1
0
mirror of https://github.com/samba-team/samba.git synced 2024-12-22 13:34:15 +03:00
samba-mirror/ctdb/server/ctdb_recover.c

1395 lines
38 KiB
C
Raw Normal View History

/*
ctdb recovery code
Copyright (C) Andrew Tridgell 2007
Copyright (C) Ronnie Sahlberg 2007
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "includes.h"
#include "tdb.h"
#include "system/time.h"
#include "system/network.h"
#include "system/filesys.h"
#include "system/wait.h"
#include "../include/ctdb_private.h"
#include "lib/util/dlinklist.h"
#include "db_wrap.h"
int
ctdb_control_getvnnmap(struct ctdb_context *ctdb, uint32_t opcode, TDB_DATA indata, TDB_DATA *outdata)
{
CHECK_CONTROL_DATA_SIZE(0);
struct ctdb_vnn_map_wire *map;
size_t len;
len = offsetof(struct ctdb_vnn_map_wire, map) + sizeof(uint32_t)*ctdb->vnn_map->size;
map = talloc_size(outdata, len);
CTDB_NO_MEMORY(ctdb, map);
map->generation = ctdb->vnn_map->generation;
map->size = ctdb->vnn_map->size;
memcpy(map->map, ctdb->vnn_map->map, sizeof(uint32_t)*map->size);
outdata->dsize = len;
outdata->dptr = (uint8_t *)map;
return 0;
}
int
ctdb_control_setvnnmap(struct ctdb_context *ctdb, uint32_t opcode, TDB_DATA indata, TDB_DATA *outdata)
{
struct ctdb_vnn_map_wire *map = (struct ctdb_vnn_map_wire *)indata.dptr;
int i;
for(i=1; i<=NUM_DB_PRIORITIES; i++) {
if (ctdb->freeze_mode[i] != CTDB_FREEZE_FROZEN) {
DEBUG(DEBUG_ERR,("Attempt to set vnnmap when not frozen\n"));
return -1;
}
}
talloc_free(ctdb->vnn_map);
ctdb->vnn_map = talloc(ctdb, struct ctdb_vnn_map);
CTDB_NO_MEMORY(ctdb, ctdb->vnn_map);
ctdb->vnn_map->generation = map->generation;
ctdb->vnn_map->size = map->size;
ctdb->vnn_map->map = talloc_array(ctdb->vnn_map, uint32_t, map->size);
CTDB_NO_MEMORY(ctdb, ctdb->vnn_map->map);
memcpy(ctdb->vnn_map->map, map->map, sizeof(uint32_t)*map->size);
return 0;
}
int
ctdb_control_getdbmap(struct ctdb_context *ctdb, uint32_t opcode, TDB_DATA indata, TDB_DATA *outdata)
{
uint32_t i, len;
struct ctdb_db_context *ctdb_db;
struct ctdb_dbid_map *dbid_map;
CHECK_CONTROL_DATA_SIZE(0);
len = 0;
for(ctdb_db=ctdb->db_list;ctdb_db;ctdb_db=ctdb_db->next){
len++;
}
outdata->dsize = offsetof(struct ctdb_dbid_map, dbs) + sizeof(dbid_map->dbs[0])*len;
outdata->dptr = (unsigned char *)talloc_zero_size(outdata, outdata->dsize);
if (!outdata->dptr) {
DEBUG(DEBUG_ALERT, (__location__ " Failed to allocate dbmap array\n"));
exit(1);
}
dbid_map = (struct ctdb_dbid_map *)outdata->dptr;
dbid_map->num = len;
for (i=0,ctdb_db=ctdb->db_list;ctdb_db;i++,ctdb_db=ctdb_db->next){
dbid_map->dbs[i].dbid = ctdb_db->db_id;
if (ctdb_db->persistent != 0) {
dbid_map->dbs[i].flags |= CTDB_DB_FLAGS_PERSISTENT;
}
if (ctdb_db->readonly != 0) {
dbid_map->dbs[i].flags |= CTDB_DB_FLAGS_READONLY;
}
if (ctdb_db->sticky != 0) {
dbid_map->dbs[i].flags |= CTDB_DB_FLAGS_STICKY;
}
}
return 0;
}
int
ctdb_control_getnodemap(struct ctdb_context *ctdb, uint32_t opcode, TDB_DATA indata, TDB_DATA *outdata)
{
uint32_t i, num_nodes;
struct ctdb_node_map *node_map;
CHECK_CONTROL_DATA_SIZE(0);
num_nodes = ctdb->num_nodes;
outdata->dsize = offsetof(struct ctdb_node_map, nodes) + num_nodes*sizeof(struct ctdb_node_and_flags);
outdata->dptr = (unsigned char *)talloc_zero_size(outdata, outdata->dsize);
if (!outdata->dptr) {
DEBUG(DEBUG_ALERT, (__location__ " Failed to allocate nodemap array\n"));
exit(1);
}
node_map = (struct ctdb_node_map *)outdata->dptr;
node_map->num = num_nodes;
for (i=0; i<num_nodes; i++) {
if (parse_ip(ctdb->nodes[i]->address.address,
NULL, /* TODO: pass in the correct interface here*/
0,
&node_map->nodes[i].addr) == 0)
{
DEBUG(DEBUG_ERR, (__location__ " Failed to parse %s into a sockaddr\n", ctdb->nodes[i]->address.address));
}
node_map->nodes[i].pnn = ctdb->nodes[i]->pnn;
node_map->nodes[i].flags = ctdb->nodes[i]->flags;
}
return 0;
}
/*
get an old style ipv4-only nodemap
*/
int
ctdb_control_getnodemapv4(struct ctdb_context *ctdb, uint32_t opcode, TDB_DATA indata, TDB_DATA *outdata)
{
uint32_t i, num_nodes;
struct ctdb_node_mapv4 *node_map;
CHECK_CONTROL_DATA_SIZE(0);
num_nodes = ctdb->num_nodes;
outdata->dsize = offsetof(struct ctdb_node_mapv4, nodes) + num_nodes*sizeof(struct ctdb_node_and_flagsv4);
outdata->dptr = (unsigned char *)talloc_zero_size(outdata, outdata->dsize);
if (!outdata->dptr) {
DEBUG(DEBUG_ALERT, (__location__ " Failed to allocate nodemap array\n"));
exit(1);
}
node_map = (struct ctdb_node_mapv4 *)outdata->dptr;
node_map->num = num_nodes;
for (i=0; i<num_nodes; i++) {
