
if (c->nc_root == NULL) {
return ldb_module_oom(module);
}
c->guid = op->guid;
}
if (ldb_dn_compare(c->nc_root, op->nc_root) != 0) {
/*
* This is an unexpected situation,
* we don't expect the nc root to change
* during a replication cycle.
*/
DBG_ERR("ERROR: Object %s nc_root changed %s => %s\n",
GUID_string(c, &c->guid),
ldb_dn_get_extended_linearized(c, c->nc_root, 1),
ldb_dn_get_extended_linearized(c, op->nc_root, 1));
return ldb_module_operr(module);
}
c->ref_count += 1;
/*
* always use the last known parent_guid.
*/
c->parent_guid = op->parent_guid;
/*
* Note that we only set, but don't clear values here,
* it means c->force_self and c->force_children can
* both be true in the end.
*/
if (op->include_self) {
c->force_self = true;
} else {
c->force_children = true;
}
if (c->ref_count == 1) {
struct TDB_DATA val = make_tdb_data((const void*)&c, sizeof(c));
/*
* Remember the change by objectGUID in order
* to avoid processing it more than once.
*/
status = dbwrap_store(t->changes.map, key, val, TDB_INSERT);
if (!NT_STATUS_IS_OK(status)) {
ldb_debug(ldb, LDB_DEBUG_FATAL,
"dbwrap_parse_record() - %s\n",
nt_errstr(status));
return ldb_module_operr(module);
}
DLIST_ADD_END(t->changes.list, c);
t->changes.num_registered += 1;
}
t->changes.num_registrations += 1;
return ldb_module_done(req, NULL, NULL, LDB_SUCCESS);
}
static int descriptor_extended(struct ldb_module *module, struct ldb_request *req)
{
if (strcmp(req->op.extended.oid, DSDB_EXTENDED_SEC_DESC_PROPAGATION_OID) == 0) {
return descriptor_extended_sec_desc_propagation(module, req);
}
return ldb_next_request(module, req);
}
static int descriptor_init(struct ldb_module *module)
{
struct ldb_context *ldb = ldb_module_get_ctx(module);
int ret;
struct descriptor_data *descriptor_private;
ret = ldb_mod_register_control(module, LDB_CONTROL_SD_FLAGS_OID);
if (ret != LDB_SUCCESS) {
ldb_debug(ldb, LDB_DEBUG_ERROR,
"descriptor: Unable to register control with rootdse!\n");
return ldb_operr(ldb);
}
descriptor_private = talloc_zero(module, struct descriptor_data);
if (descriptor_private == NULL) {
ldb_oom(ldb);
return LDB_ERR_OPERATIONS_ERROR;
}
ldb_module_set_private(module, descriptor_private);
return ldb_next_init(module);
}
static int descriptor_sd_propagation_object(struct ldb_module *module,
struct ldb_message *msg,
bool *stop)
{
struct descriptor_data *descriptor_private =
talloc_get_type_abort(ldb_module_get_private(module),
struct descriptor_data);
struct descriptor_transaction *t = &descriptor_private->transaction;
struct ldb_context *ldb = ldb_module_get_ctx(module);
struct ldb_request *sub_req;
struct ldb_result *mod_res;
struct ldb_control *sd_propagation_control;
struct GUID guid;
int ret;
TDB_DATA key;
TDB_DATA empty_val = { .dsize = 0, };
NTSTATUS status;
struct descriptor_changes *c = NULL;
*stop = false;
/*
* We get the GUID of the object
* in order to have the cache key
* for the object.
*/
status = dsdb_get_extended_dn_guid(msg->dn, &guid, "GUID");
if (!NT_STATUS_IS_OK(status)) {
return ldb_operr(ldb);
}
key = make_tdb_data((const void*)&guid, sizeof(guid));
/*
* Check if we already processed this object.
