1
0
mirror of https://github.com/samba-team/samba.git synced 2025-01-13 13:18:06 +03:00
samba-mirror/source3/rpc_server/srv_pipe.c

1655 lines
46 KiB
C
Raw Normal View History

/*
* Unix SMB/CIFS implementation.
* RPC Pipe client / server routines
* Copyright (C) Andrew Tridgell 1992-1998
* Copyright (C) Luke Kenneth Casson Leighton 1996-1998,
* Copyright (C) Paul Ashton 1997-1998,
* Copyright (C) Jeremy Allison 1999,
* Copyright (C) Jim McDonough <jmcd@us.ibm.com> 2003.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/* this module apparently provides an implementation of DCE/RPC over a
* named pipe (IPC$ connection using SMBtrans). details of DCE/RPC
* documentation are available (in on-line form) from the X-Open group.
*
* this module should provide a level of abstraction between SMB
* and DCE/RPC, while minimising the amount of mallocs, unnecessary
* data copies, and network traffic.
*
* in this version, which takes a "let's learn what's going on and
* get something running" approach, there is additional network
* traffic generated, but the code should be easier to understand...
*
* ... if you read the docs. or stare at packets for weeks on end.
*
*/
#include "includes.h"
#undef DBGC_CLASS
#define DBGC_CLASS DBGC_RPC_SRV
/*************************************************************
HACK Alert!
We need to transfer the session key from one rpc bind to the
next. This is the way the netlogon schannel works.
**************************************************************/
struct dcinfo last_dcinfo;
static void NTLMSSPcalc_p( pipes_struct *p, unsigned char *data, int len)
{
unsigned char *hash = p->ntlmssp_hash;
unsigned char index_i = hash[256];
unsigned char index_j = hash[257];
int ind;
for( ind = 0; ind < len; ind++) {
unsigned char tc;
unsigned char t;
index_i++;
index_j += hash[index_i];
tc = hash[index_i];
hash[index_i] = hash[index_j];
hash[index_j] = tc;
t = hash[index_i] + hash[index_j];
data[ind] = data[ind] ^ hash[t];
}
hash[256] = index_i;
hash[257] = index_j;
}
delineation between smb and msrpc more marked. smbd now constructs pdus, and then feeds them over either a "local" function call or a "remote" function call to an msrpc service. the "remote" msrpc daemon, on the other side of a unix socket, then calls the same "local" function that smbd would, if the msrpc service were being run from inside smbd. this allows a transition from local msrpc services (inside the same smbd process) to remote (over a unix socket). removed reference to pipes_struct in msrpc services. all msrpc processing functions take rpcsrv_struct which is a structure containing state info for the msrpc functions to decode and create pdus. created become_vuser() which does everything not related to connection_struct that become_user() does. removed, as best i could, connection_struct dependencies from the nt spoolss printing code. todo: remove dcinfo from rpcsrv_struct because this stores NETLOGON-specific info on a per-connection basis, and if the connection dies then so does the info, and that's a fairly serious problem. had to put pretty much everything that is in user_struct into parse_creds.c to feed unix user info over to the msrpc daemons. why? because it's expensive to do unix password/group database lookups, and it's definitely expensive to do nt user profile lookups, not to mention pretty difficult and if you did either of these it would introduce a complication / unnecessary interdependency. so, send uid/gid/num_groups/gid_t* + SID+num_rids+domain_group_rids* + unix username + nt username + nt domain + user session key etc. this is the MINIMUM info identified so far that's actually implemented. missing bits include the called and calling netbios names etc. (basically, anything that can be loaded into standard_sub() and standard_sub_basic()...) (This used to be commit aa3c659a8dba0437c17c60055a6ed30fdfecdb6d)
1999-12-12 04:25:49 +03:00
/*******************************************************************
Generate the next PDU to be returned from the data in p->rdata.
We cheat here as this function doesn't handle the special auth
footers of the authenticated bind response reply.
delineation between smb and msrpc more marked. smbd now constructs pdus, and then feeds them over either a "local" function call or a "remote" function call to an msrpc service. the "remote" msrpc daemon, on the other side of a unix socket, then calls the same "local" function that smbd would, if the msrpc service were being run from inside smbd. this allows a transition from local msrpc services (inside the same smbd process) to remote (over a unix socket). removed reference to pipes_struct in msrpc services. all msrpc processing functions take rpcsrv_struct which is a structure containing state info for the msrpc functions to decode and create pdus. created become_vuser() which does everything not related to connection_struct that become_user() does. removed, as best i could, connection_struct dependencies from the nt spoolss printing code. todo: remove dcinfo from rpcsrv_struct because this stores NETLOGON-specific info on a per-connection basis, and if the connection dies then so does the info, and that's a fairly serious problem. had to put pretty much everything that is in user_struct into parse_creds.c to feed unix user info over to the msrpc daemons. why? because it's expensive to do unix password/group database lookups, and it's definitely expensive to do nt user profile lookups, not to mention pretty difficult and if you did either of these it would introduce a complication / unnecessary interdependency. so, send uid/gid/num_groups/gid_t* + SID+num_rids+domain_group_rids* + unix username + nt username + nt domain + user session key etc. this is the MINIMUM info identified so far that's actually implemented. missing bits include the called and calling netbios names etc. (basically, anything that can be loaded into standard_sub() and standard_sub_basic()...) (This used to be commit aa3c659a8dba0437c17c60055a6ed30fdfecdb6d)
1999-12-12 04:25:49 +03:00
********************************************************************/
BOOL create_next_pdu(pipes_struct *p)
{
RPC_HDR_RESP hdr_resp;
BOOL auth_verify = ((p->ntlmssp_chal_flags & NTLMSSP_NEGOTIATE_SIGN) != 0);
BOOL auth_seal = ((p->ntlmssp_chal_flags & NTLMSSP_NEGOTIATE_SEAL) != 0);
uint32 ss_padding_len = 0;
uint32 data_len;
uint32 data_space_available;
uint32 data_len_left;
prs_struct outgoing_pdu;
uint32 data_pos;
/*
* If we're in the fault state, keep returning fault PDU's until
* the pipe gets closed. JRA.
*/
if(p->fault_state) {
setup_fault_pdu(p, NT_STATUS(0x1c010002));
return True;
}
memset((char *)&hdr_resp, '\0', sizeof(hdr_resp));
/* Change the incoming request header to a response. */
p->hdr.pkt_type = RPC_RESPONSE;
/* Set up rpc header flags. */
if (p->out_data.data_sent_length == 0) {
p->hdr.flags = RPC_FLG_FIRST;
} else {
p->hdr.flags = 0;
}
/*
* Work out how much we can fit in a single PDU.
*/
data_space_available = sizeof(p->out_data.current_pdu) - RPC_HEADER_LEN - RPC_HDR_RESP_LEN;
if(p->ntlmssp_auth_validated) {
data_space_available -= (RPC_HDR_AUTH_LEN + RPC_AUTH_NTLMSSP_CHK_LEN);
} else if(p->netsec_auth_validated) {
data_space_available -= (RPC_HDR_AUTH_LEN + RPC_AUTH_NETSEC_SIGN_OR_SEAL_CHK_LEN);
}
/*
* The amount we send is the minimum of the available
* space and the amount left to send.
*/
data_len_left = prs_offset(&p->out_data.rdata) - p->out_data.data_sent_length;
/*
* Ensure there really is data left to send.
*/
if(!data_len_left) {
DEBUG(0,("create_next_pdu: no data left to send !\n"));
return False;
}
data_len = MIN(data_len_left, data_space_available);
/*
* Set up the alloc hint. This should be the data left to
* send.
*/
hdr_resp.alloc_hint = data_len_left;
/*
* Work out if this PDU will be the last.
*/
if(p->out_data.data_sent_length + data_len >= prs_offset(&p->out_data.rdata)) {
p->hdr.flags |= RPC_FLG_LAST;
if ((auth_seal || auth_verify) && (data_len_left % 8)) {
ss_padding_len = 8 - (data_len_left % 8);
DEBUG(10,("create_next_pdu: adding sign/seal padding of %u\n",
ss_padding_len ));
}
}
/*
* Set up the header lengths.
*/
if (p->ntlmssp_auth_validated) {
p->hdr.frag_len = RPC_HEADER_LEN + RPC_HDR_RESP_LEN +
data_len + ss_padding_len +
RPC_HDR_AUTH_LEN + RPC_AUTH_NTLMSSP_CHK_LEN;
p->hdr.auth_len = RPC_AUTH_NTLMSSP_CHK_LEN;
} else if (p->netsec_auth_validated) {
p->hdr.frag_len = RPC_HEADER_LEN + RPC_HDR_RESP_LEN +
data_len + ss_padding_len +
RPC_HDR_AUTH_LEN + RPC_AUTH_NETSEC_SIGN_OR_SEAL_CHK_LEN;
p->hdr.auth_len = RPC_AUTH_NETSEC_SIGN_OR_SEAL_CHK_LEN;
} else {
p->hdr.frag_len = RPC_HEADER_LEN + RPC_HDR_RESP_LEN + data_len;
p->hdr.auth_len = 0;
}
/*
* Init the parse struct to point at the outgoing
* data.
*/
prs_init( &outgoing_pdu, 0, p->mem_ctx, MARSHALL);
prs_give_memory( &outgoing_pdu, (char *)p->out_data.current_pdu, sizeof(p->out_data.current_pdu), False);
/* Store the header in the data stream. */
if(!smb_io_rpc_hdr("hdr", &p->hdr, &outgoing_pdu, 0)) {
DEBUG(0,("create_next_pdu: failed to marshall RPC_HDR.\n"));
prs_mem_free(&outgoing_pdu);
return False;
}
if(!smb_io_rpc_hdr_resp("resp", &hdr_resp, &outgoing_pdu, 0)) {
DEBUG(0,("create_next_pdu: failed to marshall RPC_HDR_RESP.\n"));
prs_mem_free(&outgoing_pdu);
return False;
}
/* Store the current offset. */
data_pos = prs_offset(&outgoing_pdu);
/* Copy the data into the PDU. */
if(!prs_append_some_prs_data(&outgoing_pdu, &p->out_data.rdata, p->out_data.data_sent_length, data_len)) {
DEBUG(0,("create_next_pdu: failed to copy %u bytes of data.\n", (unsigned int)data_len));
prs_mem_free(&outgoing_pdu);
return False;
}
/* Copy the sign/seal padding data. */
if (ss_padding_len) {
char pad[8];
memset(pad, '\0', 8);
if (!prs_copy_data_in(&outgoing_pdu, pad, ss_padding_len)) {
DEBUG(0,("create_next_pdu: failed to add %u bytes of pad data.\n", (unsigned int)ss_padding_len));
prs_mem_free(&outgoing_pdu);
return False;
}
}
if (p->ntlmssp_auth_validated) {
/*
* NTLMSSP processing. Mutually exclusive with Schannel.
*/
uint32 crc32 = 0;
char *data;
DEBUG(5,("create_next_pdu: sign: %s seal: %s data %d auth %d\n",
BOOLSTR(auth_verify), BOOLSTR(auth_seal), data_len + ss_padding_len, p->hdr.auth_len));
/*
* Set data to point to where we copied the data into.