if (parse_ipv4(ctdb->nodes[i]->address.address, 0, &node_map->nodes[i].sin) == 0) {
DEBUG(DEBUG_ERR, (__location__ " Failed to parse %s into a sockaddr\n", ctdb->nodes[i]->address.address));
return -1;
}
node_map->nodes[i].pnn = ctdb->nodes[i]->pnn;
node_map->nodes[i].flags = ctdb->nodes[i]->flags;
}
return 0;
}
static void
ctdb_reload_nodes_event(struct event_context *ev, struct timed_event *te,
struct timeval t, void *private_data)
{
int i, num_nodes;
struct ctdb_context *ctdb = talloc_get_type(private_data, struct ctdb_context);
TALLOC_CTX *tmp_ctx;
struct ctdb_node **nodes;
tmp_ctx = talloc_new(ctdb);
/* steal the old nodes file for a while */
talloc_steal(tmp_ctx, ctdb->nodes);
nodes = ctdb->nodes;
ctdb->nodes = NULL;
num_nodes = ctdb->num_nodes;
ctdb->num_nodes = 0;
/* load the new nodes file */
ctdb_load_nodes_file(ctdb);
for (i=0; i<ctdb->num_nodes; i++) {
/* keep any identical pre-existing nodes and connections */
if ((i < num_nodes) && ctdb_same_address(&ctdb->nodes[i]->address, &nodes[i]->address)) {
talloc_free(ctdb->nodes[i]);
ctdb->nodes[i] = talloc_steal(ctdb->nodes, nodes[i]);
continue;
}
if (ctdb->nodes[i]->flags & NODE_FLAGS_DELETED) {
continue;
}
/* any new or different nodes must be added */
if (ctdb->methods->add_node(ctdb->nodes[i]) != 0) {
DEBUG(DEBUG_CRIT, (__location__ " methods->add_node failed at %d\n", i));
ctdb_fatal(ctdb, "failed to add node. shutting down\n");
}
if (ctdb->methods->connect_node(ctdb->nodes[i]) != 0) {
DEBUG(DEBUG_CRIT, (__location__ " methods->add_connect failed at %d\n", i));
ctdb_fatal(ctdb, "failed to connect to node. shutting down\n");
}
}
/* tell the recovery daemon to reaload the nodes file too */
ctdb_daemon_send_message(ctdb, ctdb->pnn, CTDB_SRVID_RELOAD_NODES, tdb_null);
talloc_free(tmp_ctx);
return;
}
/*
reload the nodes file after a short delay (so that we can send the response
back first
*/
int
ctdb_control_reload_nodes_file(struct ctdb_context *ctdb, uint32_t opcode)
{
event_add_timed(ctdb->ev, ctdb, timeval_current_ofs(1,0), ctdb_reload_nodes_event, ctdb);
return 0;
}
/*
a traverse function for pulling all relevent records from pulldb
*/
struct pulldb_data {
struct ctdb_context *ctdb;
struct ctdb_db_context *ctdb_db;
struct ctdb_marshall_buffer *pulldata;
uint32_t len;
uint32_t allocated_len;
bool failed;
};
static int traverse_pulldb(struct tdb_context *tdb, TDB_DATA key, TDB_DATA data, void *p)
{
struct pulldb_data *params = (struct pulldb_data *)p;
struct ctdb_rec_data *rec;
struct ctdb_context *ctdb = params->ctdb;
struct ctdb_db_context *ctdb_db = params->ctdb_db;
/* add the record to the blob */
rec = ctdb_marshall_record(params->pulldata, 0, key, NULL, data);
if (rec == NULL) {
params->failed = true;
return -1;
}
if (params->len + rec->length >= params->allocated_len) {
params->allocated_len = rec->length + params->len + ctdb->tunable.pulldb_preallocation_size;
params->pulldata = talloc_realloc_size(NULL, params->pulldata, params->allocated_len);
}
if (params->pulldata == NULL) {
DEBUG(DEBUG_CRIT,(__location__ " Failed to expand pulldb_data to %u\n", rec->length + params->len));
ctdb_fatal(params->ctdb, "failed to allocate memory for recovery. shutting down\n");
}
params->pulldata->count++;
memcpy(params->len+(uint8_t *)params->pulldata, rec, rec->length);
params->len += rec->length;
if (ctdb->tunable.db_record_size_warn != 0 && rec->length > ctdb->tunable.db_record_size_warn) {
DEBUG(DEBUG_ERR,("Data record in %s is big. Record size is %d bytes\n", ctdb_db->db_name, (int)rec->length));
}
talloc_free(rec);
return 0;
}
/*
pull a bunch of records from a ltdb, filtering by lmaster
*/
int32_t ctdb_control_pull_db(struct ctdb_context *ctdb, TDB_DATA indata, TDB_DATA *outdata)
{
struct ctdb_control_pulldb *pull;
struct ctdb_db_context *ctdb_db;
struct pulldb_data params;
struct ctdb_marshall_buffer *reply;
pull = (struct ctdb_control_pulldb *)indata.dptr;
ctdb_db = find_ctdb_db(ctdb, pull->db_id);
if (!ctdb_db) {
DEBUG(DEBUG_ERR,(__location__ " Unknown db 0x%08x\n", pull->db_id));
return -1;
}
if (ctdb->freeze_mode[ctdb_db->priority] != CTDB_FREEZE_FROZEN) {
DEBUG(DEBUG_DEBUG,("rejecting ctdb_control_pull_db when not frozen\n"));
return -1;
}
reply = talloc_zero(outdata, struct ctdb_marshall_buffer);
CTDB_NO_MEMORY(ctdb, reply);
reply->db_id = pull->db_id;
params.ctdb = ctdb;
params.ctdb_db = ctdb_db;
params.pulldata = reply;
params.len = offsetof(struct ctdb_marshall_buffer, data);
params.allocated_len = params.len;