*/
status = dbwrap_parse_record(t->objects.map, key,
descriptor_object_parser, NULL);
if (NT_STATUS_IS_OK(status)) {
/*
* All work is already one
*/
t->objects.num_skipped += 1;
*stop = true;
return LDB_SUCCESS;
}
if (!NT_STATUS_EQUAL(status, NT_STATUS_NOT_FOUND)) {
ldb_debug(ldb, LDB_DEBUG_FATAL,
"dbwrap_parse_record() - %s\n",
nt_errstr(status));
return ldb_module_operr(module);
}
t->objects.num_processed += 1;
/*
* Remember that we're processing this object.
*/
status = dbwrap_store(t->objects.map, key, empty_val, TDB_INSERT);
if (!NT_STATUS_IS_OK(status)) {
ldb_debug(ldb, LDB_DEBUG_FATAL,
"dbwrap_parse_record() - %s\n",
nt_errstr(status));
return ldb_module_operr(module);
}
/*
* Check that if there's a descriptor_change in our list,
* which we may be able to remove from the pending list
* when we processed the object.
*/
status = dbwrap_parse_record(t->changes.map, key, descriptor_changes_parser, &c);
if (NT_STATUS_EQUAL(status, NT_STATUS_NOT_FOUND)) {
c = NULL;
status = NT_STATUS_OK;
}
if (!NT_STATUS_IS_OK(status)) {
ldb_debug(ldb, LDB_DEBUG_FATAL,
"dbwrap_parse_record() - %s\n",
nt_errstr(status));
return ldb_module_operr(module);
}
mod_res = talloc_zero(msg, struct ldb_result);
if (mod_res == NULL) {
return ldb_module_oom(module);
}
ret = ldb_build_mod_req(&sub_req, ldb, mod_res,
msg,
NULL,
mod_res,
ldb_modify_default_callback,
NULL);
LDB_REQ_SET_LOCATION(sub_req);
if (ret != LDB_SUCCESS) {
return ldb_module_operr(module);
}
ldb_req_mark_trusted(sub_req);
ret = ldb_request_add_control(sub_req,
DSDB_CONTROL_SEC_DESC_PROPAGATION_OID,
true, module);
if (ret != LDB_SUCCESS) {
return ldb_module_operr(module);
}
sd_propagation_control = ldb_request_get_control(sub_req,
DSDB_CONTROL_SEC_DESC_PROPAGATION_OID);
if (sd_propagation_control == NULL) {
return ldb_module_operr(module);
}
ret = dsdb_request_add_controls(sub_req,
DSDB_FLAG_AS_SYSTEM |
DSDB_SEARCH_SHOW_RECYCLED);
if (ret != LDB_SUCCESS) {
return ldb_module_operr(module);
}
ret = descriptor_modify(module, sub_req);
if (ret == LDB_SUCCESS) {
ret = ldb_wait(sub_req->handle, LDB_WAIT_ALL);
}
if (ret != LDB_SUCCESS) {
ldb_asprintf_errstring(ldb_module_get_ctx(module),
"descriptor_modify on %s failed: %s",
ldb_dn_get_linearized(msg->dn),
ldb_errstring(ldb_module_get_ctx(module)));
return LDB_ERR_OPERATIONS_ERROR;
}
if (sd_propagation_control->critical != 0) {
if (c == NULL) {
/*
* If we don't have a
* descriptor_changes structure
* we're done.
*/
*stop = true;
} else if (!c->force_children) {
/*
* If we don't need to
* propagate to children,
* we're done.
*/
*stop = true;
}
}
if (c != NULL && !c->force_children) {
/*
* Remove the pending change,
* we already done all required work,
* there's no need to do it again.
*
* Note DLIST_REMOVE() is a noop
* if the element is not part of
* the list.
