1
0
mirror of https://github.com/samba-team/samba.git synced 2025-01-22 22:04:08 +03:00

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

285 lines
7.1 KiB
C
Raw Normal View History

/*
ctdb ip takeover code
Copyright (C) Ronnie Sahlberg 2007
Copyright (C) Andrew Tridgell 2007
Copyright (C) Martin Schwenke 2011
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "replace.h"
#include "system/network.h"
#include <talloc.h>
#include "lib/util/debug.h"
#include "common/logging.h"
#include "common/rb_tree.h"
#include "protocol/protocol_util.h"
#include "server/ipalloc_private.h"
/* Initialise main ipalloc state and sub-structures */
struct ipalloc_state *
ipalloc_state_init(TALLOC_CTX *mem_ctx,
uint32_t num_nodes,
enum ipalloc_algorithm algorithm,
bool no_ip_takeover,
bool no_ip_failback,
uint32_t *force_rebalance_nodes)
{
struct ipalloc_state *ipalloc_state =
talloc_zero(mem_ctx, struct ipalloc_state);
if (ipalloc_state == NULL) {
DEBUG(DEBUG_ERR, (__location__ " Out of memory\n"));
return NULL;
}
ipalloc_state->num = num_nodes;
ipalloc_state->algorithm = algorithm;
ipalloc_state->no_ip_takeover = no_ip_takeover;
ipalloc_state->no_ip_failback = no_ip_failback;
ipalloc_state->force_rebalance_nodes = force_rebalance_nodes;
return ipalloc_state;
}
static void *add_ip_callback(void *parm, void *data)
{
struct public_ip_list *this_ip = parm;
struct public_ip_list *prev_ip = data;
if (prev_ip == NULL) {
return parm;
}
if (this_ip->pnn == CTDB_UNKNOWN_PNN) {
this_ip->pnn = prev_ip->pnn;
}
return parm;
}
static int getips_count_callback(void *param, void *data)
{
struct public_ip_list **ip_list = (struct public_ip_list **)param;
struct public_ip_list *new_ip = (struct public_ip_list *)data;
new_ip->next = *ip_list;
*ip_list = new_ip;
return 0;
}
/* Nodes only know about those public addresses that they are
* configured to serve and no individual node has a full list of all
* public addresses configured across the cluster. Therefore, a
* merged list of all public addresses needs to be built so that IP
* allocation can be done. */
static struct public_ip_list *
create_merged_ip_list(struct ipalloc_state *ipalloc_state)
{
unsigned int i, j;
struct public_ip_list *ip_list;
struct ctdb_public_ip_list *public_ips;
struct trbt_tree *ip_tree;
int ret;
ip_tree = trbt_create(ipalloc_state, 0);
if (ipalloc_state->known_public_ips == NULL) {
DEBUG(DEBUG_ERR, ("Known public IPs not set\n"));
return NULL;
}
for (i=0; i < ipalloc_state->num; i++) {
public_ips = &ipalloc_state->known_public_ips[i];
for (j=0; j < public_ips->num; j++) {
struct public_ip_list *tmp_ip;
/* This is returned as part of ip_list */
tmp_ip = talloc_zero(ipalloc_state, struct public_ip_list);
if (tmp_ip == NULL) {
DEBUG(DEBUG_ERR,
(__location__ " out of memory\n"));
talloc_free(ip_tree);
return NULL;
}
/* Do not use information about IP addresses hosted
* on other nodes, it may not be accurate */
if (public_ips->ip[j].pnn == i) {
tmp_ip->pnn = public_ips->ip[j].pnn;
} else {
tmp_ip->pnn = CTDB_UNKNOWN_PNN;
}
tmp_ip->addr = public_ips->ip[j].addr;
tmp_ip->next = NULL;
trbt_insertarray32_callback(ip_tree,
IP_KEYLEN, ip_key(&public_ips->ip[j].addr),
add_ip_callback,
tmp_ip);
}
}