params.failed = false;
if (ctdb_db->unhealthy_reason) {
/* this is just a warning, as the tdb should be empty anyway */
DEBUG(DEBUG_WARNING,("db(%s) unhealty in ctdb_control_pull_db: %s\n",
ctdb_db->db_name, ctdb_db->unhealthy_reason));
}
if (ctdb_lockall_mark_prio(ctdb, ctdb_db->priority) != 0) {
DEBUG(DEBUG_ERR,(__location__ " Failed to get lock on entired db - failing\n"));
return -1;
}
if (tdb_traverse_read(ctdb_db->ltdb->tdb, traverse_pulldb, &params) == -1) {
DEBUG(DEBUG_ERR,(__location__ " Failed to get traverse db '%s'\n", ctdb_db->db_name));
ctdb_lockall_unmark_prio(ctdb, ctdb_db->priority);
talloc_free(params.pulldata);
return -1;
}
ctdb_lockall_unmark_prio(ctdb, ctdb_db->priority);
outdata->dptr = (uint8_t *)params.pulldata;
outdata->dsize = params.len;
if (ctdb->tunable.db_record_count_warn != 0 && params.pulldata->count > ctdb->tunable.db_record_count_warn) {
DEBUG(DEBUG_ERR,("Database %s is big. Contains %d records\n", ctdb_db->db_name, params.pulldata->count));
}
if (ctdb->tunable.db_size_warn != 0 && outdata->dsize > ctdb->tunable.db_size_warn) {
DEBUG(DEBUG_ERR,("Database %s is big. Contains %d bytes\n", ctdb_db->db_name, (int)outdata->dsize));
}
return 0;
}
/*
push a bunch of records into a ltdb, filtering by rsn
*/
int32_t ctdb_control_push_db(struct ctdb_context *ctdb, TDB_DATA indata)
{
struct ctdb_marshall_buffer *reply = (struct ctdb_marshall_buffer *)indata.dptr;
struct ctdb_db_context *ctdb_db;
int i, ret;
struct ctdb_rec_data *rec;
if (indata.dsize < offsetof(struct ctdb_marshall_buffer, data)) {
DEBUG(DEBUG_ERR,(__location__ " invalid data in pulldb reply\n"));
return -1;
}
ctdb_db = find_ctdb_db(ctdb, reply->db_id);
if (!ctdb_db) {
DEBUG(DEBUG_ERR,(__location__ " Unknown db 0x%08x\n", reply->db_id));
return -1;
}
if (ctdb->freeze_mode[ctdb_db->priority] != CTDB_FREEZE_FROZEN) {
DEBUG(DEBUG_DEBUG,("rejecting ctdb_control_push_db when not frozen\n"));
return -1;
}
if (ctdb_lockall_mark_prio(ctdb, ctdb_db->priority) != 0) {
DEBUG(DEBUG_ERR,(__location__ " Failed to get lock on entired db - failing\n"));
return -1;
}
rec = (struct ctdb_rec_data *)&reply->data[0];
DEBUG(DEBUG_INFO,("starting push of %u records for dbid 0x%x\n",
reply->count, reply->db_id));
for (i=0;i<reply->count;i++) {
TDB_DATA key, data;
struct ctdb_ltdb_header *hdr;
key.dptr = &rec->data[0];
key.dsize = rec->keylen;
data.dptr = &rec->data[key.dsize];
data.dsize = rec->datalen;
if (data.dsize < sizeof(struct ctdb_ltdb_header)) {
DEBUG(DEBUG_CRIT,(__location__ " bad ltdb record\n"));
goto failed;
}
hdr = (struct ctdb_ltdb_header *)data.dptr;
/* strip off any read only record flags. All readonly records
are revoked implicitely by a recovery
*/
hdr->flags &= ~CTDB_REC_RO_FLAGS;
data.dptr += sizeof(*hdr);
data.dsize -= sizeof(*hdr);
ret = ctdb_ltdb_store(ctdb_db, key, hdr, data);
if (ret != 0) {
DEBUG(DEBUG_CRIT, (__location__ " Unable to store record\n"));
goto failed;
}
rec = (struct ctdb_rec_data *)(rec->length + (uint8_t *)rec);
}
DEBUG(DEBUG_DEBUG,("finished push of %u records for dbid 0x%x\n",
reply->count, reply->db_id));
if (ctdb_db->readonly) {
DEBUG(DEBUG_CRIT,("Clearing the tracking database for dbid 0x%x\n",
ctdb_db->db_id));
if (tdb_wipe_all(ctdb_db->rottdb) != 0) {
DEBUG(DEBUG_ERR,("Failed to wipe tracking database for 0x%x. Dropping read-only delegation support\n", ctdb_db->db_id));
ctdb_db->readonly = false;
tdb_close(ctdb_db->rottdb);
ctdb_db->rottdb = NULL;
ctdb_db->readonly = false;
}
while (ctdb_db->revokechild_active != NULL) {
talloc_free(ctdb_db->revokechild_active);
}
}
ctdb_lockall_unmark_prio(ctdb, ctdb_db->priority);
return 0;
failed:
ctdb_lockall_unmark_prio(ctdb, ctdb_db->priority);
return -1;
}
struct ctdb_set_recmode_state {
struct ctdb_context *ctdb;
struct ctdb_req_control *c;
uint32_t recmode;
int fd[2];
struct timed_event *te;
struct fd_event *fde;
pid_t child;
struct timeval start_time;
};
/*
called if our set_recmode child times out. this would happen if
ctdb_recovery_lock() would block.
*/
static void ctdb_set_recmode_timeout(struct event_context *ev, struct timed_event *te,
struct timeval t, void *private_data)
{
struct ctdb_set_recmode_state *state = talloc_get_type(private_data,
struct ctdb_set_recmode_state);
/* we consider this a success, not a failure, as we failed to
set the recovery lock which is what we wanted. This can be
caused by the cluster filesystem being very slow to
arbitrate locks immediately after a node failure.
