1
0
mirror of https://github.com/samba-team/samba.git synced 2025-01-14 19:24:43 +03:00

1235 lines
29 KiB
C
Raw Normal View History

/*
Unix SMB/CIFS implementation.
time handling functions
Copyright (C) Andrew Tridgell 1992-2004
Copyright (C) Stefan (metze) Metzmacher 2002
Copyright (C) Jeremy Allison 2007
Copyright (C) Andrew Bartlett 2011
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "replace.h"
#include "system/time.h"
#include "byteorder.h"
#include "time_basic.h"
#include "lib/util/time.h" /* Avoid /usr/include/time.h */
/**
* @file
* @brief time handling functions
*/
#if (SIZEOF_LONG == 8)
#define TIME_FIXUP_CONSTANT_INT 11644473600L
#elif (SIZEOF_LONG_LONG == 8)
#define TIME_FIXUP_CONSTANT_INT 11644473600LL
#endif
/**
External access to time_t_min and time_t_max.
**/
_PUBLIC_ time_t get_time_t_max(void)
{
return TIME_T_MAX;
}
/**
a wrapper to preferably get the monotonic time
**/
_PUBLIC_ void clock_gettime_mono(struct timespec *tp)
{
/* prefer a suspend aware monotonic CLOCK_BOOTTIME: */
#ifdef CLOCK_BOOTTIME
if (clock_gettime(CLOCK_BOOTTIME,tp) == 0) {
return;
}
#endif
/* then try the monotonic clock: */
#ifndef CUSTOM_CLOCK_MONOTONIC_IS_REALTIME
if (clock_gettime(CUSTOM_CLOCK_MONOTONIC,tp) == 0) {
return;
}
#endif
clock_gettime(CLOCK_REALTIME,tp);
}
/**
a wrapper to preferably get the monotonic time in seconds
**/
_PUBLIC_ time_t time_mono(time_t *t)
{
struct timespec tp;
clock_gettime_mono(&tp);
if (t != NULL) {
*t = tp.tv_sec;
}
return tp.tv_sec;
}
#define TIME_FIXUP_CONSTANT 11644473600LL
time_t convert_timespec_to_time_t(struct timespec ts)
{
/* Ensure tv_nsec is less than 1sec. */
while (ts.tv_nsec > 1000000000) {
ts.tv_sec += 1;
ts.tv_nsec -= 1000000000;
}
/* 1 ns == 1,000,000,000 - one thousand millionths of a second.
increment if it's greater than 500 millionth of a second. */
if (ts.tv_nsec > 500000000) {
return ts.tv_sec + 1;
}
return ts.tv_sec;
}
struct timespec convert_time_t_to_timespec(time_t t)
{
struct timespec ts;
ts.tv_sec = t;
ts.tv_nsec = 0;
return ts;
}
/**
Interpret an 8 byte "filetime" structure to a time_t
It's originally in "100ns units since jan 1st 1601"
An 8 byte value of 0xffffffffffffffff will be returned as a timespec of
tv_sec = 0
tv_nsec = 0;
Returns GMT.