*/
DLIST_REMOVE(t->changes.list, c);
}
talloc_free(mod_res);
return LDB_SUCCESS;
}
static int descriptor_sd_propagation_msg_sort(struct ldb_message **m1,
struct ldb_message **m2)
{
struct ldb_dn *dn1 = (*m1)->dn;
struct ldb_dn *dn2 = (*m2)->dn;
/*
* This sorts in tree order, parents first
*/
return ldb_dn_compare(dn2, dn1);
}
static int descriptor_sd_propagation_recursive(struct ldb_module *module,
struct descriptor_changes *change)
{
struct descriptor_data *descriptor_private =
talloc_get_type_abort(ldb_module_get_private(module),
struct descriptor_data);
struct descriptor_transaction *t = &descriptor_private->transaction;
struct ldb_result *guid_res = NULL;
struct ldb_result *res = NULL;
unsigned int i;
const char * const no_attrs[] = { "@__NONE__", NULL };
struct ldb_dn *stopped_dn = NULL;
struct GUID_txt_buf guid_buf;
int ret;
bool stop = false;
t->changes.num_processed += 1;
/*
* First confirm this object has children, or exists
* (depending on change->force_self)
*
* LDB_SCOPE_SUBTREE searches are expensive.
*
* We know this is safe against a rename race as we are in the
* prepare_commit(), so must be in a transaction.
*/
/* Find the DN by GUID, as this is stable under rename */
ret = dsdb_module_search(module,
change,
&guid_res,
change->nc_root,
LDB_SCOPE_SUBTREE,
no_attrs,
DSDB_FLAG_NEXT_MODULE |
DSDB_FLAG_AS_SYSTEM |
DSDB_SEARCH_SHOW_DELETED |
DSDB_SEARCH_SHOW_RECYCLED |
DSDB_SEARCH_SHOW_EXTENDED_DN,
NULL, /* parent_req */
"(objectGUID=%s)",
GUID_buf_string(&change->guid,
&guid_buf));
if (ret != LDB_SUCCESS) {
return ret;
}
if (guid_res->count != 1) {
/*
* We were just given this GUID during the same
* transaction, if it is missing this is a big
* problem.
*
* Cleanup of tombstones does not trigger this module
* as it just does a delete.
*/
ldb_asprintf_errstring(ldb_module_get_ctx(module),
"failed to find GUID %s under %s "
"for transaction-end SD inheritance: %d results",
GUID_buf_string(&change->guid,
&guid_buf),
ldb_dn_get_linearized(change->nc_root),
guid_res->count);
return LDB_ERR_OPERATIONS_ERROR;
}
/*
* OK, so there was a parent, are there children? Note: that
* this time we do not search for deleted/recycled objects
*/
ret = dsdb_module_search(module,
change,
&res,
guid_res->msgs[0]->dn,
LDB_SCOPE_ONELEVEL,
no_attrs,
DSDB_FLAG_NEXT_MODULE |
DSDB_FLAG_AS_SYSTEM,
NULL, /* parent_req */
"(objectClass=*)");
if (ret != LDB_SUCCESS) {
/*
* LDB_ERR_NO_SUCH_OBJECT, say if the DN was a deleted
* object, is ignored by the caller
*/
return ret;
}
if (res->count == 0 && !change->force_self) {
/* All done, no children */
TALLOC_FREE(res);
return LDB_SUCCESS;
}
/*
* First, if we are in force_self mode (eg renamed under new
* parent) then apply the SD to the top object
*/
if (change->force_self) {
ret = descriptor_sd_propagation_object(module,
guid_res->msgs[0],
&stop);
if (ret != LDB_SUCCESS) {
TALLOC_FREE(guid_res);
return ret;
}
if (stop == true && !change->force_children) {
/* There was no change, nothing more to do */
TALLOC_FREE(guid_res);
return LDB_SUCCESS;
}
if (res->count == 0) {
/* All done! */
TALLOC_FREE(guid_res);
return LDB_SUCCESS;
}
}
/*
* Look for children
*
* Note: that we do not search for deleted/recycled objects
*/
ret = dsdb_module_search(module,