*/
DEBUG(DEBUG_ERR,(__location__ " set_recmode child process hung/timedout CFS slow to grant locks? (allowing recmode set anyway)\n"));
state->ctdb->recovery_mode = state->recmode;
ctdb_request_control_reply(state->ctdb, state->c, NULL, 0, NULL);
talloc_free(state);
}
/* when we free the recmode state we must kill any child process.
*/
static int set_recmode_destructor(struct ctdb_set_recmode_state *state)
{
double l = timeval_elapsed(&state->start_time);
CTDB_UPDATE_RECLOCK_LATENCY(state->ctdb, "daemon reclock", reclock.ctdbd, l);
if (state->fd[0] != -1) {
state->fd[0] = -1;
}
if (state->fd[1] != -1) {
state->fd[1] = -1;
}
ctdb_kill(state->ctdb, state->child, SIGKILL);
return 0;
}
/* this is called when the client process has completed ctdb_recovery_lock()
and has written data back to us through the pipe.
*/
static void set_recmode_handler(struct event_context *ev, struct fd_event *fde,
uint16_t flags, void *private_data)
{
struct ctdb_set_recmode_state *state= talloc_get_type(private_data,
struct ctdb_set_recmode_state);
char c = 0;
int ret;
/* we got a response from our child process so we can abort the
timeout.
*/
talloc_free(state->te);
state->te = NULL;
/* read the childs status when trying to lock the reclock file.
child wrote 0 if everything is fine and 1 if it did manage
to lock the file, which would be a problem since that means
we got a request to exit from recovery but we could still lock
the file which at this time SHOULD be locked by the recovery
daemon on the recmaster
*/
ret = read(state->fd[0], &c, 1);
if (ret != 1 || c != 0) {
ctdb_request_control_reply(state->ctdb, state->c, NULL, -1, "managed to lock reclock file from inside daemon");
talloc_free(state);
return;
}
state->ctdb->recovery_mode = state->recmode;
/* release any deferred attach calls from clients */
if (state->recmode == CTDB_RECOVERY_NORMAL) {
ctdb_process_deferred_attach(state->ctdb);
}
ctdb_request_control_reply(state->ctdb, state->c, NULL, 0, NULL);
talloc_free(state);
return;
}
static void
ctdb_drop_all_ips_event(struct event_context *ev, struct timed_event *te,
struct timeval t, void *private_data)
{
struct ctdb_context *ctdb = talloc_get_type(private_data, struct ctdb_context);
DEBUG(DEBUG_ERR,(__location__ " Been in recovery mode for too long. Dropping all IPS\n"));
talloc_free(ctdb->release_ips_ctx);
ctdb->release_ips_ctx = NULL;
ctdb_release_all_ips(ctdb);
}
/*
* Set up an event to drop all public ips if we remain in recovery for too
* long
*/
int ctdb_deferred_drop_all_ips(struct ctdb_context *ctdb)
{
if (ctdb->release_ips_ctx != NULL) {
talloc_free(ctdb->release_ips_ctx);
}
ctdb->release_ips_ctx = talloc_new(ctdb);
CTDB_NO_MEMORY(ctdb, ctdb->release_ips_ctx);
event_add_timed(ctdb->ev, ctdb->release_ips_ctx, timeval_current_ofs(ctdb->tunable.recovery_drop_all_ips, 0), ctdb_drop_all_ips_event, ctdb);
return 0;
}
/*
set the recovery mode
*/
int32_t ctdb_control_set_recmode(struct ctdb_context *ctdb,
struct ctdb_req_control *c,
TDB_DATA indata, bool *async_reply,
const char **errormsg)
{
uint32_t recmode = *(uint32_t *)indata.dptr;
int i, ret;
struct ctdb_set_recmode_state *state;
pid_t parent = getpid();
/* if we enter recovery but stay in recovery for too long
we will eventually drop all our ip addresses
*/
if (recmode == CTDB_RECOVERY_NORMAL) {
talloc_free(ctdb->release_ips_ctx);
ctdb->release_ips_ctx = NULL;
} else {
if (ctdb_deferred_drop_all_ips(ctdb) != 0) {
DEBUG(DEBUG_ERR,("Failed to set up deferred drop all ips\n"));
}
}
if (recmode != ctdb->recovery_mode) {
DEBUG(DEBUG_NOTICE,(__location__ " Recovery mode set to %s\n",
recmode==CTDB_RECOVERY_NORMAL?"NORMAL":"ACTIVE"));
}
if (recmode != CTDB_RECOVERY_NORMAL ||
ctdb->recovery_mode != CTDB_RECOVERY_ACTIVE) {
ctdb->recovery_mode = recmode;
return 0;
}
/* some special handling when ending recovery mode */
/* force the databases to thaw */
for (i=1; i<=NUM_DB_PRIORITIES; i++) {
if (ctdb->freeze_handles[i] != NULL) {
ctdb_control_thaw(ctdb, i);
}
}
state = talloc(ctdb, struct ctdb_set_recmode_state);
CTDB_NO_MEMORY(ctdb, state);
state->start_time = timeval_current();
state->fd[0] = -1;
state->fd[1] = -1;
/* release any deferred attach calls from clients */
if (recmode == CTDB_RECOVERY_NORMAL) {
ctdb_process_deferred_attach(ctdb);
}
if (ctdb->tunable.verify_recovery_lock == 0) {
/* dont need to verify the reclock file */
ctdb->recovery_mode = recmode;
return 0;
}
/* For the rest of what needs to be done, we need to do this in
a child process since
1, the call to ctdb_recovery_lock() can block if the cluster
filesystem is in the process of recovery.