*/
data = prs_data_p(&outgoing_pdu) + data_pos;
if (auth_seal) {
crc32 = crc32_calc_buffer(data, data_len + ss_padding_len);
NTLMSSPcalc_p(p, (uchar*)data, data_len + ss_padding_len);
}
if (auth_seal || auth_verify) {
RPC_HDR_AUTH auth_info;
init_rpc_hdr_auth(&auth_info, NTLMSSP_AUTH_TYPE,
auth_seal ? RPC_PIPE_AUTH_SEAL_LEVEL : RPC_PIPE_AUTH_SIGN_LEVEL,
(auth_verify ? ss_padding_len : 0), (auth_verify ? 1 : 0));
if(!smb_io_rpc_hdr_auth("hdr_auth", &auth_info, &outgoing_pdu, 0)) {
DEBUG(0,("create_next_pdu: failed to marshall RPC_HDR_AUTH.\n"));
prs_mem_free(&outgoing_pdu);
return False;
}
}
if (auth_verify) {
RPC_AUTH_NTLMSSP_CHK ntlmssp_chk;
char *auth_data = prs_data_p(&outgoing_pdu);
p->ntlmssp_seq_num++;
init_rpc_auth_ntlmssp_chk(&ntlmssp_chk, NTLMSSP_SIGN_VERSION,
crc32, p->ntlmssp_seq_num++);
auth_data = prs_data_p(&outgoing_pdu) + prs_offset(&outgoing_pdu) + 4;
if(!smb_io_rpc_auth_ntlmssp_chk("auth_sign", &ntlmssp_chk, &outgoing_pdu, 0)) {
DEBUG(0,("create_next_pdu: failed to marshall RPC_AUTH_NTLMSSP_CHK.\n"));
prs_mem_free(&outgoing_pdu);
return False;
}
NTLMSSPcalc_p(p, (uchar*)auth_data, RPC_AUTH_NTLMSSP_CHK_LEN - 4);
}
} else if (p->netsec_auth_validated) {
/*
* Schannel processing. Mutually exclusive with NTLMSSP.
*/
int auth_type, auth_level;
char *data;
RPC_HDR_AUTH auth_info;
RPC_AUTH_NETSEC_CHK verf;
prs_struct rverf;
prs_struct rauth;
data = prs_data_p(&outgoing_pdu) + data_pos;
/* Check it's the type of reply we were expecting to decode */
get_auth_type_level(p->netsec_auth.auth_flags, &auth_type, &auth_level);
init_rpc_hdr_auth(&auth_info, auth_type, auth_level,
ss_padding_len, 1);
if(!smb_io_rpc_hdr_auth("hdr_auth", &auth_info, &outgoing_pdu, 0)) {
DEBUG(0,("create_next_pdu: failed to marshall RPC_HDR_AUTH.\n"));
prs_mem_free(&outgoing_pdu);
return False;
}
prs_init(&rverf, 0, p->mem_ctx, MARSHALL);
prs_init(&rauth, 0, p->mem_ctx, MARSHALL);
Jeremy requested that I get my NTLMSSP patch into CVS. He didn't request the schannel code, but I've included that anyway. :-) This patch revives the client-side NTLMSSP support for RPC named pipes in Samba, and cleans up the client and server schannel code. The use of the new code is enabled by the 'sign', 'seal' and 'schannel' commands in rpcclient. The aim was to prove that our separate NTLMSSP client library actually implements NTLMSSP signing and sealing as per Microsoft's NTLMv1 implementation, in the hope that knowing this will assist us in correctly implementing NTLMSSP signing for SMB packets. (Still not yet functional) This patch replaces the NTLMSSP implementation in rpc_client/cli_pipe.c with calls to libsmb/ntlmssp.c. In the process, we have gained the ability to use the more secure NT password, and the ability to sign-only, instead of having to seal the pipe connection. (Previously we were limited to sealing, and could only use the LM-password derived key). Our new client-side NTLMSSP code also needed alteration to cope with our comparatively simple server-side implementation. A future step is to replace it with calls to the same NTLMSSP library. Also included in this patch is the schannel 'sign only' patch I submitted to the team earlier. While not enabled (and not functional, at this stage) the work in this patch makes the code paths *much* easier to follow. I have also included similar hooks in rpccleint to allow the use of schannel on *any* pipe. rpcclient now defaults to not using schannel (or any other extra per-pipe authenticiation) for any connection. The 'schannel' command enables schannel for all pipes until disabled. This code is also much more secure than the previous code, as changes to our cli_pipe routines ensure that the authentication footer cannot be removed by an attacker, and more error states are correctly handled. (The same needs to be done to our server) Andrew Bartlett (This used to be commit 5472ddc9eaf4e79c5b2e1c8ee8c7f190dc285f19)
2003-07-14 12:46:32 +04:00
netsec_encode(&p->netsec_auth,
p->netsec_auth.auth_flags,
Jeremy requested that I get my NTLMSSP patch into CVS. He didn't request the schannel code, but I've included that anyway. :-) This patch revives the client-side NTLMSSP support for RPC named pipes in Samba, and cleans up the client and server schannel code. The use of the new code is enabled by the 'sign', 'seal' and 'schannel' commands in rpcclient. The aim was to prove that our separate NTLMSSP client library actually implements NTLMSSP signing and sealing as per Microsoft's NTLMv1 implementation, in the hope that knowing this will assist us in correctly implementing NTLMSSP signing for SMB packets. (Still not yet functional) This patch replaces the NTLMSSP implementation in rpc_client/cli_pipe.c with calls to libsmb/ntlmssp.c. In the process, we have gained the ability to use the more secure NT password, and the ability to sign-only, instead of having to seal the pipe connection. (Previously we were limited to sealing, and could only use the LM-password derived key). Our new client-side NTLMSSP code also needed alteration to cope with our comparatively simple server-side implementation. A future step is to replace it with calls to the same NTLMSSP library. Also included in this patch is the schannel 'sign only' patch I submitted to the team earlier. While not enabled (and not functional, at this stage) the work in this patch makes the code paths *much* easier to follow. I have also included similar hooks in rpccleint to allow the use of schannel on *any* pipe. rpcclient now defaults to not using schannel (or any other extra per-pipe authenticiation) for any connection. The 'schannel' command enables schannel for all pipes until disabled. This code is also much more secure than the previous code, as changes to our cli_pipe routines ensure that the authentication footer cannot be removed by an attacker, and more error states are correctly handled. (The same needs to be done to our server) Andrew Bartlett (This used to be commit 5472ddc9eaf4e79c5b2e1c8ee8c7f190dc285f19)
2003-07-14 12:46:32 +04:00
SENDER_IS_ACCEPTOR,
&verf, data, data_len + ss_padding_len);
smb_io_rpc_auth_netsec_chk("", RPC_AUTH_NETSEC_SIGN_OR_SEAL_CHK_LEN,
&verf, &outgoing_pdu, 0);
p->netsec_auth.seq_num++;
}
/*
* Setup the counts for this PDU.
*/
p->out_data.data_sent_length += data_len;
p->out_data.current_pdu_len = p->hdr.frag_len;
p->out_data.current_pdu_sent = 0;
prs_mem_free(&outgoing_pdu);
return True;
}
/*******************************************************************
Process an NTLMSSP authentication response.
If this function succeeds, the user has been authenticated
and their domain, name and calling workstation stored in
the pipe struct.
The initial challenge is stored in p->challenge.
*******************************************************************/
static BOOL api_pipe_ntlmssp_verify(pipes_struct *p, RPC_AUTH_NTLMSSP_RESP *ntlmssp_resp)
{
uchar lm_owf[24];
uchar nt_owf[128];
int nt_pw_len;
int lm_pw_len;
fstring user_name;
fstring domain;
fstring wks;
NTSTATUS nt_status;
struct auth_context *auth_context = NULL;
auth_usersupplied_info *user_info = NULL;
auth_serversupplied_info *server_info = NULL;
DEBUG(5,("api_pipe_ntlmssp_verify: checking user details\n"));
memset(p->user_name, '\0', sizeof(p->user_name));
memset(p->pipe_user_name, '\0', sizeof(p->pipe_user_name));
memset(p->domain, '\0', sizeof(p->domain));
memset(p->wks, '\0', sizeof(p->wks));
/* Set up for non-authenticated user. */
delete_nt_token(&p->pipe_user.nt_user_token);
p->pipe_user.ngroups = 0;
SAFE_FREE( p->pipe_user.groups);
/*
* Setup an empty password for a guest user.
*/
/*
* We always negotiate UNICODE.
*/
if (p->ntlmssp_chal_flags & NTLMSSP_NEGOTIATE_UNICODE) {
rpcstr_pull(user_name, ntlmssp_resp->user, sizeof(fstring), ntlmssp_resp->hdr_usr.str_str_len*2, 0 );
rpcstr_pull(domain, ntlmssp_resp->domain, sizeof(fstring), ntlmssp_resp->hdr_domain.str_str_len*2, 0);
rpcstr_pull(wks, ntlmssp_resp->wks, sizeof(fstring), ntlmssp_resp->hdr_wks.str_str_len*2, 0);
} else {
pull_ascii_fstring(user_name, ntlmssp_resp->user);
pull_ascii_fstring(domain, ntlmssp_resp->domain);
pull_ascii_fstring(wks, ntlmssp_resp->wks);
}
DEBUG(5,("user: %s domain: %s wks: %s\n", user_name, domain, wks));
nt_pw_len = MIN(sizeof(nt_owf), ntlmssp_resp->hdr_nt_resp.str_str_len);
lm_pw_len = MIN(sizeof(lm_owf), ntlmssp_resp->hdr_lm_resp.str_str_len);
memcpy(lm_owf, ntlmssp_resp->lm_resp, sizeof(lm_owf));
memcpy(nt_owf, ntlmssp_resp->nt_resp, nt_pw_len);
#ifdef DEBUG_PASSWORD
DEBUG(100,("lm, nt owfs, chal\n"));
dump_data(100, (char *)lm_owf, sizeof(lm_owf));
dump_data(100, (char *)nt_owf, nt_pw_len);
dump_data(100, (char *)p->challenge, 8);
#endif
/*
* Allow guest access. Patch from Shirish Kalele <kalele@veritas.com>.
*/
if (*user_name) {
/*
* Do the length checking only if user is not NULL.