change,
&res,
guid_res->msgs[0]->dn,
LDB_SCOPE_SUBTREE,
no_attrs,
DSDB_FLAG_NEXT_MODULE |
DSDB_FLAG_AS_SYSTEM |
DSDB_SEARCH_SHOW_EXTENDED_DN,
NULL, /* parent_req */
"(objectClass=*)");
if (ret != LDB_SUCCESS) {
return ret;
}
TYPESAFE_QSORT(res->msgs, res->count,
descriptor_sd_propagation_msg_sort);
/* We start from 1, the top object has been done */
for (i = 1; i < res->count; i++) {
/*
* ldb_dn_compare_base() does not match for NULL but
* this is clearer
*/
if (stopped_dn != NULL) {
ret = ldb_dn_compare_base(stopped_dn,
res->msgs[i]->dn);
/*
* Skip further processing of this
* sub-subtree
*/
if (ret == 0) {
continue;
}
}
ret = descriptor_sd_propagation_object(module,
res->msgs[i],
&stop);
if (ret != LDB_SUCCESS) {
return ret;
}
if (stop) {
/*
* If this child didn't change, then nothing
* under it needs to change
*
* res has been sorted into tree order so the
* next few entries can be skipped
*/
stopped_dn = res->msgs[i]->dn;
}
}
TALLOC_FREE(res);
return LDB_SUCCESS;
}
static int descriptor_start_transaction(struct ldb_module *module)
{
struct descriptor_data *descriptor_private =
talloc_get_type_abort(ldb_module_get_private(module),
struct descriptor_data);
struct descriptor_transaction *t = &descriptor_private->transaction;
if (t->mem != NULL) {
return ldb_module_operr(module);
}
*t = (struct descriptor_transaction) { .mem = NULL, };
t->mem = talloc_new(descriptor_private);
if (t->mem == NULL) {
return ldb_module_oom(module);
}
t->changes.map = db_open_rbt(t->mem);
if (t->changes.map == NULL) {
TALLOC_FREE(t->mem);
*t = (struct descriptor_transaction) { .mem = NULL, };
return ldb_module_oom(module);
}
t->objects.map = db_open_rbt(t->mem);
if (t->objects.map == NULL) {
TALLOC_FREE(t->mem);
*t = (struct descriptor_transaction) { .mem = NULL, };
return ldb_module_oom(module);
}
return ldb_next_start_trans(module);
}
static int descriptor_prepare_commit(struct ldb_module *module)
{
struct descriptor_data *descriptor_private =
talloc_get_type_abort(ldb_module_get_private(module),
struct descriptor_data);
struct descriptor_transaction *t = &descriptor_private->transaction;
struct ldb_context *ldb = ldb_module_get_ctx(module);
struct descriptor_changes *c, *n;
int ret;
DBG_NOTICE("changes: num_registrations=%zu\n",
t->changes.num_registrations);
DBG_NOTICE("changes: num_registered=%zu\n",
t->changes.num_registered);
/*
* The security descriptor propagation
* needs to apply the inheritance from
* an object to itself and/or all it's
* children.
*
* In the initial replication during
* a join, we have every object in our
* list.
*
* In order to avoid useless work it's
* better to start with toplevel objects and
* move down to the leaf object from there.
*
* So if the parent_guid is also in our list,
* we better move the object behind its parent.
*
* It allows that the recursive processing of
* the parent already does the work needed
* for the child.
*
* If we have a list for this directory tree:
*
* A
* -> B
* -> C
* -> D
* -> E
*
* The initial list would have the order D, E, B, A, C
*
* By still processing from the front, we ensure that,
* when D is found to be below C, that E follows because
* we keep peeling items off the front for checking and
* move them behind their parent.