**/
time_t nt_time_to_unix(NTTIME nt)
{
return convert_timespec_to_time_t(nt_time_to_unix_timespec(nt));
}
/**
put a 8 byte filetime from a time_t
This takes GMT as input
**/
_PUBLIC_ void unix_to_nt_time(NTTIME *nt, time_t t)
{
uint64_t t2;
if (t == (time_t)-1) {
*nt = (NTTIME)-1LL;
return;
}
if (t == TIME_T_MAX || t == INT64_MAX) {
*nt = 0x7fffffffffffffffLL;
return;
}
if (t == 0) {
*nt = 0;
return;
}
t2 = t;
t2 += TIME_FIXUP_CONSTANT_INT;
t2 *= 1000*1000*10;
*nt = t2;
}
/**
check if it's a null unix time
**/
_PUBLIC_ bool null_time(time_t t)
{
return t == 0 ||
t == (time_t)0xFFFFFFFF ||
t == (time_t)-1;
}
/**
check if it's a null NTTIME
**/
_PUBLIC_ bool null_nttime(NTTIME t)
{
return t == 0 || t == (NTTIME)-1;
}
/*******************************************************************
create a 16 bit dos packed date
********************************************************************/
static uint16_t make_dos_date1(struct tm *t)
{
uint16_t ret=0;
ret = (((unsigned int)(t->tm_mon+1)) >> 3) | ((t->tm_year-80) << 1);
ret = ((ret&0xFF)<<8) | (t->tm_mday | (((t->tm_mon+1) & 0x7) << 5));
return ret;
}
/*******************************************************************
create a 16 bit dos packed time
********************************************************************/
static uint16_t make_dos_time1(struct tm *t)
{
uint16_t ret=0;
ret = ((((unsigned int)t->tm_min >> 3)&0x7) | (((unsigned int)t->tm_hour) << 3));
ret = ((ret&0xFF)<<8) | ((t->tm_sec/2) | ((t->tm_min & 0x7) << 5));
return ret;
}
/*******************************************************************
create a 32 bit dos packed date/time from some parameters
This takes a GMT time and returns a packed localtime structure
********************************************************************/
static uint32_t make_dos_date(time_t unixdate, int zone_offset)
{
struct tm *t;
uint32_t ret=0;
if (unixdate == 0) {
return 0;
}
unixdate -= zone_offset;
t = gmtime(&unixdate);
if (!t) {
return 0xFFFFFFFF;
}
ret = make_dos_date1(t);
ret = ((ret&0xFFFF)<<16) | make_dos_time1(t);
return ret;
}
/**
put a dos date into a buffer (time/date format)
This takes GMT time and puts local time in the buffer
**/
_PUBLIC_ void push_dos_date(uint8_t *buf, int offset, time_t unixdate, int zone_offset)
{
uint32_t x = make_dos_date(unixdate, zone_offset);
SIVAL(buf,offset,x);
}
/**
put a dos date into a buffer (date/time format)
This takes GMT time and puts local time in the buffer
**/
_PUBLIC_ void push_dos_date2(uint8_t *buf,int offset,time_t unixdate, int zone_offset)
{
uint32_t x;
x = make_dos_date(unixdate, zone_offset);
x = ((x&0xFFFF)<<16) | ((x&0xFFFF0000)>>16);
SIVAL(buf,offset,x);
}
/**
put a dos 32 bit "unix like" date into a buffer. This routine takes
GMT and converts it to LOCAL time before putting it (most SMBs assume
localtime for this sort of date)
**/
_PUBLIC_ void push_dos_date3(uint8_t *buf,int offset,time_t unixdate, int zone_offset)
{
if (!null_time(unixdate)) {
unixdate -= zone_offset;
}
SIVAL(buf,offset,unixdate);
}
/*******************************************************************
interpret a 32 bit dos packed date/time to some parameters
********************************************************************/
void interpret_dos_date(uint32_t date,int *year,int *month,int *day,int *hour,int *minute,int *second)
{
uint32_t p0,p1,p2,p3;
p0=date&0xFF; p1=((date&0xFF00)>>8)&0xFF;
p2=((date&0xFF0000)>>16)&0xFF; p3=((date&0xFF000000)>>24)&0xFF;
*second = 2*(p0 & 0x1F);
*minute = ((p0>>5)&0xFF) + ((p1&0x7)<<3);
*hour = (p1>>3)&0xFF;
*day = (p2&0x1F);
*month = ((p2>>5)&0xFF) + ((p3&0x1)<<3) - 1;
*year = ((p3>>1)&0xFF) + 80;
}
/**
create a unix date (int GMT) from a dos date (which is actually in
localtime)
**/
_PUBLIC_ time_t pull_dos_date(const uint8_t *date_ptr, int zone_offset)
{
uint32_t dos_date=0;
struct tm t;
time_t ret;
dos_date = IVAL(date_ptr,0);
if (dos_date == 0) return (time_t)0;
interpret_dos_date(dos_date,&t.tm_year,&t.tm_mon,
&t.tm_mday,&t.tm_hour,&t.tm_min,&t.tm_sec);
t.tm_isdst = -1;
ret = timegm(&t);
ret += zone_offset;
return ret;
}
/**
like make_unix_date() but the words are reversed
**/
_PUBLIC_ time_t pull_dos_date2(const uint8_t *date_ptr, int zone_offset)
{
uint32_t x,x2;
x = IVAL(date_ptr,0);
x2 = ((x&0xFFFF)<<16) | ((x&0xFFFF0000)>>16);
SIVAL(&x,0,x2);
return pull_dos_date((const uint8_t *)&x, zone_offset);
}
/**
create a unix GMT date from a dos date in 32 bit "unix like" format
these generally arrive as localtimes, with corresponding DST
**/
_PUBLIC_ time_t pull_dos_date3(const uint8_t *date_ptr, int zone_offset)
{
time_t t = (time_t)IVAL(date_ptr,0);
if (t == (time_t)0xFFFFFFFF) {
t = (time_t)-1;
}
if (!null_time(t)) {
t += zone_offset;
}
return t;
}
/****************************************************************************
Return the date and time as a string
****************************************************************************/
char *timeval_string(TALLOC_CTX *ctx, const struct timeval *tp, bool hires)
{
struct timeval_buf tmp;
char *result;
result = talloc_strdup(ctx, timeval_str_buf(tp, false, hires, &tmp));
if (result == NULL) {
return NULL;
}
/*
* beautify the talloc_report output
*
* This is not just cosmetics. A C compiler might in theory make the
* talloc_strdup call above a tail call with the tail call
* optimization. This would render "tmp" invalid while talloc_strdup
* tries to duplicate it. The talloc_set_name_const call below puts
* the talloc_strdup call into non-tail position.