*/
if (ntlmssp_resp->hdr_lm_resp.str_str_len == 0)
return False;
if (ntlmssp_resp->hdr_nt_resp.str_str_len == 0)
return False;
if (ntlmssp_resp->hdr_usr.str_str_len == 0)
return False;
if (ntlmssp_resp->hdr_domain.str_str_len == 0)
return False;
if (ntlmssp_resp->hdr_wks.str_str_len == 0)
return False;
}
This is another rather major change to the samba authenticaion subystem. The particular aim is to modularized the interface - so that we can have arbitrary password back-ends. This code adds one such back-end, a 'winbind' module to authenticate against the winbind_auth_crap functionality. While fully-functional this code is mainly useful as a demonstration, because we don't get back the info3 as we would for direct ntdomain authentication. This commit introduced the new 'auth methods' parameter, in the spirit of the 'auth order' discussed on the lists. It is renamed because not all the methods may be consulted, even if previous methods fail - they may not have a suitable challenge for example. Also, we have a 'local' authentication method, for old-style 'unix if plaintext, sam if encrypted' authentication and a 'guest' module to handle guest logins in a single place. While this current design is not ideal, I feel that it does provide a better infrastructure than the current design, and can be built upon. The following parameters have changed: - use rhosts = This has been replaced by the 'rhosts' authentication method, and can be specified like 'auth methods = guest rhosts' - hosts equiv = This needs both this parameter and an 'auth methods' entry to be effective. (auth methods = guest hostsequiv ....) - plaintext to smbpasswd = This is replaced by specifying 'sam' rather than 'local' in the auth methods. The security = parameter is unchanged, and now provides defaults for the 'auth methods' parameter. The available auth methods are: guest rhosts hostsequiv sam (passdb direct hash access) unix (PAM, crypt() etc) local (the combination of the above, based on encryption) smbserver (old security=server) ntdomain (old security=domain) winbind (use winbind to cache DC connections) Assistance in testing, or the production of new and interesting authentication modules is always appreciated. Andrew Bartlett (This used to be commit 8d31eae52a9757739711dbb82035a4dfe6b40c99)
2001-11-24 15:12:38 +03:00
make_auth_context_fixed(&auth_context, (uchar*)p->challenge);
Large commit which restructures the local password storage API. Currently the only backend which works is smbpasswd (tdb, LDAP, and NIS+) are broken, but they were somewhat broken before. :) The following functions implement the storage manipulation interface /*The following definitions come from passdb/pdb_smbpasswd.c */ BOOL pdb_setsampwent (BOOL update); void pdb_endsampwent (void); SAM_ACCOUNT* pdb_getsampwent (void); SAM_ACCOUNT* pdb_getsampwnam (char *username); SAM_ACCOUNT* pdb_getsampwuid (uid_t uid); SAM_ACCOUNT* pdb_getsampwrid (uint32 rid); BOOL pdb_add_sam_account (SAM_ACCOUNT *sampass); BOOL pdb_update_sam_account (SAM_ACCOUNT *sampass, BOOL override); BOOL pdb_delete_sam_account (char* username); There is also a host of pdb_set..() and pdb_get..() functions for manipulating SAM_ACCOUNT struct members. Note that the struct passdb_ops {} has gone away. Also notice that struct smb_passwd (formally in smb.h) has been moved to passdb/pdb_smbpasswd.c and is not accessed outisde of static internal functions in this file. All local password searches should make use of the the SAM_ACCOUNT struct and the previously mentioned functions. I'll write some documentation for this later. The next step is to fix the TDB passdb backend, then work on spliting the backends out into share libraries, and finally get the LDAP backend going. What works and may not: o domain logons from Win9x works o domain logons from WinNT 4 works o user and group enumeration as implemented by Tim works o file and print access works o changing password from Win9x & NT ummm...i'll fix this tonight :) If I broke anything else, just yell and I'll fix it. I think it should be fairly quite. -- jerry (This used to be commit 0b92d0838ebdbe24f34f17e313ecbf61a0301389)
2000-11-14 02:03:34 +03:00
if (!make_user_info_netlogon_network(&user_info,
This is another rather major change to the samba authenticaion subystem. The particular aim is to modularized the interface - so that we can have arbitrary password back-ends. This code adds one such back-end, a 'winbind' module to authenticate against the winbind_auth_crap functionality. While fully-functional this code is mainly useful as a demonstration, because we don't get back the info3 as we would for direct ntdomain authentication. This commit introduced the new 'auth methods' parameter, in the spirit of the 'auth order' discussed on the lists. It is renamed because not all the methods may be consulted, even if previous methods fail - they may not have a suitable challenge for example. Also, we have a 'local' authentication method, for old-style 'unix if plaintext, sam if encrypted' authentication and a 'guest' module to handle guest logins in a single place. While this current design is not ideal, I feel that it does provide a better infrastructure than the current design, and can be built upon. The following parameters have changed: - use rhosts = This has been replaced by the 'rhosts' authentication method, and can be specified like 'auth methods = guest rhosts' - hosts equiv = This needs both this parameter and an 'auth methods' entry to be effective. (auth methods = guest hostsequiv ....) - plaintext to smbpasswd = This is replaced by specifying 'sam' rather than 'local' in the auth methods. The security = parameter is unchanged, and now provides defaults for the 'auth methods' parameter. The available auth methods are: guest rhosts hostsequiv sam (passdb direct hash access) unix (PAM, crypt() etc) local (the combination of the above, based on encryption) smbserver (old security=server) ntdomain (old security=domain) winbind (use winbind to cache DC connections) Assistance in testing, or the production of new and interesting authentication modules is always appreciated. Andrew Bartlett (This used to be commit 8d31eae52a9757739711dbb82035a4dfe6b40c99)
2001-11-24 15:12:38 +03:00
user_name, domain, wks,
lm_owf, lm_pw_len,
nt_owf, nt_pw_len)) {
DEBUG(0,("make_user_info_netlogon_network failed! Failing authenticaion.\n"));
return False;
}
nt_status = auth_context->check_ntlm_password(auth_context, user_info, &server_info);
(auth_context->free)(&auth_context);
free_user_info(&user_info);
p->ntlmssp_auth_validated = NT_STATUS_IS_OK(nt_status);
if (!p->ntlmssp_auth_validated) {
DEBUG(1,("api_pipe_ntlmssp_verify: User [%s]\\[%s] from machine %s \
failed authentication on named pipe %s.\n", domain, user_name, wks, p->name ));
free_server_info(&server_info);
return False;
}
/*
* Set up the sign/seal data.
*/
Changes all over the shop, but all towards: - NTLM2 support in the server - KEY_EXCH support in the server - variable length session keys. In detail: - NTLM2 is an extension of NTLMv1, that is compatible with existing domain controllers (unlike NTLMv2, which requires a DC upgrade). * This is known as 'NTLMv2 session security' * (This is not yet implemented on the RPC pipes however, so there may well still be issues for PDC setups, particuarly around password changes. We do not fully understand the sign/seal implications of NTLM2 on RPC pipes.) This requires modifications to our authentication subsystem, as we must handle the 'challege' input into the challenge-response algorithm being changed. This also needs to be turned off for 'security=server', which does not support this. - KEY_EXCH is another 'security' mechanism, whereby the session key actually used by the server is sent by the client, rather than being the shared-secret directly or indirectly. - As both these methods change the session key, the auth subsystem needed to be changed, to 'override' session keys provided by the backend. - There has also been a major overhaul of the NTLMSSP subsystem, to merge the 'client' and 'server' functions, so they both operate on a single structure. This should help the SPNEGO implementation. - The 'names blob' in NTLMSSP is always in unicode - never in ascii. Don't make an ascii version ever. - The other big change is to allow variable length session keys. We have always assumed that session keys are 16 bytes long - and padded to this length if shorter. However, Kerberos session keys are 8 bytes long, when the krb5 login uses DES. * This fix allows SMB signging on machines not yet running MIT KRB5 1.3.1. * - Add better DEBUG() messages to ntlm_auth, warning administrators of misconfigurations that prevent access to the privileged pipe. This should help reduce some of the 'it just doesn't work' issues. - Fix data_blob_talloc() to behave the same way data_blob() does when passed a NULL data pointer. (just allocate) REMEMBER to make clean after this commit - I have changed plenty of data structures... (This used to be commit f3bbc87b0dac63426cda6fac7a295d3aad810ecc)
2003-11-22 16:19:38 +03:00
if (server_info->lm_session_key.length != 16) {
DEBUG(1,("api_pipe_ntlmssp_verify: User [%s]\\[%s] from machine %s \
succeeded authentication on named pipe %s, but session key was of incorrect length [%u].\n",
domain, user_name, wks, p->name, server_info->lm_session_key.length));
free_server_info(&server_info);
return False;
} else {
uchar p24[24];
Changes all over the shop, but all towards: - NTLM2 support in the server - KEY_EXCH support in the server - variable length session keys. In detail: - NTLM2 is an extension of NTLMv1, that is compatible with existing domain controllers (unlike NTLMv2, which requires a DC upgrade). * This is known as 'NTLMv2 session security' * (This is not yet implemented on the RPC pipes however, so there may well still be issues for PDC setups, particuarly around password changes. We do not fully understand the sign/seal implications of NTLM2 on RPC pipes.) This requires modifications to our authentication subsystem, as we must handle the 'challege' input into the challenge-response algorithm being changed. This also needs to be turned off for 'security=server', which does not support this. - KEY_EXCH is another 'security' mechanism, whereby the session key actually used by the server is sent by the client, rather than being the shared-secret directly or indirectly. - As both these methods change the session key, the auth subsystem needed to be changed, to 'override' session keys provided by the backend. - There has also been a major overhaul of the NTLMSSP subsystem, to merge the 'client' and 'server' functions, so they both operate on a single structure. This should help the SPNEGO implementation. - The 'names blob' in NTLMSSP is always in unicode - never in ascii. Don't make an ascii version ever. - The other big change is to allow variable length session keys. We have always assumed that session keys are 16 bytes long - and padded to this length if shorter. However, Kerberos session keys are 8 bytes long, when the krb5 login uses DES. * This fix allows SMB signging on machines not yet running MIT KRB5 1.3.1. * - Add better DEBUG() messages to ntlm_auth, warning administrators of misconfigurations that prevent access to the privileged pipe. This should help reduce some of the 'it just doesn't work' issues. - Fix data_blob_talloc() to behave the same way data_blob() does when passed a NULL data pointer. (just allocate) REMEMBER to make clean after this commit - I have changed plenty of data structures... (This used to be commit f3bbc87b0dac63426cda6fac7a295d3aad810ecc)
2003-11-22 16:19:38 +03:00
NTLMSSPOWFencrypt(server_info->lm_session_key.data, lm_owf, p24);
{
unsigned char j = 0;
int ind;
unsigned char k2[8];
memcpy(k2, p24, 5);
k2[5] = 0xe5;
k2[6] = 0x38;
k2[7] = 0xb0;
for (ind = 0; ind < 256; ind++)
p->ntlmssp_hash[ind] = (unsigned char)ind;
for( ind = 0; ind < 256; ind++) {
unsigned char tc;
j += (p->ntlmssp_hash[ind] + k2[ind%8]);
tc = p->ntlmssp_hash[ind];
p->ntlmssp_hash[ind] = p->ntlmssp_hash[j];
p->ntlmssp_hash[j] = tc;
}
p->ntlmssp_hash[256] = 0;
p->ntlmssp_hash[257] = 0;
}
Jeremy requested that I get my NTLMSSP patch into CVS. He didn't request the schannel code, but I've included that anyway. :-) This patch revives the client-side NTLMSSP support for RPC named pipes in Samba, and cleans up the client and server schannel code. The use of the new code is enabled by the 'sign', 'seal' and 'schannel' commands in rpcclient. The aim was to prove that our separate NTLMSSP client library actually implements NTLMSSP signing and sealing as per Microsoft's NTLMv1 implementation, in the hope that knowing this will assist us in correctly implementing NTLMSSP signing for SMB packets. (Still not yet functional) This patch replaces the NTLMSSP implementation in rpc_client/cli_pipe.c with calls to libsmb/ntlmssp.c. In the process, we have gained the ability to use the more secure NT password, and the ability to sign-only, instead of having to seal the pipe connection. (Previously we were limited to sealing, and could only use the LM-password derived key). Our new client-side NTLMSSP code also needed alteration to cope with our comparatively simple server-side implementation. A future step is to replace it with calls to the same NTLMSSP library. Also included in this patch is the schannel 'sign only' patch I submitted to the team earlier. While not enabled (and not functional, at this stage) the work in this patch makes the code paths *much* easier to follow. I have also included similar hooks in rpccleint to allow the use of schannel on *any* pipe. rpcclient now defaults to not using schannel (or any other extra per-pipe authenticiation) for any connection. The 'schannel' command enables schannel for all pipes until disabled. This code is also much more secure than the previous code, as changes to our cli_pipe routines ensure that the authentication footer cannot be removed by an attacker, and more error states are correctly handled. (The same needs to be done to our server) Andrew Bartlett (This used to be commit 5472ddc9eaf4e79c5b2e1c8ee8c7f190dc285f19)
2003-07-14 12:46:32 +04:00
dump_data_pw("NTLMSSP hash (v1)\n", p->ntlmssp_hash,
sizeof(p->ntlmssp_hash));
/* NTLMSSPhash(p->ntlmssp_hash, p24); */
p->ntlmssp_seq_num = 0;
}
fstrcpy(p->user_name, user_name);
fstrcpy(p->pipe_user_name, server_info->unix_name);
fstrcpy(p->domain, domain);
fstrcpy(p->wks, wks);
/*
* Store the UNIX credential data (uid/gid pair) in the pipe structure.
