1
0
mirror of https://github.com/samba-team/samba.git synced 2024-12-25 23:21:54 +03:00
samba-mirror/source4/smbd/process_thread.c

467 lines
14 KiB
C
Raw Normal View History

/*
Unix SMB/CIFS implementation.
thread model: standard (1 thread per client connection)
Copyright (C) Andrew Tridgell 2003
Copyright (C) James J Myers 2003 <myersjj@samba.org>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include "includes.h"
#include "pthread.h"
#ifdef HAVE_BACKTRACE
#include "execinfo.h"
#endif
static void *connection_thread(void *thread_parm)
{
struct event_context *ev = thread_parm;
/* wait for action */
event_loop_wait(ev);
#if 0
pthread_cleanup_pop(1); /* will invoke terminate_mt_connection() */
#endif
return NULL;
}
static int get_id(struct request_context *req)
{
return (int)pthread_self();
}
/*
called when a listening socket becomes readable
*/
static void accept_connection(struct event_context *ev, struct fd_event *fde,
time_t t, uint16 flags)
{
int accepted_fd, rc;
struct sockaddr addr;
socklen_t in_addrlen = sizeof(addr);
pthread_t thread_id;
pthread_attr_t thread_attr;
struct model_ops *model_ops = fde->private;
/* accept an incoming connection */
accepted_fd = accept(fde->fd,&addr,&in_addrlen);
if (accepted_fd == -1) {
DEBUG(0,("accept_connection_thread: accept: %s\n",
strerror(errno)));
return;
}
/* create new detached thread for this connection. The new
thread gets a new event_context with a single fd_event for
receiving from the new socket. We set that thread running
with the main event loop, then return. When we return the
main event_context is continued.
*/
ev = event_context_init();
MUTEX_LOCK_BY_ID(MUTEX_SMBD);
init_smbsession(ev, model_ops, accepted_fd, smbd_read_handler);
MUTEX_UNLOCK_BY_ID(MUTEX_SMBD);
pthread_attr_init(&thread_attr);
pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_DETACHED);
rc = pthread_create(&thread_id, &thread_attr, &connection_thread, ev);
pthread_attr_destroy(&thread_attr);
if (rc == 0) {
DEBUG(4,("accept_connection_thread: created thread_id=%lu for fd=%d\n",
(unsigned long int)thread_id, accepted_fd));
} else {
DEBUG(0,("accept_connection_thread: thread create failed for fd=%d, rc=%d\n", accepted_fd, rc));
}
}
/*
called when a rpc listening socket becomes readable
*/
static void accept_rpc_connection(struct event_context *ev, struct fd_event *fde, time_t t, uint16 flags)
{
int accepted_fd, rc;
struct sockaddr addr;
socklen_t in_addrlen = sizeof(addr);
pthread_t thread_id;
pthread_attr_t thread_attr;
/* accept an incoming connection */
accepted_fd = accept(fde->fd,&addr,&in_addrlen);
if (accepted_fd == -1) {
DEBUG(0,("accept_connection_thread: accept: %s\n",
strerror(errno)));
return;
}
ev = event_context_init();
MUTEX_LOCK_BY_ID(MUTEX_SMBD);
init_rpcsession(ev, fde->private, accepted_fd);
MUTEX_UNLOCK_BY_ID(MUTEX_SMBD);
pthread_attr_init(&thread_attr);
pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_DETACHED);
rc = pthread_create(&thread_id, &thread_attr, &connection_thread, ev);
pthread_attr_destroy(&thread_attr);
if (rc == 0) {
DEBUG(4,("accept_connection_thread: created thread_id=%lu for fd=%d\n",
(unsigned long int)thread_id, accepted_fd));
} else {
DEBUG(0,("accept_connection_thread: thread create failed for fd=%d, rc=%d\n", accepted_fd, rc));
}
}
/* called when a SMB connection goes down */
static void terminate_connection(struct server_context *server, const char *reason)
{
server_terminate(server);
/* terminate this thread */
pthread_exit(NULL); /* thread cleanup routine will do actual cleanup */
}
/*
mutex init function for thread model
*/
static int thread_mutex_init(smb_mutex_t *mutex, const char *name)
{
pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;
mutex->mutex = memdup(&m, sizeof(m));
if (! mutex->mutex) {
errno = ENOMEM;
return -1;
}
return pthread_mutex_init((pthread_mutex_t *)mutex->mutex, NULL);
}
/*
mutex destroy function for thread model
*/
static int thread_mutex_destroy(smb_mutex_t *mutex, const char *name)
{
return pthread_mutex_destroy((pthread_mutex_t *)mutex->mutex);
}
static void mutex_start_timer(struct timeval *tp1)
{
gettimeofday(tp1,NULL);
}
static double mutex_end_timer(struct timeval tp1)
{
struct timeval tp2;
gettimeofday(&tp2,NULL);
return((tp2.tv_sec - tp1.tv_sec) +
(tp2.tv_usec - tp1.tv_usec)*1.0e-6);
}
/*
mutex lock function for thread model
*/
static int thread_mutex_lock(smb_mutex_t *mutexP, const char *name)
{
pthread_mutex_t *mutex = (pthread_mutex_t *)mutexP->mutex;
int rc;
double t;
struct timeval tp1;
/* Test below is ONLY for debugging */
if ((rc = pthread_mutex_trylock(mutex))) {
if (rc == EBUSY) {
mutex_start_timer(&tp1);
printf("mutex lock: thread %d, lock %s not available\n",
(uint32)pthread_self(), name);
print_suspicious_usage("mutex_lock", name);
pthread_mutex_lock(mutex);
t = mutex_end_timer(tp1);
printf("mutex lock: thread %d, lock %s now available, waited %g seconds\n",
(uint32)pthread_self(), name, t);
return 0;
}
printf("mutex lock: thread %d, lock %s failed rc=%d\n",
(uint32)pthread_self(), name, rc);
SMB_ASSERT(errno == 0); /* force error */
}
return 0;
}
/*
mutex unlock for thread model
*/
static int thread_mutex_unlock(smb_mutex_t *mutex, const char *name)
{
return pthread_mutex_unlock((pthread_mutex_t *)mutex->mutex);
}
/*****************************************************************
Read/write lock routines.