*/
talloc_set_name_const(result, result);
return result;
}
/****************************************************************************
Return the date and time as a string
****************************************************************************/
const char *timespec_string_buf(const struct timespec *tp,
bool hires,
struct timeval_buf *buf)
{
time_t t;
struct tm *tm = NULL;
size_t len;
if (is_omit_timespec(tp)) {
strlcpy(buf->buf, "SAMBA_UTIME_OMIT", sizeof(buf->buf));
return buf->buf;
}
t = (time_t)tp->tv_sec;
tm = localtime(&t);
if (tm == NULL) {
if (hires) {
len = snprintf(buf->buf, sizeof(buf->buf),
"%ld.%09ld seconds since the Epoch",
(long)tp->tv_sec, (long)tp->tv_nsec);
} else {
len = snprintf(buf->buf, sizeof(buf->buf),
"%ld seconds since the Epoch", (long)t);
}
} else if (!hires) {
len = snprintf(buf->buf, sizeof(buf->buf),
"%04d/%02d/%02d %02d:%02d:%02d",
1900 + tm->tm_year,
tm->tm_mon + 1,
tm->tm_mday,
tm->tm_hour,
tm->tm_min,
tm->tm_sec);
} else {
len = snprintf(buf->buf, sizeof(buf->buf),
"%04d/%02d/%02d %02d:%02d:%02d.%09ld",
1900 + tm->tm_year,
tm->tm_mon + 1,
tm->tm_mday,
tm->tm_hour,
tm->tm_min,
tm->tm_sec,
(long)tp->tv_nsec);
}
if (len == -1) {
return "";
}
return buf->buf;
}
char *current_timestring(TALLOC_CTX *ctx, bool hires)
{
struct timeval tv;
GetTimeOfDay(&tv);
return timeval_string(ctx, &tv, hires);
}
/*
* Return date and time as a minimal string avoiding funny characters
* that may cause trouble in file names. We only use digits and
* underscore ... or a minus/hyphen if we got negative time.