*/
if (p->session_key.data) {
data_blob_free(&p->session_key);
}
Changes all over the shop, but all towards: - NTLM2 support in the server - KEY_EXCH support in the server - variable length session keys. In detail: - NTLM2 is an extension of NTLMv1, that is compatible with existing domain controllers (unlike NTLMv2, which requires a DC upgrade). * This is known as 'NTLMv2 session security' * (This is not yet implemented on the RPC pipes however, so there may well still be issues for PDC setups, particuarly around password changes. We do not fully understand the sign/seal implications of NTLM2 on RPC pipes.) This requires modifications to our authentication subsystem, as we must handle the 'challege' input into the challenge-response algorithm being changed. This also needs to be turned off for 'security=server', which does not support this. - KEY_EXCH is another 'security' mechanism, whereby the session key actually used by the server is sent by the client, rather than being the shared-secret directly or indirectly. - As both these methods change the session key, the auth subsystem needed to be changed, to 'override' session keys provided by the backend. - There has also been a major overhaul of the NTLMSSP subsystem, to merge the 'client' and 'server' functions, so they both operate on a single structure. This should help the SPNEGO implementation. - The 'names blob' in NTLMSSP is always in unicode - never in ascii. Don't make an ascii version ever. - The other big change is to allow variable length session keys. We have always assumed that session keys are 16 bytes long - and padded to this length if shorter. However, Kerberos session keys are 8 bytes long, when the krb5 login uses DES. * This fix allows SMB signging on machines not yet running MIT KRB5 1.3.1. * - Add better DEBUG() messages to ntlm_auth, warning administrators of misconfigurations that prevent access to the privileged pipe. This should help reduce some of the 'it just doesn't work' issues. - Fix data_blob_talloc() to behave the same way data_blob() does when passed a NULL data pointer. (just allocate) REMEMBER to make clean after this commit - I have changed plenty of data structures... (This used to be commit f3bbc87b0dac63426cda6fac7a295d3aad810ecc)
2003-11-22 16:19:38 +03:00
p->session_key = data_blob(server_info->lm_session_key.data, server_info->lm_session_key.length);
p->pipe_user.uid = server_info->uid;
p->pipe_user.gid = server_info->gid;
p->pipe_user.ngroups = server_info->n_groups;
if (p->pipe_user.ngroups) {
if (!(p->pipe_user.groups = memdup(server_info->groups, sizeof(gid_t) * p->pipe_user.ngroups))) {
DEBUG(0,("failed to memdup group list to p->pipe_user.groups\n"));
free_server_info(&server_info);
return False;
}
}
if (server_info->ptok)
p->pipe_user.nt_user_token = dup_nt_token(server_info->ptok);
else {
DEBUG(1,("Error: Authmodule failed to provide nt_user_token\n"));
p->pipe_user.nt_user_token = NULL;
free_server_info(&server_info);
return False;
}
p->ntlmssp_auth_validated = True;
free_server_info(&server_info);
return True;
}
/*******************************************************************
The switch table for the pipe names and the functions to handle them.
*******************************************************************/
struct rpc_table
{
struct
{
const char *clnt;
const char *srv;
} pipe;
struct api_struct *cmds;
int n_cmds;
};
static struct rpc_table *rpc_lookup;
static int rpc_lookup_size;
/*******************************************************************
This is the client reply to our challenge for an authenticated
bind request. The challenge we sent is in p->challenge.
*******************************************************************/
BOOL api_pipe_bind_auth_resp(pipes_struct *p, prs_struct *rpc_in_p)
{
RPC_HDR_AUTHA autha_info;
RPC_AUTH_VERIFIER auth_verifier;
RPC_AUTH_NTLMSSP_RESP ntlmssp_resp;
DEBUG(5,("api_pipe_bind_auth_resp: decode request. %d\n", __LINE__));
if (p->hdr.auth_len == 0) {
DEBUG(0,("api_pipe_bind_auth_resp: No auth field sent !\n"));
return False;
}
/*
* Decode the authentication verifier response.
*/
if(!smb_io_rpc_hdr_autha("", &autha_info, rpc_in_p, 0)) {
DEBUG(0,("api_pipe_bind_auth_resp: unmarshall of RPC_HDR_AUTHA failed.\n"));
return False;
}
Jeremy requested that I get my NTLMSSP patch into CVS. He didn't request the schannel code, but I've included that anyway. :-) This patch revives the client-side NTLMSSP support for RPC named pipes in Samba, and cleans up the client and server schannel code. The use of the new code is enabled by the 'sign', 'seal' and 'schannel' commands in rpcclient. The aim was to prove that our separate NTLMSSP client library actually implements NTLMSSP signing and sealing as per Microsoft's NTLMv1 implementation, in the hope that knowing this will assist us in correctly implementing NTLMSSP signing for SMB packets. (Still not yet functional) This patch replaces the NTLMSSP implementation in rpc_client/cli_pipe.c with calls to libsmb/ntlmssp.c. In the process, we have gained the ability to use the more secure NT password, and the ability to sign-only, instead of having to seal the pipe connection. (Previously we were limited to sealing, and could only use the LM-password derived key). Our new client-side NTLMSSP code also needed alteration to cope with our comparatively simple server-side implementation. A future step is to replace it with calls to the same NTLMSSP library. Also included in this patch is the schannel 'sign only' patch I submitted to the team earlier. While not enabled (and not functional, at this stage) the work in this patch makes the code paths *much* easier to follow. I have also included similar hooks in rpccleint to allow the use of schannel on *any* pipe. rpcclient now defaults to not using schannel (or any other extra per-pipe authenticiation) for any connection. The 'schannel' command enables schannel for all pipes until disabled. This code is also much more secure than the previous code, as changes to our cli_pipe routines ensure that the authentication footer cannot be removed by an attacker, and more error states are correctly handled. (The same needs to be done to our server) Andrew Bartlett (This used to be commit 5472ddc9eaf4e79c5b2e1c8ee8c7f190dc285f19)
2003-07-14 12:46:32 +04:00
if (autha_info.auth_type != NTLMSSP_AUTH_TYPE || autha_info.auth_level != RPC_PIPE_AUTH_SEAL_LEVEL) {
DEBUG(0,("api_pipe_bind_auth_resp: incorrect auth type (%d) or level (%d).\n",
(int)autha_info.auth_type, (int)autha_info.auth_level ));
return False;
}
if(!smb_io_rpc_auth_verifier("", &auth_verifier, rpc_in_p, 0)) {
DEBUG(0,("api_pipe_bind_auth_resp: unmarshall of RPC_AUTH_VERIFIER failed.\n"));
return False;
}
/*
* Ensure this is a NTLMSSP_AUTH packet type.
*/
if (!rpc_auth_verifier_chk(&auth_verifier, "NTLMSSP", NTLMSSP_AUTH)) {
DEBUG(0,("api_pipe_bind_auth_resp: rpc_auth_verifier_chk failed.\n"));
return False;
}
if(!smb_io_rpc_auth_ntlmssp_resp("", &ntlmssp_resp, rpc_in_p, 0)) {
DEBUG(0,("api_pipe_bind_auth_resp: Failed to unmarshall RPC_AUTH_NTLMSSP_RESP.\n"));
return False;
}
/*
* The following call actually checks the challenge/response data.
* for correctness against the given DOMAIN\user name.
*/
if (!api_pipe_ntlmssp_verify(p, &ntlmssp_resp))
return False;
p->pipe_bound = True
;
return True;
}
/*******************************************************************
Marshall a bind_nak pdu.
*******************************************************************/
static BOOL setup_bind_nak(pipes_struct *p)
{
prs_struct outgoing_rpc;
RPC_HDR nak_hdr;
uint16 zero = 0;
/* Free any memory in the current return data buffer. */
prs_mem_free(&p->out_data.rdata);
/*
* Marshall directly into the outgoing PDU space. We
* must do this as we need to set to the bind response
* header and are never sending more than one PDU here.
*/
prs_init( &outgoing_rpc, 0, p->mem_ctx, MARSHALL);
prs_give_memory( &outgoing_rpc, (char *)p->out_data.current_pdu, sizeof(p->out_data.current_pdu), False);
/*
* Initialize a bind_nak header.
*/
init_rpc_hdr(&nak_hdr, RPC_BINDNACK, RPC_FLG_FIRST | RPC_FLG_LAST,
p->hdr.call_id, RPC_HEADER_LEN + sizeof(uint16), 0);
/*
* Marshall the header into the outgoing PDU.
*/
if(!smb_io_rpc_hdr("", &nak_hdr, &outgoing_rpc, 0)) {
DEBUG(0,("setup_bind_nak: marshalling of RPC_HDR failed.\n"));
prs_mem_free(&outgoing_rpc);
return False;
}
/*
* Now add the reject reason.
*/
if(!prs_uint16("reject code", &outgoing_rpc, 0, &zero)) {
prs_mem_free(&outgoing_rpc);
return False;
}
p->out_data.data_sent_length = 0;
p->out_data.current_pdu_len = prs_offset(&outgoing_rpc);
p->out_data.current_pdu_sent = 0;
p->pipe_bound = False;
return True;
delineation between smb and msrpc more marked. smbd now constructs pdus, and then feeds them over either a "local" function call or a "remote" function call to an msrpc service. the "remote" msrpc daemon, on the other side of a unix socket, then calls the same "local" function that smbd would, if the msrpc service were being run from inside smbd. this allows a transition from local msrpc services (inside the same smbd process) to remote (over a unix socket). removed reference to pipes_struct in msrpc services. all msrpc processing functions take rpcsrv_struct which is a structure containing state info for the msrpc functions to decode and create pdus. created become_vuser() which does everything not related to connection_struct that become_user() does. removed, as best i could, connection_struct dependencies from the nt spoolss printing code. todo: remove dcinfo from rpcsrv_struct because this stores NETLOGON-specific info on a per-connection basis, and if the connection dies then so does the info, and that's a fairly serious problem. had to put pretty much everything that is in user_struct into parse_creds.c to feed unix user info over to the msrpc daemons. why? because it's expensive to do unix password/group database lookups, and it's definitely expensive to do nt user profile lookups, not to mention pretty difficult and if you did either of these it would introduce a complication / unnecessary interdependency. so, send uid/gid/num_groups/gid_t* + SID+num_rids+domain_group_rids* + unix username + nt username + nt domain + user session key etc. this is the MINIMUM info identified so far that's actually implemented. missing bits include the called and calling netbios names etc. (basically, anything that can be loaded into standard_sub() and standard_sub_basic()...) (This used to be commit aa3c659a8dba0437c17c60055a6ed30fdfecdb6d)
1999-12-12 04:25:49 +03:00
}
/*******************************************************************
Marshall a fault pdu.