*****************************************************************/
/*
rwlock init function for thread model
*/
static int thread_rwlock_init(rwlock_t *rwlock, const char *name)
{
pthread_rwlock_t m = PTHREAD_RWLOCK_INITIALIZER;
rwlock->rwlock = memdup(&m, sizeof(m));
if (! rwlock->rwlock) {
errno = ENOMEM;
return -1;
}
return pthread_rwlock_init((pthread_rwlock_t *)rwlock->rwlock, NULL);
}
/*
rwlock destroy function for thread model
*/
static int thread_rwlock_destroy(rwlock_t *rwlock, const char *name)
{
return pthread_rwlock_destroy((pthread_rwlock_t *)rwlock->rwlock);
}
/*
rwlock lock for read function for thread model
*/
static int thread_rwlock_lock_read(rwlock_t *rwlockP, const char *name)
{
pthread_rwlock_t *rwlock = (pthread_rwlock_t *)rwlockP->rwlock;
int rc;
double t;
struct timeval tp1;
/* Test below is ONLY for debugging */
if ((rc = pthread_rwlock_tryrdlock(rwlock))) {
if (rc == EBUSY) {
mutex_start_timer(&tp1);
printf("rwlock lock_read: thread %d, lock %s not available\n",
(uint32)pthread_self(), name);
print_suspicious_usage("rwlock_lock_read", name);
pthread_rwlock_rdlock(rwlock);
t = mutex_end_timer(tp1);
printf("rwlock lock_read: thread %d, lock %s now available, waited %g seconds\n",
(uint32)pthread_self(), name, t);
return 0;
}
printf("rwlock lock_read: thread %d, lock %s failed rc=%d\n",
(uint32)pthread_self(), name, rc);
SMB_ASSERT(errno == 0); /* force error */
}
return 0;
}
/*
rwlock lock for write function for thread model
*/
static int thread_rwlock_lock_write(rwlock_t *rwlockP, const char *name)
{
pthread_rwlock_t *rwlock = (pthread_rwlock_t *)rwlockP->rwlock;
int rc;
double t;
struct timeval tp1;
/* Test below is ONLY for debugging */
if ((rc = pthread_rwlock_trywrlock(rwlock))) {
if (rc == EBUSY) {
mutex_start_timer(&tp1);
printf("rwlock lock_write: thread %d, lock %s not available\n",
(uint32)pthread_self(), name);
print_suspicious_usage("rwlock_lock_write", name);
pthread_rwlock_wrlock(rwlock);
t = mutex_end_timer(tp1);
printf("rwlock lock_write: thread %d, lock %s now available, waited %g seconds\n",
(uint32)pthread_self(), name, t);
return 0;
}
printf("rwlock lock_write: thread %d, lock %s failed rc=%d\n",
(uint32)pthread_self(), name, rc);
SMB_ASSERT(errno == 0); /* force error */
}
return 0;
}
/*
rwlock unlock for thread model
*/
static int thread_rwlock_unlock(rwlock_t *rwlock, const char *name)
{
return pthread_rwlock_unlock((pthread_rwlock_t *)rwlock->rwlock);
}
/*****************************************************************
Log suspicious usage (primarily for possible thread-unsafe behavior.
*****************************************************************/
static void thread_log_suspicious_usage(const char* from, const char* info)
{
void *addresses[10];
int num_addresses, i;
char **bt_symbols;
DEBUG(1,("log_suspicious_usage: from %s info='%s'\n", from, info));
#ifdef HAVE_BACKTRACE
num_addresses = backtrace(addresses, 8);
bt_symbols = backtrace_symbols(addresses, num_addresses);
for (i=0; i<num_addresses; i++) {
DEBUG(1,("log_suspicious_usage: %s%s\n", DEBUGTAB(1), bt_symbols[i]));
}
free(bt_symbols);
#endif
}
/*****************************************************************
Log suspicious usage to stdout (primarily for possible thread-unsafe behavior.