*/
char *minimal_timeval_string(TALLOC_CTX *ctx, const struct timeval *tp, bool hires)
{
time_t t;
struct tm *tm;
t = (time_t)tp->tv_sec;
tm = localtime(&t);
if (!tm) {
if (hires) {
return talloc_asprintf(ctx, "%ld_%06ld",
(long)tp->tv_sec,
(long)tp->tv_usec);
} else {
return talloc_asprintf(ctx, "%ld", (long)t);
}
} else {
if (hires) {
return talloc_asprintf(ctx,
"%04d%02d%02d_%02d%02d%02d_%06ld",
tm->tm_year+1900,
tm->tm_mon+1,
tm->tm_mday,
tm->tm_hour,
tm->tm_min,
tm->tm_sec,
(long)tp->tv_usec);
} else {
return talloc_asprintf(ctx,
"%04d%02d%02d_%02d%02d%02d",
tm->tm_year+1900,
tm->tm_mon+1,
tm->tm_mday,
tm->tm_hour,
tm->tm_min,
tm->tm_sec);
}
}
}
char *current_minimal_timestring(TALLOC_CTX *ctx, bool hires)
{
struct timeval tv;
GetTimeOfDay(&tv);
return minimal_timeval_string(ctx, &tv, hires);
}
/**
return a HTTP/1.0 time string
**/
_PUBLIC_ char *http_timestring(TALLOC_CTX *mem_ctx, time_t t)
{
char *buf;
char tempTime[60];
struct tm *tm = localtime(&t);
if (t == TIME_T_MAX) {
return talloc_strdup(mem_ctx, "never");
}
if (!tm) {
return talloc_asprintf(mem_ctx,"%ld seconds since the Epoch",(long)t);
}
#ifndef HAVE_STRFTIME
buf = talloc_strdup(mem_ctx, asctime(tm));
if (buf[strlen(buf)-1] == '\n') {
buf[strlen(buf)-1] = 0;
}
#else
strftime(tempTime, sizeof(tempTime)-1, "%a, %d %b %Y %H:%M:%S %Z", tm);
buf = talloc_strdup(mem_ctx, tempTime);
#endif /* !HAVE_STRFTIME */
return buf;
}
/**
Return the date and time as a string
**/
_PUBLIC_ char *timestring(TALLOC_CTX *mem_ctx, time_t t)
{
char *TimeBuf;
char tempTime[80];
struct tm *tm;
tm = localtime(&t);
if (!tm) {
return talloc_asprintf(mem_ctx,
"%ld seconds since the Epoch",
(long)t);
}
#ifdef HAVE_STRFTIME
/* Some versions of gcc complain about using some special format
* specifiers. This is a bug in gcc, not a bug in this code. See a
* recent strftime() manual page for details. */
strftime(tempTime,sizeof(tempTime)-1,"%a %b %e %X %Y %Z",tm);
TimeBuf = talloc_strdup(mem_ctx, tempTime);
#else
TimeBuf = talloc_strdup(mem_ctx, asctime(tm));
if (TimeBuf == NULL) {
return NULL;
}
if (TimeBuf[0] != '\0') {
size_t len = strlen(TimeBuf);
if (TimeBuf[len - 1] == '\n') {
TimeBuf[len - 1] = '\0';
}
}
#endif
return TimeBuf;
}
/**
return a talloced string representing a NTTIME for human consumption
*/
_PUBLIC_ const char *nt_time_string(TALLOC_CTX *mem_ctx, NTTIME nt)
{
time_t t;
if (nt == 0) {
return "NTTIME(0)";
}
t = nt_time_to_full_time_t(nt);
return timestring(mem_ctx, t);
}
/**
put a NTTIME into a packet
*/
_PUBLIC_ void push_nttime(uint8_t *base, uint16_t offset, NTTIME t)
{
SBVAL(base, offset, t);
}
/**
pull a NTTIME from a packet
*/
_PUBLIC_ NTTIME pull_nttime(uint8_t *base, uint16_t offset)
{
NTTIME ret = BVAL(base, offset);
return ret;
}
/**
return (tv1 - tv2) in microseconds
*/
_PUBLIC_ int64_t usec_time_diff(const struct timeval *tv1, const struct timeval *tv2)
{
int64_t sec_diff = tv1->tv_sec - tv2->tv_sec;
return (sec_diff * 1000000) + (int64_t)(tv1->tv_usec - tv2->tv_usec);
}
/**
return (tp1 - tp2) in nanoseconds
*/
_PUBLIC_ int64_t nsec_time_diff(const struct timespec *tp1, const struct timespec *tp2)
{
int64_t sec_diff = tp1->tv_sec - tp2->tv_sec;
return (sec_diff * 1000000000) + (int64_t)(tp1->tv_nsec - tp2->tv_nsec);
}
/**
return a zero timeval
*/
_PUBLIC_ struct timeval timeval_zero(void)
{
struct timeval tv;
tv.tv_sec = 0;
tv.tv_usec = 0;
return tv;
}
/**
return true if a timeval is zero
*/