*******************************************************************/
BOOL setup_fault_pdu(pipes_struct *p, NTSTATUS status)
{
prs_struct outgoing_pdu;
RPC_HDR fault_hdr;
RPC_HDR_RESP hdr_resp;
RPC_HDR_FAULT fault_resp;
/* Free any memory in the current return data buffer. */
prs_mem_free(&p->out_data.rdata);
/*
* Marshall directly into the outgoing PDU space. We
* must do this as we need to set to the bind response
* header and are never sending more than one PDU here.
*/
prs_init( &outgoing_pdu, 0, p->mem_ctx, MARSHALL);
prs_give_memory( &outgoing_pdu, (char *)p->out_data.current_pdu, sizeof(p->out_data.current_pdu), False);
/*
* Initialize a fault header.
*/
init_rpc_hdr(&fault_hdr, RPC_FAULT, RPC_FLG_FIRST | RPC_FLG_LAST | RPC_FLG_NOCALL,
p->hdr.call_id, RPC_HEADER_LEN + RPC_HDR_RESP_LEN + RPC_HDR_FAULT_LEN, 0);
/*
* Initialize the HDR_RESP and FAULT parts of the PDU.
*/
memset((char *)&hdr_resp, '\0', sizeof(hdr_resp));
fault_resp.status = status;
fault_resp.reserved = 0;
/*
* Marshall the header into the outgoing PDU.
*/
if(!smb_io_rpc_hdr("", &fault_hdr, &outgoing_pdu, 0)) {
DEBUG(0,("setup_fault_pdu: marshalling of RPC_HDR failed.\n"));
prs_mem_free(&outgoing_pdu);
return False;
}
if(!smb_io_rpc_hdr_resp("resp", &hdr_resp, &outgoing_pdu, 0)) {
DEBUG(0,("setup_fault_pdu: failed to marshall RPC_HDR_RESP.\n"));
prs_mem_free(&outgoing_pdu);
return False;
}
if(!smb_io_rpc_hdr_fault("fault", &fault_resp, &outgoing_pdu, 0)) {
DEBUG(0,("setup_fault_pdu: failed to marshall RPC_HDR_FAULT.\n"));
prs_mem_free(&outgoing_pdu);
return False;
}
p->out_data.data_sent_length = 0;
p->out_data.current_pdu_len = prs_offset(&outgoing_pdu);
p->out_data.current_pdu_sent = 0;
prs_mem_free(&outgoing_pdu);
return True;
}
/*******************************************************************
Ensure a bind request has the correct abstract & transfer interface.
Used to reject unknown binds from Win2k.
*******************************************************************/
BOOL check_bind_req(struct pipes_struct *p, RPC_IFACE* abstract,
RPC_IFACE* transfer, uint32 context_id)
{
extern struct pipe_id_info pipe_names[];
char *pipe_name = p->name;
int i=0;
fstring pname;
fstrcpy(pname,"\\PIPE\\");
fstrcat(pname,pipe_name);
DEBUG(3,("check_bind_req for %s\n", pname));
/* we have to check all now since win2k introduced a new UUID on the lsaprpc pipe */
for ( i=0; pipe_names[i].client_pipe; i++ )
{
if ( strequal(pipe_names[i].client_pipe, pname)
&& (abstract->version == pipe_names[i].abstr_syntax.version)
&& (memcmp(&abstract->uuid, &pipe_names[i].abstr_syntax.uuid, sizeof(struct uuid)) == 0)
&& (transfer->version == pipe_names[i].trans_syntax.version)
&& (memcmp(&transfer->uuid, &pipe_names[i].trans_syntax.uuid, sizeof(struct uuid)) == 0) )
{
struct api_struct *fns = NULL;
int n_fns = 0;
PIPE_RPC_FNS *context_fns;
if ( !(context_fns = malloc(sizeof(PIPE_RPC_FNS))) ) {
DEBUG(0,("check_bind_req: malloc() failed!\n"));
return False;
}
/* save the RPC function table associated with this bind */
get_pipe_fns(i, &fns, &n_fns);
context_fns->cmds = fns;
context_fns->n_cmds = n_fns;
context_fns->context_id = context_id;
/* add to the list of open contexts */
DLIST_ADD( p->contexts, context_fns );
break;
}
}
if(pipe_names[i].client_pipe == NULL)
return False;
return True;
}
/*******************************************************************
Register commands to an RPC pipe
*******************************************************************/
NTSTATUS rpc_pipe_register_commands(int version, const char *clnt, const char *srv, const struct api_struct *cmds, int size)
{
struct rpc_table *rpc_entry;
if (!clnt || !srv || !cmds) {
return NT_STATUS_INVALID_PARAMETER;
}
if (version != SMB_RPC_INTERFACE_VERSION) {
DEBUG(0,("Can't register rpc commands!\n"
"You tried to register a rpc module with SMB_RPC_INTERFACE_VERSION %d"
", while this version of samba uses version %d!\n",
version,SMB_RPC_INTERFACE_VERSION));
return NT_STATUS_OBJECT_TYPE_MISMATCH;
}
/* TODO:
*
* we still need to make sure that don't register the same commands twice!!!
*
* --metze
*/
/* We use a temporary variable because this call can fail and
rpc_lookup will still be valid afterwards. It could then succeed if
called again later */
rpc_entry = realloc(rpc_lookup,
++rpc_lookup_size*sizeof(struct rpc_table));
if (NULL == rpc_entry) {
rpc_lookup_size--;
DEBUG(0, ("rpc_pipe_register_commands: memory allocation failed\n"));
return NT_STATUS_NO_MEMORY;
} else {
rpc_lookup = rpc_entry;
}
rpc_entry = rpc_lookup + (rpc_lookup_size - 1);
ZERO_STRUCTP(rpc_entry);
rpc_entry->pipe.clnt = strdup(clnt);
rpc_entry->pipe.srv = strdup(srv);
rpc_entry->cmds = realloc(rpc_entry->cmds,
(rpc_entry->n_cmds + size) *
sizeof(struct api_struct));
memcpy(rpc_entry->cmds + rpc_entry->n_cmds, cmds,
size * sizeof(struct api_struct));
rpc_entry->n_cmds += size;
return NT_STATUS_OK;
}
/*******************************************************************
Respond to a pipe bind request.
*******************************************************************/
BOOL api_pipe_bind_req(pipes_struct *p, prs_struct *rpc_in_p)
{
RPC_HDR_BA hdr_ba;
RPC_HDR_RB hdr_rb;
RPC_HDR_AUTH auth_info;
uint16 assoc_gid;
fstring ack_pipe_name;
prs_struct out_hdr_ba;
prs_struct out_auth;
prs_struct outgoing_rpc;
int i = 0;
int auth_len = 0;
enum RPC_PKT_TYPE reply_pkt_type;
p->ntlmssp_auth_requested = False;
p->netsec_auth_validated = False;
DEBUG(5,("api_pipe_bind_req: decode request. %d\n", __LINE__));
/*
* Try and find the correct pipe name to ensure
* that this is a pipe name we support.
*/
for (i = 0; i < rpc_lookup_size; i++) {
if (strequal(rpc_lookup[i].pipe.clnt, p->name)) {
DEBUG(3, ("api_pipe_bind_req: \\PIPE\\%s -> \\PIPE\\%s\n",
rpc_lookup[i].pipe.clnt, rpc_lookup[i].pipe.srv));
fstrcpy(p->pipe_srv_name, rpc_lookup[i].pipe.srv);
break;
}
}
if (i == rpc_lookup_size) {
if (NT_STATUS_IS_ERR(smb_probe_module("rpc", p->name))) {
DEBUG(3,("api_pipe_bind_req: Unknown pipe name %s in bind request.\n",
p->name ));
if(!setup_bind_nak(p))
return False;
return True;
}
for (i = 0; i < rpc_lookup_size; i++) {
if (strequal(rpc_lookup[i].pipe.clnt, p->name)) {
DEBUG(3, ("api_pipe_bind_req: \\PIPE\\%s -> \\PIPE\\%s\n",
rpc_lookup[i].pipe.clnt, rpc_lookup[i].pipe.srv));
fstrcpy(p->pipe_srv_name, rpc_lookup[i].pipe.srv);
break;
}
}
if (i == rpc_lookup_size) {
DEBUG(0, ("module %s doesn't provide functions for pipe %s!\n", p->name, p->name));
return False;
}
}
/* decode the bind request */
if(!smb_io_rpc_hdr_rb("", &hdr_rb, rpc_in_p, 0)) {
DEBUG(0,("api_pipe_bind_req: unable to unmarshall RPC_HDR_RB struct.\n"));
return False;
}
/*
* Check if this is an authenticated request.
*/
if (p->hdr.auth_len != 0) {
RPC_AUTH_VERIFIER auth_verifier;
RPC_AUTH_NTLMSSP_NEG ntlmssp_neg;
/*
* Decode the authentication verifier.
*/
if(!smb_io_rpc_hdr_auth("", &auth_info, rpc_in_p, 0)) {
DEBUG(0,("api_pipe_bind_req: unable to unmarshall RPC_HDR_AUTH struct.\n"));
return False;
}
if(auth_info.auth_type == NTLMSSP_AUTH_TYPE) {
if(!smb_io_rpc_auth_verifier("", &auth_verifier, rpc_in_p, 0)) {
DEBUG(0,("api_pipe_bind_req: unable to "
"unmarshall RPC_HDR_AUTH struct.\n"));
return False;
}
if(!strequal(auth_verifier.signature, "NTLMSSP")) {
DEBUG(0,("api_pipe_bind_req: "
"auth_verifier.signature != NTLMSSP\n"));
return False;
}
if(auth_verifier.msg_type != NTLMSSP_NEGOTIATE) {
DEBUG(0,("api_pipe_bind_req: "
"auth_verifier.msg_type (%d) != NTLMSSP_NEGOTIATE\n",
auth_verifier.msg_type));
return False;
}
if(!smb_io_rpc_auth_ntlmssp_neg("", &ntlmssp_neg, rpc_in_p, 0)) {
DEBUG(0,("api_pipe_bind_req: "
"Failed to unmarshall RPC_AUTH_NTLMSSP_NEG.\n"));
return False;
}
p->ntlmssp_chal_flags = SMBD_NTLMSSP_NEG_FLAGS;
p->ntlmssp_auth_requested = True;
} else if (auth_info.auth_type == NETSEC_AUTH_TYPE) {
RPC_AUTH_NETSEC_NEG neg;
struct netsec_auth_struct *a = &(p->netsec_auth);
if (!smb_io_rpc_auth_netsec_neg("", &neg, rpc_in_p, 0)) {
DEBUG(0,("api_pipe_bind_req: "
"Could not unmarshal SCHANNEL auth neg\n"));
return False;
}
p->netsec_auth_validated = True;
memset(a->sess_key, 0, sizeof(a->sess_key));
memcpy(a->sess_key, last_dcinfo.sess_key, sizeof(last_dcinfo.sess_key));
a->seq_num = 0;
DEBUG(10,("schannel auth: domain [%s] myname [%s]\n",
neg.domain, neg.myname));
} else {
DEBUG(0,("api_pipe_bind_req: unknown auth type %x requested.\n",
auth_info.auth_type ));
return False;
}
}
switch(p->hdr.pkt_type) {
case RPC_BIND:
/* name has to be \PIPE\xxxxx */
fstrcpy(ack_pipe_name, "\\PIPE\\");
fstrcat(ack_pipe_name, p->pipe_srv_name);
reply_pkt_type = RPC_BINDACK;
break;
case RPC_ALTCONT:
/* secondary address CAN be NULL
* as the specs say it's ignored.