Used in mutex code where DEBUG calls would cause recursion.
*****************************************************************/
static void thread_print_suspicious_usage(const char* from, const char* info)
{
void *addresses[10];
int num_addresses, i;
char **bt_symbols;
printf("log_suspicious_usage: from %s info='%s'\n", from, info);
#ifdef HAVE_BACKTRACE
num_addresses = backtrace(addresses, 8);
bt_symbols = backtrace_symbols(addresses, num_addresses);
for (i=0; i<num_addresses; i++) {
printf("log_suspicious_usage: %s%s\n", DEBUGTAB(1), bt_symbols[i]);
}
free(bt_symbols);
#endif
}
static uint32 thread_get_task_id(void)
{
return (uint32)pthread_self();
}
static void thread_log_task_id(int fd)
{
char *s;
asprintf(&s, "thread %u: ", (uint32)pthread_self());
write(fd, s, strlen(s));
free(s);
}
/****************************************************************************
catch serious errors
****************************************************************************/
static void thread_sig_fault(int sig)
{
DEBUG(0,("===============================================================\n"));
DEBUG(0,("TERMINAL ERROR: Recursive signal %d in thread %lu (%s)\n",sig,(unsigned long int)pthread_self(),SAMBA_VERSION));
DEBUG(0,("===============================================================\n"));
exit(1); /* kill the whole server for now */
}
/*******************************************************************
setup our recursive fault handlers
********************************************************************/
static void thread_fault_setup(void)
{
#ifdef SIGSEGV
CatchSignal(SIGSEGV,SIGNAL_CAST thread_sig_fault);
#endif
#ifdef SIGBUS
CatchSignal(SIGBUS,SIGNAL_CAST thread_sig_fault);
#endif
}
/*******************************************************************
report a fault in a thread
********************************************************************/
static void thread_fault_handler(int sig)
{
static int counter;
void *addresses[10];
int num_addresses, i;
char **bt_symbols;
/* try to catch recursive faults */
thread_fault_setup();
counter++; /* count number of faults that have occurred */
DEBUG(0,("===============================================================\n"));
DEBUG(0,("INTERNAL ERROR: Signal %d in thread %lu (%s)\n",sig,(unsigned long int)pthread_self(),SAMBA_VERSION));
DEBUG(0,("Please read the file BUGS.txt in the distribution\n"));
DEBUG(0,("===============================================================\n"));
#ifdef HAVE_BACKTRACE
num_addresses = backtrace(addresses, 10);
bt_symbols = backtrace_symbols(addresses, num_addresses);
for (i=0; i<num_addresses; i++) {
DEBUG(9,("fault_report: %s\n", bt_symbols[i]));
}
free(bt_symbols);
#endif
pthread_exit(NULL); /* terminate failing thread only */
}
/*
called when the process model is selected
*/
static void model_startup(void)
{
struct mutex_ops m_ops;
struct debug_ops d_ops;
ZERO_STRUCT(m_ops);
ZERO_STRUCT(d_ops);
smbd_process_init();
/* register mutex/rwlock handlers */
m_ops.mutex_init = thread_mutex_init;
m_ops.mutex_lock = thread_mutex_lock;
m_ops.mutex_unlock = thread_mutex_unlock;
m_ops.mutex_destroy = thread_mutex_destroy;
m_ops.rwlock_init = thread_rwlock_init;
m_ops.rwlock_lock_write = thread_rwlock_lock_write;
m_ops.rwlock_lock_read = thread_rwlock_lock_read;
m_ops.rwlock_unlock = thread_rwlock_unlock;
m_ops.rwlock_destroy = thread_rwlock_destroy;
register_mutex_handlers("thread", &m_ops);
register_fault_handler("thread", thread_fault_handler);
d_ops.log_suspicious_usage = thread_log_suspicious_usage;
d_ops.print_suspicious_usage = thread_print_suspicious_usage;
d_ops.get_task_id = thread_get_task_id;
d_ops.log_task_id = thread_log_task_id;
register_debug_handlers("thread", &d_ops);
}
/*
initialise the thread process model, registering ourselves with the model subsystem
*/
void process_model_thread_init(void)
{
struct model_ops ops;
ZERO_STRUCT(ops);
/* fill in all the operations */
ops.model_startup = model_startup;
ops.accept_connection = accept_connection;
ops.accept_rpc_connection = accept_rpc_connection;
ops.terminate_connection = terminate_connection;
ops.exit_server = NULL;
ops.get_id = get_id;
/* register ourselves with the process model subsystem. We
register under the name 'thread'. */
register_process_model("thread", &ops);
}