_PUBLIC_ bool timeval_is_zero(const struct timeval *tv)
{
return tv->tv_sec == 0 && tv->tv_usec == 0;
}
/**
return a timeval for the current time
*/
_PUBLIC_ struct timeval timeval_current(void)
{
struct timeval tv;
GetTimeOfDay(&tv);
return tv;
}
/**
return a timeval struct with the given elements
*/
_PUBLIC_ struct timeval timeval_set(uint32_t secs, uint32_t usecs)
{
struct timeval tv;
tv.tv_sec = secs;
tv.tv_usec = usecs;
return tv;
}
/**
return a timeval ofs microseconds after tv
*/
_PUBLIC_ struct timeval timeval_add(const struct timeval *tv,
uint32_t secs, uint32_t usecs)
{
struct timeval tv2 = *tv;
const unsigned int million = 1000000;
tv2.tv_sec += secs;
tv2.tv_usec += usecs;
tv2.tv_sec += tv2.tv_usec / million;
tv2.tv_usec = tv2.tv_usec % million;
return tv2;
}
/**
return the sum of two timeval structures
*/
struct timeval timeval_sum(const struct timeval *tv1,
const struct timeval *tv2)
{
return timeval_add(tv1, tv2->tv_sec, tv2->tv_usec);
}
/**
return a timeval secs/usecs into the future
*/
_PUBLIC_ struct timeval timeval_current_ofs(uint32_t secs, uint32_t usecs)
{
struct timeval tv = timeval_current();
return timeval_add(&tv, secs, usecs);
}
/**
return a timeval milliseconds into the future
*/
_PUBLIC_ struct timeval timeval_current_ofs_msec(uint32_t msecs)
{
struct timeval tv = timeval_current();
return timeval_add(&tv, msecs / 1000, (msecs % 1000) * 1000);
}
/**
return a timeval microseconds into the future
*/
_PUBLIC_ struct timeval timeval_current_ofs_usec(uint32_t usecs)
{
struct timeval tv = timeval_current();
return timeval_add(&tv, usecs / 1000000, usecs % 1000000);
}
/**
compare two timeval structures.
Return -1 if tv1 < tv2
Return 0 if tv1 == tv2
Return 1 if tv1 > tv2
*/
_PUBLIC_ int timeval_compare(const struct timeval *tv1, const struct timeval *tv2)
{
if (tv1->tv_sec > tv2->tv_sec) return 1;
if (tv1->tv_sec < tv2->tv_sec) return -1;
if (tv1->tv_usec > tv2->tv_usec) return 1;
if (tv1->tv_usec < tv2->tv_usec) return -1;
return 0;
}
/**
return true if a timer is in the past
*/
_PUBLIC_ bool timeval_expired(const struct timeval *tv)
{
struct timeval tv2 = timeval_current();
if (tv2.tv_sec > tv->tv_sec) return true;
if (tv2.tv_sec < tv->tv_sec) return false;
return (tv2.tv_usec >= tv->tv_usec);
}
/**
return the number of seconds elapsed between two times
*/
_PUBLIC_ double timeval_elapsed2(const struct timeval *tv1, const struct timeval *tv2)
{
return (tv2->tv_sec - tv1->tv_sec) +
(tv2->tv_usec - tv1->tv_usec)*1.0e-6;
}
/**
return the number of seconds elapsed since a given time
*/
_PUBLIC_ double timeval_elapsed(const struct timeval *tv)
{
struct timeval tv2 = timeval_current();
return timeval_elapsed2(tv, &tv2);
}
/**
* return the number of seconds elapsed between two times
**/
_PUBLIC_ double timespec_elapsed2(const struct timespec *ts1,
const struct timespec *ts2)
{
return (ts2->tv_sec - ts1->tv_sec) +
(ts2->tv_nsec - ts1->tv_nsec)*1.0e-9;
}
/**
* return the number of seconds elapsed since a given time
*/
_PUBLIC_ double timespec_elapsed(const struct timespec *ts)
{
struct timespec ts2 = timespec_current();
return timespec_elapsed2(ts, &ts2);
}
/**
return the lesser of two timevals
*/
_PUBLIC_ struct timeval timeval_min(const struct timeval *tv1,
const struct timeval *tv2)
{
if (tv1->tv_sec < tv2->tv_sec) return *tv1;
if (tv1->tv_sec > tv2->tv_sec) return *tv2;
if (tv1->tv_usec < tv2->tv_usec) return *tv1;
return *tv2;
}
/**
