1
0
mirror of https://github.com/samba-team/samba.git synced 2024-12-25 23:21:54 +03:00
samba-mirror/source3/include/serverid.h

80 lines
2.1 KiB
C
Raw Normal View History

s3: Fix a long-standing problem with recycled PIDs When a samba server process dies hard, it has no chance to clean up its entries in locking.tdb, brlock.tdb, connections.tdb and sessionid.tdb. For locking.tdb and brlock.tdb Samba is robust by checking every time we read an entry from the database if the corresponding process still exists. If it does not exist anymore, the entry is deleted. This is not 100% failsafe though: On systems with a limited PID space there is a non-zero chance that between the smbd's death and the fresh access, the PID is recycled by another long-running process. This renders all files that had been locked by the killed smbd potentially unusable until the new process also dies. This patch is supposed to fix the problem the following way: Every process ID in every database is augmented by a random 64-bit number that is stored in a serverid.tdb. Whenever we need to check if a process still exists we know its PID and the 64-bit number. We look up the PID in serverid.tdb and compare the 64-bit number. If it's the same, the process still is a valid smbd holding the lock. If it is different, a new smbd has taken over. I believe this is safe against an smbd that has died hard and the PID has been taken over by a non-samba process. This process would not have registered itself with a fresh 64-bit number in serverid.tdb, so the old one still exists in serverid.tdb. We protect against this case by the parent smbd taking care of deregistering PIDs from serverid.tdb and the fact that serverid.tdb is CLEAR_IF_FIRST. CLEAR_IF_FIRST does not work in a cluster, so the automatic cleanup does not work when all smbds are restarted. For this, "net serverid wipe" has to be run before smbd starts up. As a convenience, "net serverid wipedbs" also cleans up sessionid.tdb and connections.tdb. While there, this also cleans up overloading connections.tdb with all the process entries just for messaging_send_all(). Volker
2010-03-02 19:02:01 +03:00
/*
Unix SMB/CIFS implementation.
Implementation of a reliable server_exists()
Copyright (C) Volker Lendecke 2010
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __SERVERID_H__
#define __SERVERID_H__
#include "includes.h"
#include "lib/dbwrap/dbwrap.h"
s3: Fix a long-standing problem with recycled PIDs When a samba server process dies hard, it has no chance to clean up its entries in locking.tdb, brlock.tdb, connections.tdb and sessionid.tdb. For locking.tdb and brlock.tdb Samba is robust by checking every time we read an entry from the database if the corresponding process still exists. If it does not exist anymore, the entry is deleted. This is not 100% failsafe though: On systems with a limited PID space there is a non-zero chance that between the smbd's death and the fresh access, the PID is recycled by another long-running process. This renders all files that had been locked by the killed smbd potentially unusable until the new process also dies. This patch is supposed to fix the problem the following way: Every process ID in every database is augmented by a random 64-bit number that is stored in a serverid.tdb. Whenever we need to check if a process still exists we know its PID and the 64-bit number. We look up the PID in serverid.tdb and compare the 64-bit number. If it's the same, the process still is a valid smbd holding the lock. If it is different, a new smbd has taken over. I believe this is safe against an smbd that has died hard and the PID has been taken over by a non-samba process. This process would not have registered itself with a fresh 64-bit number in serverid.tdb, so the old one still exists in serverid.tdb. We protect against this case by the parent smbd taking care of deregistering PIDs from serverid.tdb and the fact that serverid.tdb is CLEAR_IF_FIRST. CLEAR_IF_FIRST does not work in a cluster, so the automatic cleanup does not work when all smbds are restarted. For this, "net serverid wipe" has to be run before smbd starts up. As a convenience, "net serverid wipedbs" also cleans up sessionid.tdb and connections.tdb. While there, this also cleans up overloading connections.tdb with all the process entries just for messaging_send_all(). Volker
2010-03-02 19:02:01 +03:00
/*
* Register a server with its unique id
*/
bool serverid_register(const struct server_id id, uint32_t msg_flags);