* It MUST NULL to have the spoolss working.
*/
fstrcpy(ack_pipe_name,"");
reply_pkt_type = RPC_ALTCONTRESP;
break;
default:
return False;
}
DEBUG(5,("api_pipe_bind_req: make response. %d\n", __LINE__));
/*
* Marshall directly into the outgoing PDU space. We
* must do this as we need to set to the bind response
* header and are never sending more than one PDU here.
*/
prs_init( &outgoing_rpc, 0, p->mem_ctx, MARSHALL);
prs_give_memory( &outgoing_rpc, (char *)p->out_data.current_pdu, sizeof(p->out_data.current_pdu), False);
/*
* Setup the memory to marshall the ba header, and the
* auth footers.
*/
if(!prs_init(&out_hdr_ba, 1024, p->mem_ctx, MARSHALL)) {
DEBUG(0,("api_pipe_bind_req: malloc out_hdr_ba failed.\n"));
prs_mem_free(&outgoing_rpc);
return False;
}
if(!prs_init(&out_auth, 1024, p->mem_ctx, MARSHALL)) {
DEBUG(0,("pi_pipe_bind_req: malloc out_auth failed.\n"));
prs_mem_free(&outgoing_rpc);
prs_mem_free(&out_hdr_ba);
return False;
}
if (p->ntlmssp_auth_requested)
assoc_gid = 0x7a77;
else
assoc_gid = hdr_rb.bba.assoc_gid ? hdr_rb.bba.assoc_gid : 0x53f0;
/*
* Create the bind response struct.
*/
/* If the requested abstract synt uuid doesn't match our client pipe,
reject the bind_ack & set the transfer interface synt to all 0's,
ver 0 (observed when NT5 attempts to bind to abstract interfaces
unknown to NT4)
Needed when adding entries to a DACL from NT5 - SK */
if(check_bind_req(p, &hdr_rb.abstract, &hdr_rb.transfer, hdr_rb.context_id ))
{
init_rpc_hdr_ba(&hdr_ba,
MAX_PDU_FRAG_LEN,
MAX_PDU_FRAG_LEN,
assoc_gid,
ack_pipe_name,
0x1, 0x0, 0x0,
&hdr_rb.transfer);
} else {
RPC_IFACE null_interface;
ZERO_STRUCT(null_interface);
/* Rejection reason: abstract syntax not supported */
init_rpc_hdr_ba(&hdr_ba, MAX_PDU_FRAG_LEN,
MAX_PDU_FRAG_LEN, assoc_gid,
ack_pipe_name, 0x1, 0x2, 0x1,
&null_interface);
}
/*
* and marshall it.
*/
if(!smb_io_rpc_hdr_ba("", &hdr_ba, &out_hdr_ba, 0)) {
DEBUG(0,("api_pipe_bind_req: marshalling of RPC_HDR_BA failed.\n"));
goto err_exit;
}
/*
* Now the authentication.
*/
if (p->ntlmssp_auth_requested) {
RPC_AUTH_VERIFIER auth_verifier;
RPC_AUTH_NTLMSSP_CHAL ntlmssp_chal;
generate_random_buffer(p->challenge, 8);
/*** Authentication info ***/
Jeremy requested that I get my NTLMSSP patch into CVS. He didn't request the schannel code, but I've included that anyway. :-) This patch revives the client-side NTLMSSP support for RPC named pipes in Samba, and cleans up the client and server schannel code. The use of the new code is enabled by the 'sign', 'seal' and 'schannel' commands in rpcclient. The aim was to prove that our separate NTLMSSP client library actually implements NTLMSSP signing and sealing as per Microsoft's NTLMv1 implementation, in the hope that knowing this will assist us in correctly implementing NTLMSSP signing for SMB packets. (Still not yet functional) This patch replaces the NTLMSSP implementation in rpc_client/cli_pipe.c with calls to libsmb/ntlmssp.c. In the process, we have gained the ability to use the more secure NT password, and the ability to sign-only, instead of having to seal the pipe connection. (Previously we were limited to sealing, and could only use the LM-password derived key). Our new client-side NTLMSSP code also needed alteration to cope with our comparatively simple server-side implementation. A future step is to replace it with calls to the same NTLMSSP library. Also included in this patch is the schannel 'sign only' patch I submitted to the team earlier. While not enabled (and not functional, at this stage) the work in this patch makes the code paths *much* easier to follow. I have also included similar hooks in rpccleint to allow the use of schannel on *any* pipe. rpcclient now defaults to not using schannel (or any other extra per-pipe authenticiation) for any connection. The 'schannel' command enables schannel for all pipes until disabled. This code is also much more secure than the previous code, as changes to our cli_pipe routines ensure that the authentication footer cannot be removed by an attacker, and more error states are correctly handled. (The same needs to be done to our server) Andrew Bartlett (This used to be commit 5472ddc9eaf4e79c5b2e1c8ee8c7f190dc285f19)
2003-07-14 12:46:32 +04:00
init_rpc_hdr_auth(&auth_info, NTLMSSP_AUTH_TYPE, RPC_PIPE_AUTH_SEAL_LEVEL, RPC_HDR_AUTH_LEN, 1);
if(!smb_io_rpc_hdr_auth("", &auth_info, &out_auth, 0)) {
DEBUG(0,("api_pipe_bind_req: marshalling of RPC_HDR_AUTH failed.\n"));
goto err_exit;
}
/*** NTLMSSP verifier ***/
init_rpc_auth_verifier(&auth_verifier, "NTLMSSP", NTLMSSP_CHALLENGE);
if(!smb_io_rpc_auth_verifier("", &auth_verifier, &out_auth, 0)) {
DEBUG(0,("api_pipe_bind_req: marshalling of RPC_AUTH_VERIFIER failed.\n"));
goto err_exit;
}
/* NTLMSSP challenge ***/
init_rpc_auth_ntlmssp_chal(&ntlmssp_chal, p->ntlmssp_chal_flags, p->challenge);
if(!smb_io_rpc_auth_ntlmssp_chal("", &ntlmssp_chal, &out_auth, 0)) {
DEBUG(0,("api_pipe_bind_req: marshalling of RPC_AUTH_NTLMSSP_CHAL failed.\n"));
goto err_exit;
}
/* Auth len in the rpc header doesn't include auth_header. */
auth_len = prs_offset(&out_auth) - RPC_HDR_AUTH_LEN;
}
if (p->netsec_auth_validated) {
RPC_AUTH_VERIFIER auth_verifier;
uint32 flags;
/* The client opens a second RPC NETLOGON pipe without
doing a auth2. The credentials for the schannel are
re-used from the auth2 the client did before. */
p->dc = last_dcinfo;
init_rpc_hdr_auth(&auth_info, NETSEC_AUTH_TYPE, auth_info.auth_level, RPC_HDR_AUTH_LEN, 1);
if(!smb_io_rpc_hdr_auth("", &auth_info, &out_auth, 0)) {
DEBUG(0,("api_pipe_bind_req: marshalling of RPC_HDR_AUTH failed.\n"));
goto err_exit;
}
/*** NETSEC verifier ***/
init_rpc_auth_verifier(&auth_verifier, "\001", 0x0);
if(!smb_io_rpc_netsec_verifier("", &auth_verifier, &out_auth, 0)) {
DEBUG(0,("api_pipe_bind_req: marshalling of RPC_AUTH_VERIFIER failed.\n"));
goto err_exit;
}
prs_align(&out_auth);
flags = 5;
if(!prs_uint32("flags ", &out_auth, 0, &flags))
goto err_exit;
auth_len = prs_offset(&out_auth) - RPC_HDR_AUTH_LEN;
}
/*
* Create the header, now we know the length.
*/
init_rpc_hdr(&p->hdr, reply_pkt_type, RPC_FLG_FIRST | RPC_FLG_LAST,
p->hdr.call_id,
RPC_HEADER_LEN + prs_offset(&out_hdr_ba) + prs_offset(&out_auth),
auth_len);
/*
* Marshall the header into the outgoing PDU.
*/
if(!smb_io_rpc_hdr("", &p->hdr, &outgoing_rpc, 0)) {
DEBUG(0,("pi_pipe_bind_req: marshalling of RPC_HDR failed.\n"));
goto err_exit;
}
/*
* Now add the RPC_HDR_BA and any auth needed.
*/
if(!prs_append_prs_data( &outgoing_rpc, &out_hdr_ba)) {
DEBUG(0,("api_pipe_bind_req: append of RPC_HDR_BA failed.\n"));
goto err_exit;
}
if((p->ntlmssp_auth_requested|p->netsec_auth_validated) &&
!prs_append_prs_data( &outgoing_rpc, &out_auth)) {
DEBUG(0,("api_pipe_bind_req: append of auth info failed.\n"));
goto err_exit;
}
if(!p->ntlmssp_auth_requested)
p->pipe_bound = True;
/*
* Setup the lengths for the initial reply.
*/
p->out_data.data_sent_length = 0;
p->out_data.current_pdu_len = prs_offset(&outgoing_rpc);
p->out_data.current_pdu_sent = 0;
prs_mem_free(&out_hdr_ba);
prs_mem_free(&out_auth);
return True;
err_exit:
prs_mem_free(&outgoing_rpc);
prs_mem_free(&out_hdr_ba);
prs_mem_free(&out_auth);
return False;
}
/****************************************************************************
Deal with sign & seal processing on an RPC request.
****************************************************************************/
BOOL api_pipe_auth_process(pipes_struct *p, prs_struct *rpc_in)
{
/*
* We always negotiate the following two bits....
*/
BOOL auth_verify = ((p->ntlmssp_chal_flags & NTLMSSP_NEGOTIATE_SIGN) != 0);
BOOL auth_seal = ((p->ntlmssp_chal_flags & NTLMSSP_NEGOTIATE_SEAL) != 0);
int data_len;
int auth_len;
uint32 old_offset;
uint32 crc32 = 0;
auth_len = p->hdr.auth_len;
if ((auth_len != RPC_AUTH_NTLMSSP_CHK_LEN) && auth_verify) {
DEBUG(0,("api_pipe_auth_process: Incorrect auth_len %d.\n", auth_len ));
return False;
}
/*
* The following is that length of the data we must verify or unseal.