return the greater of two timevals
*/
_PUBLIC_ struct timeval timeval_max(const struct timeval *tv1,
const struct timeval *tv2)
{
if (tv1->tv_sec > tv2->tv_sec) return *tv1;
if (tv1->tv_sec < tv2->tv_sec) return *tv2;
if (tv1->tv_usec > tv2->tv_usec) return *tv1;
return *tv2;
}
/**
return the difference between two timevals as a timeval
if tv1 comes after tv2, then return a zero timeval
(this is *tv2 - *tv1)
*/
_PUBLIC_ struct timeval timeval_until(const struct timeval *tv1,
const struct timeval *tv2)
{
struct timeval t;
if (timeval_compare(tv1, tv2) >= 0) {
return timeval_zero();
}
t.tv_sec = tv2->tv_sec - tv1->tv_sec;
if (tv1->tv_usec > tv2->tv_usec) {
t.tv_sec--;
t.tv_usec = 1000000 - (tv1->tv_usec - tv2->tv_usec);
} else {
t.tv_usec = tv2->tv_usec - tv1->tv_usec;
}
return t;
}
/**
convert a timeval to a NTTIME
*/
_PUBLIC_ NTTIME timeval_to_nttime(const struct timeval *tv)
{
return 10*(tv->tv_usec +
((TIME_FIXUP_CONSTANT + (uint64_t)tv->tv_sec) * 1000000));
}
/**
convert a NTTIME to a timeval
*/
_PUBLIC_ void nttime_to_timeval(struct timeval *tv, NTTIME t)
{
if (tv == NULL) return;
t += 10/2;
t /= 10;
t -= TIME_FIXUP_CONSTANT*1000*1000;
tv->tv_sec = t / 1000000;
if (TIME_T_MIN > tv->tv_sec || tv->tv_sec > TIME_T_MAX) {
tv->tv_sec = 0;
tv->tv_usec = 0;
return;
}
tv->tv_usec = t - tv->tv_sec*1000000;
}
/*******************************************************************
yield the difference between *A and *B, in seconds, ignoring leap seconds
********************************************************************/
static int tm_diff(struct tm *a, struct tm *b)
{
int ay = a->tm_year + (1900 - 1);
int by = b->tm_year + (1900 - 1);
int intervening_leap_days =
(ay/4 - by/4) - (ay/100 - by/100) + (ay/400 - by/400);
int years = ay - by;
int days = 365*years + intervening_leap_days + (a->tm_yday - b->tm_yday);
int hours = 24*days + (a->tm_hour - b->tm_hour);
int minutes = 60*hours + (a->tm_min - b->tm_min);
int seconds = 60*minutes + (a->tm_sec - b->tm_sec);
return seconds;
}
/**
return the UTC offset in seconds west of UTC, or 0 if it cannot be determined
*/
_PUBLIC_ int get_time_zone(time_t t)
{
struct tm *tm = gmtime(&t);
struct tm tm_utc;
if (!tm)
return 0;
tm_utc = *tm;
tm = localtime(&t);
if (!tm)
return 0;
return tm_diff(&tm_utc,tm);
}
struct timespec nt_time_to_unix_timespec(NTTIME nt)
{
int64_t d;
struct timespec ret;
if (nt == 0 || nt == (int64_t)-1) {
ret.tv_sec = 0;
ret.tv_nsec = 0;
return ret;
}
d = (int64_t)nt;
/* d is now in 100ns units, since jan 1st 1601".
Save off the ns fraction. */
/*
* Take the last seven decimal digits and multiply by 100.
* to convert from 100ns units to 1ns units.
*/
ret.tv_nsec = (long) ((d % (1000 * 1000 * 10)) * 100);
/* Convert to seconds */
d /= 1000*1000*10;
/* Now adjust by 369 years to make the secs since 1970 */
d -= TIME_FIXUP_CONSTANT_INT;
if (d <= (int64_t)TIME_T_MIN) {
ret.tv_sec = TIME_T_MIN;
ret.tv_nsec = 0;
return ret;
}
if (d >= (int64_t)TIME_T_MAX) {
ret.tv_sec = TIME_T_MAX;
ret.tv_nsec = 0;
return ret;
}
ret.tv_sec = (time_t)d;
return ret;
}
/**
check if 2 NTTIMEs are equal.
*/
bool nt_time_equal(NTTIME *t1, NTTIME *t2)
{
return *t1 == *t2;
}
/**
Check if it's a null timespec.
**/
bool null_timespec(struct timespec ts)
{
return ts.tv_sec == 0 ||
ts.tv_sec == (time_t)0xFFFFFFFF ||
ts.tv_sec == (time_t)-1;
}
/****************************************************************************
Convert a normalized timeval to a timespec.