s3: Fix a long-standing problem with recycled PIDs When a samba server process dies hard, it has no chance to clean up its entries in locking.tdb, brlock.tdb, connections.tdb and sessionid.tdb. For locking.tdb and brlock.tdb Samba is robust by checking every time we read an entry from the database if the corresponding process still exists. If it does not exist anymore, the entry is deleted. This is not 100% failsafe though: On systems with a limited PID space there is a non-zero chance that between the smbd's death and the fresh access, the PID is recycled by another long-running process. This renders all files that had been locked by the killed smbd potentially unusable until the new process also dies. This patch is supposed to fix the problem the following way: Every process ID in every database is augmented by a random 64-bit number that is stored in a serverid.tdb. Whenever we need to check if a process still exists we know its PID and the 64-bit number. We look up the PID in serverid.tdb and compare the 64-bit number. If it's the same, the process still is a valid smbd holding the lock. If it is different, a new smbd has taken over. I believe this is safe against an smbd that has died hard and the PID has been taken over by a non-samba process. This process would not have registered itself with a fresh 64-bit number in serverid.tdb, so the old one still exists in serverid.tdb. We protect against this case by the parent smbd taking care of deregistering PIDs from serverid.tdb and the fact that serverid.tdb is CLEAR_IF_FIRST. CLEAR_IF_FIRST does not work in a cluster, so the automatic cleanup does not work when all smbds are restarted. For this, "net serverid wipe" has to be run before smbd starts up. As a convenience, "net serverid wipedbs" also cleans up sessionid.tdb and connections.tdb. While there, this also cleans up overloading connections.tdb with all the process entries just for messaging_send_all(). Volker
2010-03-02 19:02:01 +03:00
/*
* De-register a server with its unique id
*/
bool serverid_deregister(const struct server_id id);
s3: Fix a long-standing problem with recycled PIDs When a samba server process dies hard, it has no chance to clean up its entries in locking.tdb, brlock.tdb, connections.tdb and sessionid.tdb. For locking.tdb and brlock.tdb Samba is robust by checking every time we read an entry from the database if the corresponding process still exists. If it does not exist anymore, the entry is deleted. This is not 100% failsafe though: On systems with a limited PID space there is a non-zero chance that between the smbd's death and the fresh access, the PID is recycled by another long-running process. This renders all files that had been locked by the killed smbd potentially unusable until the new process also dies. This patch is supposed to fix the problem the following way: Every process ID in every database is augmented by a random 64-bit number that is stored in a serverid.tdb. Whenever we need to check if a process still exists we know its PID and the 64-bit number. We look up the PID in serverid.tdb and compare the 64-bit number. If it's the same, the process still is a valid smbd holding the lock. If it is different, a new smbd has taken over. I believe this is safe against an smbd that has died hard and the PID has been taken over by a non-samba process. This process would not have registered itself with a fresh 64-bit number in serverid.tdb, so the old one still exists in serverid.tdb. We protect against this case by the parent smbd taking care of deregistering PIDs from serverid.tdb and the fact that serverid.tdb is CLEAR_IF_FIRST. CLEAR_IF_FIRST does not work in a cluster, so the automatic cleanup does not work when all smbds are restarted. For this, "net serverid wipe" has to be run before smbd starts up. As a convenience, "net serverid wipedbs" also cleans up sessionid.tdb and connections.tdb. While there, this also cleans up overloading connections.tdb with all the process entries just for messaging_send_all(). Volker
2010-03-02 19:02:01 +03:00
/*
* (De)register additional message flags
*/
bool serverid_register_msg_flags(const struct server_id id, bool do_reg,
uint32_t msg_flags);
s3: Fix a long-standing problem with recycled PIDs When a samba server process dies hard, it has no chance to clean up its entries in locking.tdb, brlock.tdb, connections.tdb and sessionid.tdb. For locking.tdb and brlock.tdb Samba is robust by checking every time we read an entry from the database if the corresponding process still exists. If it does not exist anymore, the entry is deleted. This is not 100% failsafe though: On systems with a limited PID space there is a non-zero chance that between the smbd's death and the fresh access, the PID is recycled by another long-running process. This renders all files that had been locked by the killed smbd potentially unusable until the new process also dies. This patch is supposed to fix the problem the following way: Every process ID in every database is augmented by a random 64-bit number that is stored in a serverid.tdb. Whenever we need to check if a process still exists we know its PID and the 64-bit number. We look up the PID in serverid.tdb and compare the 64-bit number. If it's the same, the process still is a valid smbd holding the lock. If it is different, a new smbd has taken over. I believe this is safe against an smbd that has died hard and the PID has been taken over by a non-samba process. This process would not have registered itself with a fresh 64-bit number in serverid.tdb, so the old one still exists in serverid.tdb. We protect against this case by the parent smbd taking care of deregistering PIDs from serverid.tdb and the fact that serverid.tdb is CLEAR_IF_FIRST. CLEAR_IF_FIRST does not work in a cluster, so the automatic cleanup does not work when all smbds are restarted. For this, "net serverid wipe" has to be run before smbd starts up. As a convenience, "net serverid wipedbs" also cleans up sessionid.tdb and connections.tdb. While there, this also cleans up overloading connections.tdb with all the process entries just for messaging_send_all(). Volker