* This doesn't include the RPC headers or the auth_len or the RPC_HDR_AUTH_LEN
* preceeding the auth_data.
*/
data_len = p->hdr.frag_len - RPC_HEADER_LEN - RPC_HDR_REQ_LEN -
(auth_verify ? RPC_HDR_AUTH_LEN : 0) - auth_len;
DEBUG(5,("api_pipe_auth_process: sign: %s seal: %s data %d auth %d\n",
BOOLSTR(auth_verify), BOOLSTR(auth_seal), data_len, auth_len));
if (auth_seal) {
/*
* The data in rpc_in doesn't contain the RPC_HEADER as this
* has already been consumed.
*/
char *data = prs_data_p(rpc_in) + RPC_HDR_REQ_LEN;
Jeremy requested that I get my NTLMSSP patch into CVS. He didn't request the schannel code, but I've included that anyway. :-) This patch revives the client-side NTLMSSP support for RPC named pipes in Samba, and cleans up the client and server schannel code. The use of the new code is enabled by the 'sign', 'seal' and 'schannel' commands in rpcclient. The aim was to prove that our separate NTLMSSP client library actually implements NTLMSSP signing and sealing as per Microsoft's NTLMv1 implementation, in the hope that knowing this will assist us in correctly implementing NTLMSSP signing for SMB packets. (Still not yet functional) This patch replaces the NTLMSSP implementation in rpc_client/cli_pipe.c with calls to libsmb/ntlmssp.c. In the process, we have gained the ability to use the more secure NT password, and the ability to sign-only, instead of having to seal the pipe connection. (Previously we were limited to sealing, and could only use the LM-password derived key). Our new client-side NTLMSSP code also needed alteration to cope with our comparatively simple server-side implementation. A future step is to replace it with calls to the same NTLMSSP library. Also included in this patch is the schannel 'sign only' patch I submitted to the team earlier. While not enabled (and not functional, at this stage) the work in this patch makes the code paths *much* easier to follow. I have also included similar hooks in rpccleint to allow the use of schannel on *any* pipe. rpcclient now defaults to not using schannel (or any other extra per-pipe authenticiation) for any connection. The 'schannel' command enables schannel for all pipes until disabled. This code is also much more secure than the previous code, as changes to our cli_pipe routines ensure that the authentication footer cannot be removed by an attacker, and more error states are correctly handled. (The same needs to be done to our server) Andrew Bartlett (This used to be commit 5472ddc9eaf4e79c5b2e1c8ee8c7f190dc285f19)
2003-07-14 12:46:32 +04:00
dump_data_pw("NTLMSSP hash (v1)\n", p->ntlmssp_hash,
sizeof(p->ntlmssp_hash));
dump_data_pw("Incoming RPC PDU (NTLMSSP sealed)\n",
(const unsigned char *)data, data_len);
NTLMSSPcalc_p(p, (uchar*)data, data_len);
Jeremy requested that I get my NTLMSSP patch into CVS. He didn't request the schannel code, but I've included that anyway. :-) This patch revives the client-side NTLMSSP support for RPC named pipes in Samba, and cleans up the client and server schannel code. The use of the new code is enabled by the 'sign', 'seal' and 'schannel' commands in rpcclient. The aim was to prove that our separate NTLMSSP client library actually implements NTLMSSP signing and sealing as per Microsoft's NTLMv1 implementation, in the hope that knowing this will assist us in correctly implementing NTLMSSP signing for SMB packets. (Still not yet functional) This patch replaces the NTLMSSP implementation in rpc_client/cli_pipe.c with calls to libsmb/ntlmssp.c. In the process, we have gained the ability to use the more secure NT password, and the ability to sign-only, instead of having to seal the pipe connection. (Previously we were limited to sealing, and could only use the LM-password derived key). Our new client-side NTLMSSP code also needed alteration to cope with our comparatively simple server-side implementation. A future step is to replace it with calls to the same NTLMSSP library. Also included in this patch is the schannel 'sign only' patch I submitted to the team earlier. While not enabled (and not functional, at this stage) the work in this patch makes the code paths *much* easier to follow. I have also included similar hooks in rpccleint to allow the use of schannel on *any* pipe. rpcclient now defaults to not using schannel (or any other extra per-pipe authenticiation) for any connection. The 'schannel' command enables schannel for all pipes until disabled. This code is also much more secure than the previous code, as changes to our cli_pipe routines ensure that the authentication footer cannot be removed by an attacker, and more error states are correctly handled. (The same needs to be done to our server) Andrew Bartlett (This used to be commit 5472ddc9eaf4e79c5b2e1c8ee8c7f190dc285f19)
2003-07-14 12:46:32 +04:00
dump_data_pw("Incoming RPC PDU (NTLMSSP unsealed)\n",
(const unsigned char *)data, data_len);
crc32 = crc32_calc_buffer(data, data_len);
}
old_offset = prs_offset(rpc_in);
if (auth_seal || auth_verify) {
RPC_HDR_AUTH auth_info;
if(!prs_set_offset(rpc_in, old_offset + data_len)) {
DEBUG(0,("api_pipe_auth_process: cannot move offset to %u.\n",
(unsigned int)old_offset + data_len ));
return False;
}
if(!smb_io_rpc_hdr_auth("hdr_auth", &auth_info, rpc_in, 0)) {
DEBUG(0,("api_pipe_auth_process: failed to unmarshall RPC_HDR_AUTH.\n"));
return False;
}
}
if (auth_verify) {
RPC_AUTH_NTLMSSP_CHK ntlmssp_chk;
char *req_data = prs_data_p(rpc_in) + prs_offset(rpc_in) + 4;
DEBUG(5,("api_pipe_auth_process: auth %d\n", prs_offset(rpc_in) + 4));
/*
* Ensure we have RPC_AUTH_NTLMSSP_CHK_LEN - 4 more bytes in the
* incoming buffer.
*/
if(prs_mem_get(rpc_in, RPC_AUTH_NTLMSSP_CHK_LEN - 4) == NULL) {
DEBUG(0,("api_pipe_auth_process: missing %d bytes in buffer.\n",
RPC_AUTH_NTLMSSP_CHK_LEN - 4 ));
return False;
}
NTLMSSPcalc_p(p, (uchar*)req_data, RPC_AUTH_NTLMSSP_CHK_LEN - 4);
if(!smb_io_rpc_auth_ntlmssp_chk("auth_sign", &ntlmssp_chk, rpc_in, 0)) {
DEBUG(0,("api_pipe_auth_process: failed to unmarshall RPC_AUTH_NTLMSSP_CHK.\n"));
return False;
}
if (!rpc_auth_ntlmssp_chk(&ntlmssp_chk, crc32, p->ntlmssp_seq_num)) {
DEBUG(0,("api_pipe_auth_process: NTLMSSP check failed.\n"));
return False;
}
}
/*
* Return the current pointer to the data offset.
*/
if(!prs_set_offset(rpc_in, old_offset)) {
DEBUG(0,("api_pipe_auth_process: failed to set offset back to %u\n",
(unsigned int)old_offset ));
return False;
}
return True;
}
/****************************************************************************
Deal with schannel processing on an RPC request.
****************************************************************************/
BOOL api_pipe_netsec_process(pipes_struct *p, prs_struct *rpc_in)
{
/*
* We always negotiate the following two bits....
*/
int data_len;
int auth_len;
uint32 old_offset;
RPC_HDR_AUTH auth_info;
RPC_AUTH_NETSEC_CHK netsec_chk;
auth_len = p->hdr.auth_len;
if (auth_len != RPC_AUTH_NETSEC_SIGN_OR_SEAL_CHK_LEN) {
DEBUG(0,("Incorrect auth_len %d.\n", auth_len ));
return False;
}
/*
* The following is that length of the data we must verify or unseal.
* This doesn't include the RPC headers or the auth_len or the RPC_HDR_AUTH_LEN
* preceeding the auth_data.
*/
data_len = p->hdr.frag_len - RPC_HEADER_LEN - RPC_HDR_REQ_LEN -
RPC_HDR_AUTH_LEN - auth_len;
DEBUG(5,("data %d auth %d\n", data_len, auth_len));
old_offset = prs_offset(rpc_in);
if(!prs_set_offset(rpc_in, old_offset + data_len)) {
DEBUG(0,("cannot move offset to %u.\n",
(unsigned int)old_offset + data_len ));
return False;
}
if(!smb_io_rpc_hdr_auth("hdr_auth", &auth_info, rpc_in, 0)) {
DEBUG(0,("failed to unmarshall RPC_HDR_AUTH.\n"));
return False;
}
if (auth_info.auth_type != NETSEC_AUTH_TYPE) {
DEBUG(0,("Invalid auth info %d on schannel\n",
auth_info.auth_type));
return False;
}
if (auth_info.auth_level == RPC_PIPE_AUTH_SEAL_LEVEL) {
p->netsec_auth.auth_flags = AUTH_PIPE_NETSEC|AUTH_PIPE_SIGN|AUTH_PIPE_SEAL;
} else if (auth_info.auth_level == RPC_PIPE_AUTH_SIGN_LEVEL) {
p->netsec_auth.auth_flags = AUTH_PIPE_NETSEC|AUTH_PIPE_SIGN;
} else {
DEBUG(0,("Invalid auth level %d on schannel\n",
auth_info.auth_level));
return False;
}
if(!smb_io_rpc_auth_netsec_chk("", RPC_AUTH_NETSEC_SIGN_OR_SEAL_CHK_LEN,
&netsec_chk, rpc_in, 0))
{
DEBUG(0,("failed to unmarshal RPC_AUTH_NETSEC_CHK.\n"));
return False;
}
Jeremy requested that I get my NTLMSSP patch into CVS. He didn't request the schannel code, but I've included that anyway. :-) This patch revives the client-side NTLMSSP support for RPC named pipes in Samba, and cleans up the client and server schannel code. The use of the new code is enabled by the 'sign', 'seal' and 'schannel' commands in rpcclient. The aim was to prove that our separate NTLMSSP client library actually implements NTLMSSP signing and sealing as per Microsoft's NTLMv1 implementation, in the hope that knowing this will assist us in correctly implementing NTLMSSP signing for SMB packets. (Still not yet functional) This patch replaces the NTLMSSP implementation in rpc_client/cli_pipe.c with calls to libsmb/ntlmssp.c. In the process, we have gained the ability to use the more secure NT password, and the ability to sign-only, instead of having to seal the pipe connection. (Previously we were limited to sealing, and could only use the LM-password derived key). Our new client-side NTLMSSP code also needed alteration to cope with our comparatively simple server-side implementation. A future step is to replace it with calls to the same NTLMSSP library. Also included in this patch is the schannel 'sign only' patch I submitted to the team earlier. While not enabled (and not functional, at this stage) the work in this patch makes the code paths *much* easier to follow. I have also included similar hooks in rpccleint to allow the use of schannel on *any* pipe. rpcclient now defaults to not using schannel (or any other extra per-pipe authenticiation) for any connection. The 'schannel' command enables schannel for all pipes until disabled. This code is also much more secure than the previous code, as changes to our cli_pipe routines ensure that the authentication footer cannot be removed by an attacker, and more error states are correctly handled. (The same needs to be done to our server) Andrew Bartlett (This used to be commit 5472ddc9eaf4e79c5b2e1c8ee8c7f190dc285f19)
2003-07-14 12:46:32 +04:00
if (!netsec_decode(&p->netsec_auth,
p->netsec_auth.auth_flags,
Jeremy requested that I get my NTLMSSP patch into CVS. He didn't request the schannel code, but I've included that anyway. :-) This patch revives the client-side NTLMSSP support for RPC named pipes in Samba, and cleans up the client and server schannel code. The use of the new code is enabled by the 'sign', 'seal' and 'schannel' commands in rpcclient. The aim was to prove that our separate NTLMSSP client library actually implements NTLMSSP signing and sealing as per Microsoft's NTLMv1 implementation, in the hope that knowing this will assist us in correctly implementing NTLMSSP signing for SMB packets. (Still not yet functional) This patch replaces the NTLMSSP implementation in rpc_client/cli_pipe.c with calls to libsmb/ntlmssp.c. In the process, we have gained the ability to use the more secure NT password, and the ability to sign-only, instead of having to seal the pipe connection. (Previously we were limited to sealing, and could only use the LM-password derived key). Our new client-side NTLMSSP code also needed alteration to cope with our comparatively simple server-side implementation. A future step is to replace it with calls to the same NTLMSSP library. Also included in this patch is the schannel 'sign only' patch I submitted to the team earlier. While not enabled (and not functional, at this stage) the work in this patch makes the code paths *much* easier to follow. I have also included similar hooks in rpccleint to allow the use of schannel on *any* pipe. rpcclient now defaults to not using schannel (or any other extra per-pipe authenticiation) for any connection. The 'schannel' command enables schannel for all pipes until disabled. This code is also much more secure than the previous code, as changes to our cli_pipe routines ensure that the authentication footer cannot be removed by an attacker, and more error states are correctly handled. (The same needs to be done to our server) Andrew Bartlett (This used to be commit 5472ddc9eaf4e79c5b2e1c8ee8c7f190dc285f19)
2003-07-14 12:46:32 +04:00
SENDER_IS_INITIATOR,
&netsec_chk,
prs_data_p(rpc_in)+old_offset, data_len)) {
DEBUG(3,("failed to decode PDU\n"));
return False;
}
/*
* Return the current pointer to the data offset.