*/
ret = pipe(state->fd);
if (ret != 0) {
talloc_free(state);
DEBUG(DEBUG_CRIT,(__location__ " Failed to open pipe for set_recmode child\n"));
return -1;
}
state->child = ctdb_fork(ctdb);
if (state->child == (pid_t)-1) {
close(state->fd[0]);
close(state->fd[1]);
talloc_free(state);
return -1;
}
if (state->child == 0) {
char cc = 0;
close(state->fd[0]);
ctdb_set_process_name("ctdb_recmode");
debug_extra = talloc_asprintf(NULL, "set_recmode:");
/* we should not be able to get the lock on the reclock file,
as it should be held by the recovery master
*/
if (ctdb_recovery_lock(ctdb, false)) {
DEBUG(DEBUG_CRIT,("ERROR: recovery lock file %s not locked when recovering!\n", ctdb->recovery_lock_file));
cc = 1;
}
write(state->fd[1], &cc, 1);
/* make sure we die when our parent dies */
while (ctdb_kill(ctdb, parent, 0) == 0 || errno != ESRCH) {
sleep(5);
write(state->fd[1], &cc, 1);
}
_exit(0);
}
close(state->fd[1]);
set_close_on_exec(state->fd[0]);
state->fd[1] = -1;
talloc_set_destructor(state, set_recmode_destructor);
DEBUG(DEBUG_DEBUG, (__location__ " Created PIPE FD:%d for setrecmode\n", state->fd[0]));
state->te = event_add_timed(ctdb->ev, state, timeval_current_ofs(5, 0),
ctdb_set_recmode_timeout, state);
state->fde = event_add_fd(ctdb->ev, state, state->fd[0],
EVENT_FD_READ,
set_recmode_handler,
(void *)state);
if (state->fde == NULL) {
talloc_free(state);
return -1;
}
tevent_fd_set_auto_close(state->fde);
state->ctdb = ctdb;
state->recmode = recmode;
state->c = talloc_steal(state, c);
*async_reply = true;
return 0;
}
/*
try and get the recovery lock in shared storage - should only work
on the recovery master recovery daemon. Anywhere else is a bug
*/
bool ctdb_recovery_lock(struct ctdb_context *ctdb, bool keep)
{
struct flock lock;
if (keep) {
DEBUG(DEBUG_ERR, ("Take the recovery lock\n"));
}
if (ctdb->recovery_lock_fd != -1) {
close(ctdb->recovery_lock_fd);
ctdb->recovery_lock_fd = -1;
}
ctdb->recovery_lock_fd = open(ctdb->recovery_lock_file, O_RDWR|O_CREAT, 0600);
if (ctdb->recovery_lock_fd == -1) {
DEBUG(DEBUG_ERR,("ctdb_recovery_lock: Unable to open %s - (%s)\n",
ctdb->recovery_lock_file, strerror(errno)));
return false;
}
set_close_on_exec(ctdb->recovery_lock_fd);
lock.l_type = F_WRLCK;
lock.l_whence = SEEK_SET;
lock.l_start = 0;
lock.l_len = 1;
lock.l_pid = 0;
if (fcntl(ctdb->recovery_lock_fd, F_SETLK, &lock) != 0) {
close(ctdb->recovery_lock_fd);
ctdb->recovery_lock_fd = -1;
if (keep) {
DEBUG(DEBUG_CRIT,("ctdb_recovery_lock: Failed to get recovery lock on '%s'\n", ctdb->recovery_lock_file));
}
return false;
}
if (!keep) {
close(ctdb->recovery_lock_fd);
ctdb->recovery_lock_fd = -1;
}
if (keep) {
DEBUG(DEBUG_NOTICE, ("Recovery lock taken successfully\n"));
}
DEBUG(DEBUG_NOTICE,("ctdb_recovery_lock: Got recovery lock on '%s'\n", ctdb->recovery_lock_file));
return true;
}
/*
delete a record as part of the vacuum process
only delete if we are not lmaster or dmaster, and our rsn is <= the provided rsn
use non-blocking locks
return 0 if the record was successfully deleted (i.e. it does not exist
when the function returns)
or !0 is the record still exists in the tdb after returning.
*/
static int delete_tdb_record(struct ctdb_context *ctdb, struct ctdb_db_context *ctdb_db, struct ctdb_rec_data *rec)
{
TDB_DATA key, data;
struct ctdb_ltdb_header *hdr, *hdr2;
/* these are really internal tdb functions - but we need them here for
non-blocking lock of the freelist */
int tdb_lock_nonblock(struct tdb_context *tdb, int list, int ltype);
int tdb_unlock(struct tdb_context *tdb, int list, int ltype);
key.dsize = rec->keylen;
key.dptr = &rec->data[0];
data.dsize = rec->datalen;
data.dptr = &rec->data[rec->keylen];
if (ctdb_lmaster(ctdb, &key) == ctdb->pnn) {
DEBUG(DEBUG_INFO,(__location__ " Called delete on record where we are lmaster\n"));
return -1;
}
if (data.dsize != sizeof(struct ctdb_ltdb_header)) {
DEBUG(DEBUG_ERR,(__location__ " Bad record size\n"));
return -1;
}
hdr = (struct ctdb_ltdb_header *)data.dptr;
/* use a non-blocking lock */
if (tdb_chainlock_nonblock(ctdb_db->ltdb->tdb, key) != 0) {
return -1;
}
data = tdb_fetch(ctdb_db->ltdb->tdb, key);
if (data.dptr == NULL) {
tdb_chainunlock(ctdb_db->ltdb->tdb, key);
return 0;
}
if (data.dsize < sizeof(struct ctdb_ltdb_header)) {
if (tdb_lock_nonblock(ctdb_db->ltdb->tdb, -1, F_WRLCK) == 0) {
tdb_delete(ctdb_db->ltdb->tdb, key);
tdb_unlock(ctdb_db->ltdb->tdb, -1, F_WRLCK);
DEBUG(DEBUG_CRIT,(__location__ " Deleted corrupt record\n"));
}
tdb_chainunlock(ctdb_db->ltdb->tdb, key);
free(data.dptr);
return 0;
}
hdr2 = (struct ctdb_ltdb_header *)data.dptr;