2010-03-02 19:02:01 +03:00
/*
* Check existence of a server id
*/
bool serverid_exists(const struct server_id *id);
2011-10-26 15:36:56 +04:00
/*
* Check existence of a list of server ids
*/
bool serverids_exist(const struct server_id *ids, int num_ids, bool *results);
s3: Fix a long-standing problem with recycled PIDs When a samba server process dies hard, it has no chance to clean up its entries in locking.tdb, brlock.tdb, connections.tdb and sessionid.tdb. For locking.tdb and brlock.tdb Samba is robust by checking every time we read an entry from the database if the corresponding process still exists. If it does not exist anymore, the entry is deleted. This is not 100% failsafe though: On systems with a limited PID space there is a non-zero chance that between the smbd's death and the fresh access, the PID is recycled by another long-running process. This renders all files that had been locked by the killed smbd potentially unusable until the new process also dies. This patch is supposed to fix the problem the following way: Every process ID in every database is augmented by a random 64-bit number that is stored in a serverid.tdb. Whenever we need to check if a process still exists we know its PID and the 64-bit number. We look up the PID in serverid.tdb and compare the 64-bit number. If it's the same, the process still is a valid smbd holding the lock. If it is different, a new smbd has taken over. I believe this is safe against an smbd that has died hard and the PID has been taken over by a non-samba process. This process would not have registered itself with a fresh 64-bit number in serverid.tdb, so the old one still exists in serverid.tdb. We protect against this case by the parent smbd taking care of deregistering PIDs from serverid.tdb and the fact that serverid.tdb is CLEAR_IF_FIRST. CLEAR_IF_FIRST does not work in a cluster, so the automatic cleanup does not work when all smbds are restarted. For this, "net serverid wipe" has to be run before smbd starts up. As a convenience, "net serverid wipedbs" also cleans up sessionid.tdb and connections.tdb. While there, this also cleans up overloading connections.tdb with all the process entries just for messaging_send_all(). Volker
2010-03-02 19:02:01 +03:00
/*
* Walk the list of server_ids registered
*/
bool serverid_traverse(int (*fn)(struct db_record *rec,
const struct server_id *id,
uint32_t msg_flags,
void *private_data),
void *private_data);
/*
* Walk the list of server_ids registered read-only
*/
bool serverid_traverse_read(int (*fn)(const struct server_id *id,
uint32_t msg_flags,
void *private_data),
void *private_data);
/*
* Ensure CLEAR_IF_FIRST works fine, to be called from the parent smbd
*/
bool serverid_parent_init(TALLOC_CTX *mem_ctx);
/*
* Get a random unique_id and make sure that it is not
* SERVERID_UNIQUE_ID_NOT_TO_VERIFY
*/
uint64_t serverid_get_random_unique_id(void);
s3: Fix a long-standing problem with recycled PIDs When a samba server process dies hard, it has no chance to clean up its entries in locking.tdb, brlock.tdb, connections.tdb and sessionid.tdb. For locking.tdb and brlock.tdb Samba is robust by checking every time we read an entry from the database if the corresponding process still exists. If it does not exist anymore, the entry is deleted. This is not 100% failsafe though: On systems with a limited PID space there is a non-zero chance that between the smbd's death and the fresh access, the PID is recycled by another long-running process. This renders all files that had been locked by the killed smbd potentially unusable until the new process also dies. This patch is supposed to fix the problem the following way: Every process ID in every database is augmented by a random 64-bit number that is stored in a serverid.tdb. Whenever we need to check if a process still exists we know its PID and the 64-bit number. We look up the PID in serverid.tdb and compare the 64-bit number. If it's the same, the process still is a valid smbd holding the lock. If it is different, a new smbd has taken over. I believe this is safe against an smbd that has died hard and the PID has been taken over by a non-samba process. This process would not have registered itself with a fresh 64-bit number in serverid.tdb, so the old one still exists in serverid.tdb. We protect against this case by the parent smbd taking care of deregistering PIDs from serverid.tdb and the fact that serverid.tdb is CLEAR_IF_FIRST. CLEAR_IF_FIRST does not work in a cluster, so the automatic cleanup does not work when all smbds are restarted. For this, "net serverid wipe" has to be run before smbd starts up. As a convenience, "net serverid wipedbs" also cleans up sessionid.tdb and connections.tdb. While there, this also cleans up overloading connections.tdb with all the process entries just for messaging_send_all(). Volker
2010-03-02 19:02:01 +03:00
#endif