*/
if(!prs_set_offset(rpc_in, old_offset)) {
DEBUG(0,("failed to set offset back to %u\n",
(unsigned int)old_offset ));
return False;
}
/* The sequence number gets incremented on both send and receive. */
p->netsec_auth.seq_num++;
return True;
}
/****************************************************************************
Return a user struct for a pipe user.
****************************************************************************/
struct current_user *get_current_user(struct current_user *user, pipes_struct *p)
{
if (p->ntlmssp_auth_validated) {
memcpy(user, &p->pipe_user, sizeof(struct current_user));
} else {
extern struct current_user current_user;
memcpy(user, &current_user, sizeof(struct current_user));
}
return user;
}
/****************************************************************************
Find the set of RPC functions associated with this context_id
****************************************************************************/
static PIPE_RPC_FNS* find_pipe_fns_by_context( PIPE_RPC_FNS *list, uint32 context_id )
{
PIPE_RPC_FNS *fns = NULL;
PIPE_RPC_FNS *tmp = NULL;
if ( !list ) {
DEBUG(0,("find_pipe_fns_by_context: ERROR! No context list for pipe!\n"));
return NULL;
}
for (tmp=list; tmp; tmp=tmp->next ) {
if ( tmp->context_id == context_id )
break;
}
fns = tmp;
return fns;
}
/****************************************************************************
memory cleanup
****************************************************************************/
void free_pipe_rpc_context( PIPE_RPC_FNS *list )
{
PIPE_RPC_FNS *tmp = list;
PIPE_RPC_FNS *tmp2;
while (tmp) {
tmp2 = tmp->next;
SAFE_FREE(tmp);
tmp = tmp2;
}
return;
}
/****************************************************************************
Find the correct RPC function to call for this request.
If the pipe is authenticated then become the correct UNIX user
before doing the call.
****************************************************************************/
BOOL api_pipe_request(pipes_struct *p)
delineation between smb and msrpc more marked. smbd now constructs pdus, and then feeds them over either a "local" function call or a "remote" function call to an msrpc service. the "remote" msrpc daemon, on the other side of a unix socket, then calls the same "local" function that smbd would, if the msrpc service were being run from inside smbd. this allows a transition from local msrpc services (inside the same smbd process) to remote (over a unix socket). removed reference to pipes_struct in msrpc services. all msrpc processing functions take rpcsrv_struct which is a structure containing state info for the msrpc functions to decode and create pdus. created become_vuser() which does everything not related to connection_struct that become_user() does. removed, as best i could, connection_struct dependencies from the nt spoolss printing code. todo: remove dcinfo from rpcsrv_struct because this stores NETLOGON-specific info on a per-connection basis, and if the connection dies then so does the info, and that's a fairly serious problem. had to put pretty much everything that is in user_struct into parse_creds.c to feed unix user info over to the msrpc daemons. why? because it's expensive to do unix password/group database lookups, and it's definitely expensive to do nt user profile lookups, not to mention pretty difficult and if you did either of these it would introduce a complication / unnecessary interdependency. so, send uid/gid/num_groups/gid_t* + SID+num_rids+domain_group_rids* + unix username + nt username + nt domain + user session key etc. this is the MINIMUM info identified so far that's actually implemented. missing bits include the called and calling netbios names etc. (basically, anything that can be loaded into standard_sub() and standard_sub_basic()...) (This used to be commit aa3c659a8dba0437c17c60055a6ed30fdfecdb6d)
1999-12-12 04:25:49 +03:00
{
BOOL ret = False;
PIPE_RPC_FNS *pipe_fns;
if (p->ntlmssp_auth_validated) {
if(!become_authenticated_pipe_user(p)) {
prs_mem_free(&p->out_data.rdata);
return False;
}
}
DEBUG(5, ("Requested \\PIPE\\%s\n", p->name));
/* get the set of RPC functions for this context */
pipe_fns = find_pipe_fns_by_context(p->contexts, p->hdr_req.context_id);
if ( pipe_fns ) {
set_current_rpc_talloc(p->mem_ctx);
ret = api_rpcTNP(p, p->name, pipe_fns->cmds, pipe_fns->n_cmds);
set_current_rpc_talloc(NULL);
}
else {
DEBUG(0,("api_pipe_request: No rpc function table associated with context [%d] on pipe [%s]\n",
p->hdr_req.context_id, p->name));
}
if(p->ntlmssp_auth_validated)
unbecome_authenticated_pipe_user();
return ret;
}
/*******************************************************************
Calls the underlying RPC function for a named pipe.
********************************************************************/
BOOL api_rpcTNP(pipes_struct *p, const char *rpc_name,
const struct api_struct *api_rpc_cmds, int n_cmds)
{
int fn_num;
fstring name;
uint32 offset1, offset2;
/* interpret the command */
DEBUG(4,("api_rpcTNP: %s op 0x%x - ", rpc_name, p->hdr_req.opnum));
slprintf(name, sizeof(name)-1, "in_%s", rpc_name);
prs_dump(name, p->hdr_req.opnum, &p->in_data.data);
for (fn_num = 0; fn_num < n_cmds; fn_num++) {
if (api_rpc_cmds[fn_num].opnum == p->hdr_req.opnum && api_rpc_cmds[fn_num].fn != NULL) {
DEBUG(3,("api_rpcTNP: rpc command: %s\n", api_rpc_cmds[fn_num].name));
break;
}
}
if (fn_num == n_cmds) {
/*
* For an unknown RPC just return a fault PDU but
* return True to allow RPC's on the pipe to continue
* and not put the pipe into fault state. JRA.
*/
DEBUG(4, ("unknown\n"));
setup_fault_pdu(p, NT_STATUS(0x1c010002));
return True;
}
offset1 = prs_offset(&p->out_data.rdata);
DEBUG(6, ("api_rpc_cmds[%d].fn == %p\n",
fn_num, api_rpc_cmds[fn_num].fn));
/* do the actual command */
if(!api_rpc_cmds[fn_num].fn(p)) {
DEBUG(0,("api_rpcTNP: %s: %s failed.\n", rpc_name, api_rpc_cmds[fn_num].name));
prs_mem_free(&p->out_data.rdata);
return False;
}
if (p->bad_handle_fault_state) {
DEBUG(4,("api_rpcTNP: bad handle fault return.\n"));
p->bad_handle_fault_state = False;
setup_fault_pdu(p, NT_STATUS(0x1C00001A));
return True;
}
slprintf(name, sizeof(name)-1, "out_%s", rpc_name);
offset2 = prs_offset(&p->out_data.rdata);
prs_set_offset(&p->out_data.rdata, offset1);
prs_dump(name, p->hdr_req.opnum, &p->out_data.rdata);
prs_set_offset(&p->out_data.rdata, offset2);
DEBUG(5,("api_rpcTNP: called %s successfully\n", rpc_name));
/* Check for buffer underflow in rpc parsing */
if ((DEBUGLEVEL >= 10) &&
(prs_offset(&p->in_data.data) != prs_data_size(&p->in_data.data))) {
size_t data_len = prs_data_size(&p->in_data.data) - prs_offset(&p->in_data.data);
char *data;
data = malloc(data_len);
DEBUG(10, ("api_rpcTNP: rpc input buffer underflow (parse error?)\n"));
if (data) {
prs_uint8s(False, "", &p->in_data.data, 0, (unsigned char *)data, (uint32)data_len);
SAFE_FREE(data);
}
}
return True;
}
/*******************************************************************
*******************************************************************/
void get_pipe_fns( int idx, struct api_struct **fns, int *n_fns )
{
struct api_struct *cmds = NULL;
int n_cmds = 0;
switch ( idx ) {
case PI_LSARPC:
lsa_get_pipe_fns( &cmds, &n_cmds );
break;
case PI_LSARPC_DS:
lsa_ds_get_pipe_fns( &cmds, &n_cmds );
break;
case PI_SAMR:
samr_get_pipe_fns( &cmds, &n_cmds );
break;
case PI_NETLOGON:
netlog_get_pipe_fns( &cmds, &n_cmds );
break;
case PI_SRVSVC:
srvsvc_get_pipe_fns( &cmds, &n_cmds );
break;
case PI_WKSSVC:
wkssvc_get_pipe_fns( &cmds, &n_cmds );
break;
case PI_WINREG:
reg_get_pipe_fns( &cmds, &n_cmds );
break;
case PI_SPOOLSS:
spoolss_get_pipe_fns( &cmds, &n_cmds );
break;
case PI_NETDFS:
netdfs_get_pipe_fns( &cmds, &n_cmds );
break;
#ifdef DEVELOPER
case PI_ECHO:
echo_get_pipe_fns( &cmds, &n_cmds );
break;
#endif
default:
DEBUG(0,("get_pipe_fns: Unknown pipe index! [%d]\n", idx));
}
*fns = cmds;
*n_fns = n_cmds;
return;
}