*
* So we would go:
*
* E B A C D
*
* B A C D E
*
* A B C D E
*/
for (c = t->changes.list; c; c = n) {
struct descriptor_changes *pc = NULL;
n = c->next;
if (c->sort_count >= t->changes.num_registered) {
/*
* This should never happen, but it's
* a sanity check in order to avoid
* endless loops. Just stop sorting.
*/
break;
}
/*
* Check if we have the parent also in the list.
*/
if (!GUID_all_zero((const void*)&c->parent_guid)) {
TDB_DATA pkey;
NTSTATUS status;
pkey = make_tdb_data((const void*)&c->parent_guid,
sizeof(c->parent_guid));
status = dbwrap_parse_record(t->changes.map, pkey,
descriptor_changes_parser, &pc);
if (NT_STATUS_EQUAL(status, NT_STATUS_NOT_FOUND)) {
pc = NULL;
status = NT_STATUS_OK;
}
if (!NT_STATUS_IS_OK(status)) {
ldb_debug(ldb, LDB_DEBUG_FATAL,
"dbwrap_parse_record() - %s\n",
nt_errstr(status));
return ldb_module_operr(module);
}
}
if (pc == NULL) {
/*
* There is no parent in the list
*/
t->changes.num_toplevel += 1;
continue;
}
/*
* Move the child after the parent
*
* Note that we do that multiple times
* in case the parent already moved itself.
*
* See the comment above the loop.
*/
DLIST_REMOVE(t->changes.list, c);
DLIST_ADD_AFTER(t->changes.list, c, pc);
/*
* Remember how often we moved the object
* in order to avoid endless loops.
*/
c->sort_count += 1;
}
DBG_NOTICE("changes: num_toplevel=%zu\n", t->changes.num_toplevel);
while (t->changes.list != NULL) {
c = t->changes.list;
DLIST_REMOVE(t->changes.list, c);
/*
* Note that descriptor_sd_propagation_recursive()
* may also remove other elements of the list,
* so we can't use a next pointer
*/
ret = descriptor_sd_propagation_recursive(module, c);
if (ret == LDB_ERR_NO_SUCH_OBJECT) {
continue;
}
if (ret != LDB_SUCCESS) {
return ret;
}
}
DBG_NOTICE("changes: num_processed=%zu\n", t->changes.num_processed);
DBG_NOTICE("objects: num_processed=%zu\n", t->objects.num_processed);
DBG_NOTICE("objects: num_skipped=%zu\n", t->objects.num_skipped);
return ldb_next_prepare_commit(module);
}
static int descriptor_end_transaction(struct ldb_module *module)
{
struct descriptor_data *descriptor_private =
talloc_get_type_abort(ldb_module_get_private(module),
struct descriptor_data);
struct descriptor_transaction *t = &descriptor_private->transaction;
TALLOC_FREE(t->mem);
*t = (struct descriptor_transaction) { .mem = NULL, };
return ldb_next_end_trans(module);
}
static int descriptor_del_transaction(struct ldb_module *module)
{
struct descriptor_data *descriptor_private =
talloc_get_type_abort(ldb_module_get_private(module),
struct descriptor_data);
struct descriptor_transaction *t = &descriptor_private->transaction;
TALLOC_FREE(t->mem);
*t = (struct descriptor_transaction) { .mem = NULL, };
return ldb_next_del_trans(module);
}
static const struct ldb_module_ops ldb_descriptor_module_ops = {
.name = "descriptor",
.search = descriptor_search,
.add = descriptor_add,
.modify = descriptor_modify,
.rename = descriptor_rename,
.init_context = descriptor_init,
.extended = descriptor_extended,
.start_transaction = descriptor_start_transaction,
.prepare_commit = descriptor_prepare_commit,
.end_transaction = descriptor_end_transaction,
.del_transaction = descriptor_del_transaction,
};
int ldb_descriptor_module_init(const char *version)
{
LDB_MODULE_CHECK_VERSION(version);
return ldb_register_module(&ldb_descriptor_module_ops);
}