if (hdr2->rsn > hdr->rsn) {
tdb_chainunlock(ctdb_db->ltdb->tdb, key);
DEBUG(DEBUG_INFO,(__location__ " Skipping record with rsn=%llu - called with rsn=%llu\n",
(unsigned long long)hdr2->rsn, (unsigned long long)hdr->rsn));
free(data.dptr);
return -1;
}
/* do not allow deleting record that have readonly flags set. */
if (hdr->flags & CTDB_REC_RO_FLAGS) {
tdb_chainunlock(ctdb_db->ltdb->tdb, key);
DEBUG(DEBUG_INFO,(__location__ " Skipping record with readonly flags set\n"));
free(data.dptr);
return -1;
}
if (hdr2->flags & CTDB_REC_RO_FLAGS) {
tdb_chainunlock(ctdb_db->ltdb->tdb, key);
DEBUG(DEBUG_INFO,(__location__ " Skipping record with readonly flags set\n"));
free(data.dptr);
return -1;
}
if (hdr2->dmaster == ctdb->pnn) {
tdb_chainunlock(ctdb_db->ltdb->tdb, key);
DEBUG(DEBUG_INFO,(__location__ " Attempted delete record where we are the dmaster\n"));
free(data.dptr);
return -1;
}
if (tdb_lock_nonblock(ctdb_db->ltdb->tdb, -1, F_WRLCK) != 0) {
tdb_chainunlock(ctdb_db->ltdb->tdb, key);
free(data.dptr);
return -1;
}
if (tdb_delete(ctdb_db->ltdb->tdb, key) != 0) {
tdb_unlock(ctdb_db->ltdb->tdb, -1, F_WRLCK);
tdb_chainunlock(ctdb_db->ltdb->tdb, key);
DEBUG(DEBUG_INFO,(__location__ " Failed to delete record\n"));
free(data.dptr);
return -1;
}
tdb_unlock(ctdb_db->ltdb->tdb, -1, F_WRLCK);
tdb_chainunlock(ctdb_db->ltdb->tdb, key);
free(data.dptr);
return 0;
}
struct recovery_callback_state {
struct ctdb_req_control *c;
};
/*
called when the 'recovered' event script has finished
*/
static void ctdb_end_recovery_callback(struct ctdb_context *ctdb, int status, void *p)
{
struct recovery_callback_state *state = talloc_get_type(p, struct recovery_callback_state);
ctdb_enable_monitoring(ctdb);
CTDB_INCREMENT_STAT(ctdb, num_recoveries);
if (status != 0) {
DEBUG(DEBUG_ERR,(__location__ " recovered event script failed (status %d)\n", status));
if (status == -ETIME) {
ctdb_ban_self(ctdb);
}
}
ctdb_request_control_reply(ctdb, state->c, NULL, status, NULL);
talloc_free(state);
gettimeofday(&ctdb->last_recovery_finished, NULL);
if (ctdb->runstate == CTDB_RUNSTATE_FIRST_RECOVERY) {
ctdb_set_runstate(ctdb, CTDB_RUNSTATE_STARTUP);
}
}
/*
recovery has finished
*/
int32_t ctdb_control_end_recovery(struct ctdb_context *ctdb,
struct ctdb_req_control *c,
bool *async_reply)
{
int ret;
struct recovery_callback_state *state;
DEBUG(DEBUG_NOTICE,("Recovery has finished\n"));
ctdb_persistent_finish_trans3_commits(ctdb);
state = talloc(ctdb, struct recovery_callback_state);
CTDB_NO_MEMORY(ctdb, state);
state->c = c;
ctdb_disable_monitoring(ctdb);
ret = ctdb_event_script_callback(ctdb, state,
ctdb_end_recovery_callback,
state,
false,
CTDB_EVENT_RECOVERED, "%s", "");
if (ret != 0) {
ctdb_enable_monitoring(ctdb);
DEBUG(DEBUG_ERR,(__location__ " Failed to end recovery\n"));
talloc_free(state);
return -1;
}
/* tell the control that we will be reply asynchronously */
state->c = talloc_steal(state, c);
*async_reply = true;
return 0;
}
/*
called when the 'startrecovery' event script has finished
*/
static void ctdb_start_recovery_callback(struct ctdb_context *ctdb, int status, void *p)
{
struct recovery_callback_state *state = talloc_get_type(p, struct recovery_callback_state);
if (status != 0) {
DEBUG(DEBUG_ERR,(__location__ " startrecovery event script failed (status %d)\n", status));
}
ctdb_request_control_reply(ctdb, state->c, NULL, status, NULL);
talloc_free(state);
}
/*
run the startrecovery eventscript
*/
int32_t ctdb_control_start_recovery(struct ctdb_context *ctdb,
struct ctdb_req_control *c,
bool *async_reply)
{
int ret;
struct recovery_callback_state *state;
DEBUG(DEBUG_NOTICE,(__location__ " startrecovery eventscript has been invoked\n"));
gettimeofday(&ctdb->last_recovery_started, NULL);
state = talloc(ctdb, struct recovery_callback_state);
CTDB_NO_MEMORY(ctdb, state);
state->c = talloc_steal(state, c);
ctdb_disable_monitoring(ctdb);
ret = ctdb_event_script_callback(ctdb, state,
ctdb_start_recovery_callback,
state, false,
CTDB_EVENT_START_RECOVERY,
"%s", "");
if (ret != 0) {
DEBUG(DEBUG_ERR,(__location__ " Failed to start recovery\n"));
talloc_free(state);
return -1;
}
/* tell the control that we will be reply asynchronously */
*async_reply = true;
return 0;
}
/*
try to delete all these records as part of the vacuuming process
and return the records we failed to delete
*/
int32_t ctdb_control_try_delete_records(struct ctdb_context *ctdb, TDB_DATA indata, TDB_DATA *outdata)
{
struct ctdb_marshall_buffer *reply = (struct ctdb_marshall_buffer *)indata.dptr;
struct ctdb_db_context *ctdb_db;
int i;
struct ctdb_rec_data *rec;
struct ctdb_marshall_buffer *records;