****************************************************************************/
struct timespec convert_timeval_to_timespec(const struct timeval tv)
{
struct timespec ts;
ts.tv_sec = tv.tv_sec;
ts.tv_nsec = tv.tv_usec * 1000;
return ts;
}
/****************************************************************************
Convert a normalized timespec to a timeval.
****************************************************************************/
struct timeval convert_timespec_to_timeval(const struct timespec ts)
{
struct timeval tv;
tv.tv_sec = ts.tv_sec;
tv.tv_usec = ts.tv_nsec / 1000;
return tv;
}
/****************************************************************************
Return a timespec for the current time
****************************************************************************/
_PUBLIC_ struct timespec timespec_current(void)
{
struct timespec ts;
clock_gettime(CLOCK_REALTIME, &ts);
return ts;
}
/****************************************************************************
Return the lesser of two timespecs.
****************************************************************************/
struct timespec timespec_min(const struct timespec *ts1,
const struct timespec *ts2)
{
if (ts1->tv_sec < ts2->tv_sec) return *ts1;
if (ts1->tv_sec > ts2->tv_sec) return *ts2;
if (ts1->tv_nsec < ts2->tv_nsec) return *ts1;
return *ts2;
}
/****************************************************************************
compare two timespec structures.
Return -1 if ts1 < ts2
Return 0 if ts1 == ts2
Return 1 if ts1 > ts2
****************************************************************************/
_PUBLIC_ int timespec_compare(const struct timespec *ts1, const struct timespec *ts2)
{
if (ts1->tv_sec > ts2->tv_sec) return 1;
if (ts1->tv_sec < ts2->tv_sec) return -1;
if (ts1->tv_nsec > ts2->tv_nsec) return 1;
if (ts1->tv_nsec < ts2->tv_nsec) return -1;
return 0;
}
/****************************************************************************
Round up a timespec if nsec > 500000000, round down if lower,
then zero nsec.
****************************************************************************/
void round_timespec_to_sec(struct timespec *ts)
{
ts->tv_sec = convert_timespec_to_time_t(*ts);
ts->tv_nsec = 0;
}
/****************************************************************************
Round a timespec to usec value.
****************************************************************************/
void round_timespec_to_usec(struct timespec *ts)
{
struct timeval tv = convert_timespec_to_timeval(*ts);
*ts = convert_timeval_to_timespec(tv);
while (ts->tv_nsec > 1000000000) {
ts->tv_sec += 1;
ts->tv_nsec -= 1000000000;
}
}
/****************************************************************************
Round a timespec to NTTIME resolution.
****************************************************************************/
void round_timespec_to_nttime(struct timespec *ts)
{
ts->tv_nsec = (ts->tv_nsec / 100) * 100;
}
/****************************************************************************
Put a 8 byte filetime from a struct timespec. Uses GMT.
****************************************************************************/
_PUBLIC_ NTTIME unix_timespec_to_nt_time(struct timespec ts)
{
uint64_t d;
if (ts.tv_sec ==0 && ts.tv_nsec == 0) {
return 0;
}
if (ts.tv_sec == TIME_T_MAX) {
return 0x7fffffffffffffffLL;
}
if (ts.tv_sec == (time_t)-1) {
return (uint64_t)-1;
}
d = ts.tv_sec;
d += TIME_FIXUP_CONSTANT_INT;
d *= 1000*1000*10;
/* d is now in 100ns units. */
d += (ts.tv_nsec / 100);
return d;
}
/*
* Functions supporting the full range of time_t and struct timespec values,
* including 0, -1 and all other negative values. These functions don't use 0 or
* -1 values as sentinel to denote "unset" variables, but use the POSIX 2008
* define UTIME_OMIT from utimensat(2).
*/
/**
* Check if it's a to be omitted timespec.
**/
bool is_omit_timespec(const struct timespec *ts)
{
return ts->tv_nsec == SAMBA_UTIME_OMIT;
}
/**
* Return a to be omitted timespec.
**/
struct timespec make_omit_timespec(void)
{
return (struct timespec){.tv_nsec = SAMBA_UTIME_OMIT};
}
/**
* Like unix_timespec_to_nt_time() but without the special casing of tv_sec=0
* and -1. Also dealing with SAMBA_UTIME_OMIT.