ip_list = NULL;
ret = trbt_traversearray32(ip_tree, IP_KEYLEN, getips_count_callback, &ip_list);
if (ret != 0) {
DBG_ERR("Error traversing the IP tree.\n");
}
talloc_free(ip_tree);
return ip_list;
}
static bool populate_bitmap(struct ipalloc_state *ipalloc_state)
{
struct public_ip_list *ip = NULL;
unsigned int i, j;
for (ip = ipalloc_state->all_ips; ip != NULL; ip = ip->next) {
ip->known_on = bitmap_talloc(ip, ipalloc_state->num);
if (ip->known_on == NULL) {
return false;
}
ip->available_on = bitmap_talloc(ip, ipalloc_state->num);
if (ip->available_on == NULL) {
return false;
}
for (i = 0; i < ipalloc_state->num; i++) {
struct ctdb_public_ip_list *known =
&ipalloc_state->known_public_ips[i];
struct ctdb_public_ip_list *avail =
&ipalloc_state->available_public_ips[i];
/* Check to see if "ip" is available on node "i" */
for (j = 0; j < avail->num; j++) {
if (ctdb_sock_addr_same_ip(
&ip->addr, &avail->ip[j].addr)) {
bitmap_set(ip->available_on, i);
break;
}
}
/* Optimisation: available => known */
if (bitmap_query(ip->available_on, i)) {
bitmap_set(ip->known_on, i);
continue;
}
/* Check to see if "ip" is known on node "i" */
for (j = 0; j < known->num; j++) {
if (ctdb_sock_addr_same_ip(
&ip->addr, &known->ip[j].addr)) {
bitmap_set(ip->known_on, i);
break;
}
}
}
}
return true;
}
void ipalloc_set_public_ips(struct ipalloc_state *ipalloc_state,
struct ctdb_public_ip_list *known_ips,
struct ctdb_public_ip_list *available_ips)
{
ipalloc_state->available_public_ips = available_ips;
ipalloc_state->known_public_ips = known_ips;
}
/* This can only return false if there are no available IPs *and*
* there are no IP addresses currently allocated. If the latter is
* true then the cluster can clearly host IPs... just not necessarily
* right now... */
bool ipalloc_can_host_ips(struct ipalloc_state *ipalloc_state)
{
unsigned int i;
bool have_ips = false;
for (i=0; i < ipalloc_state->num; i++) {
struct ctdb_public_ip_list *ips =
ipalloc_state->known_public_ips;
if (ips[i].num != 0) {
unsigned int j;
have_ips = true;
/* Succeed if an address is hosted on node i */
for (j=0; j < ips[i].num; j++) {
if (ips[i].ip[j].pnn == i) {
return true;
}
}
}
}
if (! have_ips) {
return false;
}
/* At this point there are known addresses but none are
* hosted. Need to check if cluster can now host some
* addresses.
*/
for (i=0; i < ipalloc_state->num; i++) {
if (ipalloc_state->available_public_ips[i].num != 0) {
return true;
}
}
return false;
}
/* The calculation part of the IP allocation algorithm. */
struct public_ip_list *ipalloc(struct ipalloc_state *ipalloc_state)
{
bool ret = false;
ipalloc_state->all_ips = create_merged_ip_list(ipalloc_state);
if (ipalloc_state->all_ips == NULL) {
return NULL;
}
if (!populate_bitmap(ipalloc_state)) {
return NULL;
}
switch (ipalloc_state->algorithm) {
case IPALLOC_LCP2:
ret = ipalloc_lcp2(ipalloc_state);
break;
case IPALLOC_DETERMINISTIC:
ret = ipalloc_deterministic(ipalloc_state);
break;
case IPALLOC_NONDETERMINISTIC:
ret = ipalloc_nondeterministic(ipalloc_state);
break;
}
/* at this point ->pnn is the node which will own each IP
or CTDB_UNKNOWN_PNN if there is no node that can cover this ip
*/
return (ret ? ipalloc_state->all_ips : NULL);
}