if (indata.dsize < offsetof(struct ctdb_marshall_buffer, data)) {
DEBUG(DEBUG_ERR,(__location__ " invalid data in try_delete_records\n"));
return -1;
}
ctdb_db = find_ctdb_db(ctdb, reply->db_id);
if (!ctdb_db) {
DEBUG(DEBUG_ERR,(__location__ " Unknown db 0x%08x\n", reply->db_id));
return -1;
}
DEBUG(DEBUG_DEBUG,("starting try_delete_records of %u records for dbid 0x%x\n",
reply->count, reply->db_id));
/* create a blob to send back the records we couldnt delete */
records = (struct ctdb_marshall_buffer *)
talloc_zero_size(outdata,
offsetof(struct ctdb_marshall_buffer, data));
if (records == NULL) {
DEBUG(DEBUG_ERR,(__location__ " Out of memory\n"));
return -1;
}
records->db_id = ctdb_db->db_id;
rec = (struct ctdb_rec_data *)&reply->data[0];
for (i=0;i<reply->count;i++) {
TDB_DATA key, data;
key.dptr = &rec->data[0];
key.dsize = rec->keylen;
data.dptr = &rec->data[key.dsize];
data.dsize = rec->datalen;
if (data.dsize < sizeof(struct ctdb_ltdb_header)) {
DEBUG(DEBUG_CRIT,(__location__ " bad ltdb record in indata\n"));
return -1;
}
/* If we cant delete the record we must add it to the reply
so the lmaster knows it may not purge this record
*/
if (delete_tdb_record(ctdb, ctdb_db, rec) != 0) {
size_t old_size;
struct ctdb_ltdb_header *hdr;
hdr = (struct ctdb_ltdb_header *)data.dptr;
data.dptr += sizeof(*hdr);
data.dsize -= sizeof(*hdr);
DEBUG(DEBUG_INFO, (__location__ " Failed to vacuum delete record with hash 0x%08x\n", ctdb_hash(&key)));
old_size = talloc_get_size(records);
records = talloc_realloc_size(outdata, records, old_size + rec->length);
if (records == NULL) {
DEBUG(DEBUG_ERR,(__location__ " Failed to expand\n"));
return -1;
}
records->count++;
memcpy(old_size+(uint8_t *)records, rec, rec->length);
}
rec = (struct ctdb_rec_data *)(rec->length + (uint8_t *)rec);
}
outdata->dptr = (uint8_t *)records;
outdata->dsize = talloc_get_size(records);
return 0;
}
/**
* Store a record as part of the vacuum process:
* This is called from the RECEIVE_RECORD control which
* the lmaster uses to send the current empty copy
* to all nodes for storing, before it lets the other
* nodes delete the records in the second phase with
* the TRY_DELETE_RECORDS control.
*
* Only store if we are not lmaster or dmaster, and our
* rsn is <= the provided rsn. Use non-blocking locks.
*
* return 0 if the record was successfully stored.
* return !0 if the record still exists in the tdb after returning.
*/
static int store_tdb_record(struct ctdb_context *ctdb,
struct ctdb_db_context *ctdb_db,
struct ctdb_rec_data *rec)
{
TDB_DATA key, data, data2;
struct ctdb_ltdb_header *hdr, *hdr2;
int ret;
key.dsize = rec->keylen;
key.dptr = &rec->data[0];
data.dsize = rec->datalen;
data.dptr = &rec->data[rec->keylen];
if (ctdb_lmaster(ctdb, &key) == ctdb->pnn) {
DEBUG(DEBUG_INFO, (__location__ " Called store_tdb_record "
"where we are lmaster\n"));
return -1;
}
if (data.dsize != sizeof(struct ctdb_ltdb_header)) {
DEBUG(DEBUG_ERR, (__location__ " Bad record size\n"));
return -1;
}
hdr = (struct ctdb_ltdb_header *)data.dptr;
/* use a non-blocking lock */
if (tdb_chainlock_nonblock(ctdb_db->ltdb->tdb, key) != 0) {
DEBUG(DEBUG_INFO, (__location__ " Failed to lock chain in non-blocking mode\n"));
return -1;
}
data2 = tdb_fetch(ctdb_db->ltdb->tdb, key);
if (data2.dptr == NULL || data2.dsize < sizeof(struct ctdb_ltdb_header)) {
tdb_store(ctdb_db->ltdb->tdb, key, data, 0);
DEBUG(DEBUG_INFO, (__location__ " Stored record\n"));
ret = 0;
goto done;
}
hdr2 = (struct ctdb_ltdb_header *)data.dptr;
if (hdr2->rsn > hdr->rsn) {
DEBUG(DEBUG_INFO, (__location__ " Skipping record with "
"rsn=%llu - called with rsn=%llu\n",
(unsigned long long)hdr2->rsn,
(unsigned long long)hdr->rsn));
ret = -1;
goto done;
}
/* do not allow vacuuming of records that have readonly flags set. */
if (hdr->flags & CTDB_REC_RO_FLAGS) {
DEBUG(DEBUG_INFO,(__location__ " Skipping record with readonly "
"flags set\n"));
ret = -1;
goto done;
}
if (hdr2->flags & CTDB_REC_RO_FLAGS) {
DEBUG(DEBUG_INFO,(__location__ " Skipping record with readonly "
"flags set\n"));
ret = -1;
goto done;
}
if (hdr2->dmaster == ctdb->pnn) {
DEBUG(DEBUG_INFO, (__location__ " Attempted to store record "
"where we are the dmaster\n"));
ret = -1;
goto done;
}
if (tdb_store(ctdb_db->ltdb->tdb, key, data, 0) != 0) {
DEBUG(DEBUG_INFO,(__location__ " Failed to store record\n"));
ret = -1;
goto done;
}
ret = 0;
done:
tdb_chainunlock(ctdb_db->ltdb->tdb, key);
free(data2.dptr);
return ret;
}
/**
* Try to store all these records as part of the vacuuming process
* and return the records we failed to store.