**/
NTTIME full_timespec_to_nt_time(const struct timespec *_ts)
{
struct timespec ts = *_ts;
uint64_t d;
if (is_omit_timespec(_ts)) {
return NTTIME_OMIT;
}
/* Ensure tv_nsec is less than 1 sec. */
while (ts.tv_nsec > 1000000000) {
if (ts.tv_sec > TIME_T_MAX) {
return NTTIME_MAX;
}
ts.tv_sec += 1;
ts.tv_nsec -= 1000000000;
}
if (ts.tv_sec >= TIME_T_MAX) {
return NTTIME_MAX;
}
if ((ts.tv_sec + TIME_FIXUP_CONSTANT_INT) <= 0) {
return NTTIME_MIN;
}
d = TIME_FIXUP_CONSTANT_INT;
d += ts.tv_sec;
d *= 1000*1000*10;
/* d is now in 100ns units. */
d += (ts.tv_nsec / 100);
return d;
}
/**
* Like nt_time_to_unix_timespec() but allowing negative tv_sec values and
* returning NTTIME=0 and -1 as struct timespec {.tv_nsec = SAMBA_UTIME_OMIT}.
*
* See also: is_omit_timespec().
**/
struct timespec nt_time_to_full_timespec(NTTIME nt)
{
int64_t d;
struct timespec ret;
if (nt == NTTIME_OMIT) {
return make_omit_timespec();
}
if (nt == NTTIME_FREEZE) {
/*
* This should be returned as SAMBA_UTIME_FREEZE in the
* future.
*/
return make_omit_timespec();
}
if (nt > NTTIME_MAX) {
nt = NTTIME_MAX;
}
d = (int64_t)nt;
/* d is now in 100ns units, since jan 1st 1601".
Save off the ns fraction. */
/*
* Take the last seven decimal digits and multiply by 100.
* to convert from 100ns units to 1ns units.
*/
ret.tv_nsec = (long) ((d % (1000 * 1000 * 10)) * 100);
/* Convert to seconds */
d /= 1000*1000*10;
/* Now adjust by 369 years to make the secs since 1970 */
d -= TIME_FIXUP_CONSTANT_INT;
if (d >= (int64_t)TIME_T_MAX) {
ret.tv_sec = TIME_T_MAX;
ret.tv_nsec = 0;
return ret;
}
ret.tv_sec = (time_t)d;
return ret;
}
/**
* Note: this function uses the full time_t range as valid date values including
* (time_t)0 and -1. That means that struct timespec sentinel values (cf
* is_omit_timespec()) can't be converted to sentinel values in a time_t
* representation. Callers should therefor check the NTTIME value with
* null_nttime() before calling this function.
**/
time_t full_timespec_to_time_t(const struct timespec *_ts)
{
struct timespec ts = *_ts;
if (is_omit_timespec(_ts)) {
/*
* Unfortunately there's no sensible sentinel value in the
* time_t range that is not conflicting with a valid time value
* ((time_t)0 and -1 are valid time values). Bite the bullit and
* return 0.
*/
return 0;
}
/* Ensure tv_nsec is less than 1sec. */
while (ts.tv_nsec > 1000000000) {
ts.tv_sec += 1;
ts.tv_nsec -= 1000000000;
}
/* 1 ns == 1,000,000,000 - one thousand millionths of a second.
increment if it's greater than 500 millionth of a second. */
if (ts.tv_nsec > 500000000) {
return ts.tv_sec + 1;
}
return ts.tv_sec;
}
/**
* Like nt_time_to_unix() but supports negative time_t values.
*
* Note: this function uses the full time_t range as valid date values including
* (time_t)0 and -1. That means that NTTIME sentinel values of 0 and -1 which
* represent a "not-set" value, can't be converted to sentinel values in a
* time_t representation. Callers should therefor check the NTTIME value with
* null_nttime() before calling this function.
**/
time_t nt_time_to_full_time_t(NTTIME nt)
{
struct timespec ts;
ts = nt_time_to_full_timespec(nt);
return full_timespec_to_time_t(&ts);
}
/**
* Like time_t_to_unix_timespec() but supports negative time_t values.
*
* This version converts (time_t)0 and -1 to an is_omit_timespec(), so 0 and -1
* can't be used as valid date values. The function supports values < -1 though.
**/
struct timespec time_t_to_full_timespec(time_t t)
{
if (null_time(t)) {
return (struct timespec){.tv_nsec = SAMBA_UTIME_OMIT};
}
return (struct timespec){.tv_sec = t};
}