*/
int32_t ctdb_control_receive_records(struct ctdb_context *ctdb,
TDB_DATA indata, TDB_DATA *outdata)
{
struct ctdb_marshall_buffer *reply = (struct ctdb_marshall_buffer *)indata.dptr;
struct ctdb_db_context *ctdb_db;
int i;
struct ctdb_rec_data *rec;
struct ctdb_marshall_buffer *records;
if (indata.dsize < offsetof(struct ctdb_marshall_buffer, data)) {
DEBUG(DEBUG_ERR,
(__location__ " invalid data in receive_records\n"));
return -1;
}
ctdb_db = find_ctdb_db(ctdb, reply->db_id);
if (!ctdb_db) {
DEBUG(DEBUG_ERR, (__location__ " Unknown db 0x%08x\n",
reply->db_id));
return -1;
}
DEBUG(DEBUG_DEBUG, ("starting receive_records of %u records for "
"dbid 0x%x\n", reply->count, reply->db_id));
/* create a blob to send back the records we could not store */
records = (struct ctdb_marshall_buffer *)
talloc_zero_size(outdata,
offsetof(struct ctdb_marshall_buffer, data));
if (records == NULL) {
DEBUG(DEBUG_ERR, (__location__ " Out of memory\n"));
return -1;
}
records->db_id = ctdb_db->db_id;
rec = (struct ctdb_rec_data *)&reply->data[0];
for (i=0; i<reply->count; i++) {
TDB_DATA key, data;
key.dptr = &rec->data[0];
key.dsize = rec->keylen;
data.dptr = &rec->data[key.dsize];
data.dsize = rec->datalen;
if (data.dsize < sizeof(struct ctdb_ltdb_header)) {
DEBUG(DEBUG_CRIT, (__location__ " bad ltdb record "
"in indata\n"));
return -1;
}
/*
* If we can not store the record we must add it to the reply
* so the lmaster knows it may not purge this record.
*/
if (store_tdb_record(ctdb, ctdb_db, rec) != 0) {
size_t old_size;
struct ctdb_ltdb_header *hdr;
hdr = (struct ctdb_ltdb_header *)data.dptr;
data.dptr += sizeof(*hdr);
data.dsize -= sizeof(*hdr);
DEBUG(DEBUG_INFO, (__location__ " Failed to store "
"record with hash 0x%08x in vacuum "
"via RECEIVE_RECORDS\n",
ctdb_hash(&key)));
old_size = talloc_get_size(records);
records = talloc_realloc_size(outdata, records,
old_size + rec->length);
if (records == NULL) {
DEBUG(DEBUG_ERR, (__location__ " Failed to "
"expand\n"));
return -1;
}
records->count++;
memcpy(old_size+(uint8_t *)records, rec, rec->length);
}
rec = (struct ctdb_rec_data *)(rec->length + (uint8_t *)rec);
}
outdata->dptr = (uint8_t *)records;
outdata->dsize = talloc_get_size(records);
return 0;
}
/*
report capabilities
*/
int32_t ctdb_control_get_capabilities(struct ctdb_context *ctdb, TDB_DATA *outdata)
{
uint32_t *capabilities = NULL;
capabilities = talloc(outdata, uint32_t);
CTDB_NO_MEMORY(ctdb, capabilities);
*capabilities = ctdb->capabilities;
outdata->dsize = sizeof(uint32_t);
outdata->dptr = (uint8_t *)capabilities;
return 0;
}
/* The recovery daemon will ping us at regular intervals.
If we havent been pinged for a while we assume the recovery
daemon is inoperable and we restart.
*/
static void ctdb_recd_ping_timeout(struct event_context *ev, struct timed_event *te, struct timeval t, void *p)
{
struct ctdb_context *ctdb = talloc_get_type(p, struct ctdb_context);
uint32_t *count = talloc_get_type(ctdb->recd_ping_count, uint32_t);
DEBUG(DEBUG_ERR, ("Recovery daemon ping timeout. Count : %u\n", *count));
if (*count < ctdb->tunable.recd_ping_failcount) {
(*count)++;
event_add_timed(ctdb->ev, ctdb->recd_ping_count,
timeval_current_ofs(ctdb->tunable.recd_ping_timeout, 0),
ctdb_recd_ping_timeout, ctdb);
return;
}
DEBUG(DEBUG_ERR, ("Final timeout for recovery daemon ping. Restarting recovery daemon. (This can be caused if the cluster filesystem has hung)\n"));
ctdb_stop_recoverd(ctdb);
ctdb_start_recoverd(ctdb);
}
int32_t ctdb_control_recd_ping(struct ctdb_context *ctdb)
{
talloc_free(ctdb->recd_ping_count);
ctdb->recd_ping_count = talloc_zero(ctdb, uint32_t);
CTDB_NO_MEMORY(ctdb, ctdb->recd_ping_count);
if (ctdb->tunable.recd_ping_timeout != 0) {
event_add_timed(ctdb->ev, ctdb->recd_ping_count,
timeval_current_ofs(ctdb->tunable.recd_ping_timeout, 0),
ctdb_recd_ping_timeout, ctdb);
}
return 0;
}
int32_t ctdb_control_set_recmaster(struct ctdb_context *ctdb, uint32_t opcode, TDB_DATA indata)
{
uint32_t new_recmaster;
CHECK_CONTROL_DATA_SIZE(sizeof(uint32_t));
new_recmaster = ((uint32_t *)(&indata.dptr[0]))[0];
if (ctdb->pnn != new_recmaster && ctdb->recovery_master == ctdb->pnn) {
DEBUG(DEBUG_NOTICE,
("This node (%u) is no longer the recovery master\n", ctdb->pnn));
}
if (ctdb->pnn == new_recmaster && ctdb->recovery_master != new_recmaster) {
DEBUG(DEBUG_NOTICE,
("This node (%u) is now the recovery master\n", ctdb->pnn));
}
ctdb->recovery_master = new_recmaster;
return 0;
}
int32_t ctdb_control_stop_node(struct ctdb_context *ctdb)
{
DEBUG(DEBUG_NOTICE, ("Stopping node\n"));
ctdb_disable_monitoring(ctdb);
ctdb->nodes[ctdb->pnn]->flags |= NODE_FLAGS_STOPPED;
return 0;
}
int32_t ctdb_control_continue_node(struct ctdb_context *ctdb)
{
DEBUG(DEBUG_NOTICE, ("Continue node\n"));
ctdb->nodes[ctdb->pnn]->flags &= ~NODE_FLAGS_STOPPED;
return 0;
}