1
0
mirror of https://github.com/samba-team/samba.git synced 2025-01-11 05:18:09 +03:00
samba-mirror/libcli/auth/tests/test_gnutls.c

399 lines
12 KiB
C
Raw Normal View History

/*
* Unix SMB/CIFS implementation.
*
* Copyright (C) 2019 Guenther Deschner <gd@samba.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdarg.h>
#include <stddef.h>
#include <stdint.h>
#include <setjmp.h>
#include <cmocka.h>
#include "includes.h"
#include "libcli/auth/libcli_auth.h"
#include "lib/crypto/gnutls_helpers.h"
#include <gnutls/gnutls.h>
#include <gnutls/crypto.h>
#if defined(HAVE_GNUTLS_AES_CFB8) && GNUTLS_VERSION_NUMBER > 0x03060a
static void torture_gnutls_aes_128_cfb_flags(void **state,
const DATA_BLOB session_key,
const DATA_BLOB seq_num_initial,
const DATA_BLOB confounder_initial,
const DATA_BLOB confounder_expected,
const DATA_BLOB clear_initial,
const DATA_BLOB crypt_expected)
{
uint8_t confounder[8];
DATA_BLOB io;
gnutls_cipher_hd_t cipher_hnd = NULL;
uint8_t sess_kf0[16] = {0};
gnutls_datum_t key = {
.data = sess_kf0,
.size = sizeof(sess_kf0),
};
uint32_t iv_size =
gnutls_cipher_get_iv_size(GNUTLS_CIPHER_AES_128_CFB8);
uint8_t _iv[iv_size];
gnutls_datum_t iv = {
.data = _iv,
.size = iv_size,
};
uint32_t i;
int rc;
assert_int_equal(session_key.length, 16);
assert_int_equal(seq_num_initial.length, 8);
assert_int_equal(confounder_initial.length, 8);
assert_int_equal(confounder_expected.length, 8);
assert_int_equal(clear_initial.length, crypt_expected.length);
DEBUG(0,("checking buffer size: %d\n", (int)clear_initial.length));
io = data_blob_dup_talloc(NULL, clear_initial);
assert_non_null(io.data);
assert_int_equal(io.length, clear_initial.length);
memcpy(confounder, confounder_initial.data, 8);
DEBUG(0,("confounder before crypt:\n"));
dump_data(0, confounder, 8);
DEBUG(0,("initial seq num:\n"));
dump_data(0, seq_num_initial.data, 8);
DEBUG(0,("io data before crypt:\n"));
dump_data(0, io.data, io.length);
for (i = 0; i < key.size; i++) {
key.data[i] = session_key.data[i] ^ 0xf0;
}
ZERO_ARRAY(_iv);
memcpy(iv.data + 0, seq_num_initial.data, 8);
memcpy(iv.data + 8, seq_num_initial.data, 8);
rc = gnutls_cipher_init(&cipher_hnd,
GNUTLS_CIPHER_AES_128_CFB8,
&key,
&iv);
assert_int_equal(rc, 0);
rc = gnutls_cipher_encrypt(cipher_hnd,
confounder,
8);
assert_int_equal(rc, 0);
rc = gnutls_cipher_encrypt(cipher_hnd,
io.data,
io.length);
assert_int_equal(rc, 0);
DEBUG(0,("confounder after crypt:\n"));
dump_data(0, confounder, 8);
DEBUG(0,("initial seq num:\n"));
dump_data(0, seq_num_initial.data, 8);
DEBUG(0,("io data after crypt:\n"));
dump_data(0, io.data, io.length);
assert_memory_equal(io.data, crypt_expected.data, crypt_expected.length);
assert_memory_equal(confounder, confounder_expected.data, confounder_expected.length);
rc = gnutls_cipher_decrypt(cipher_hnd,
confounder,
8);
assert_int_equal(rc, 0);
rc = gnutls_cipher_decrypt(cipher_hnd,
io.data,
io.length);
assert_int_equal(rc, 0);
gnutls_cipher_deinit(cipher_hnd);
DEBUG(0,("confounder after decrypt:\n"));
dump_data(0, confounder, 8);
DEBUG(0,("initial seq num:\n"));
dump_data(0, seq_num_initial.data, 8);
DEBUG(0,("io data after decrypt:\n"));
dump_data(0, io.data, io.length);
assert_memory_equal(io.data, clear_initial.data, clear_initial.length);
assert_memory_equal(confounder, confounder_initial.data, confounder_initial.length);
}
#endif
static void torture_gnutls_aes_128_cfb(void **state)
{
#if defined(HAVE_GNUTLS_AES_CFB8) && GNUTLS_VERSION_NUMBER > 0x03060a
const uint8_t _session_key[16] = {
0x8E, 0xE8, 0x27, 0x85, 0x83, 0x41, 0x3C, 0x8D,
0xC9, 0x54, 0x70, 0x75, 0x8E, 0xC9, 0x69, 0x91
};
const DATA_BLOB session_key = data_blob_const(_session_key, 16);
const uint8_t _seq_num_initial[8] = {
0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00
};
const DATA_BLOB seq_num_initial =
data_blob_const(_seq_num_initial, 8);
const uint8_t _confounder_initial[8] = {
0x6E, 0x09, 0x25, 0x94, 0x01, 0xA0, 0x09, 0x31
};
const DATA_BLOB confounder_initial =
data_blob_const(_confounder_initial, 8);
const uint8_t _confounder_expected[8] = {
0xCA, 0xFB, 0xAC, 0xFB, 0xA8, 0x26, 0x75, 0x2A
};
const DATA_BLOB confounder_expected =
data_blob_const(_confounder_expected, 8);
const uint8_t _clear_initial[] = {
0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00,
0x01, 0x00, 0x00, 0x00, 0x04, 0x00, 0x02, 0x00,
0x01, 0x00, 0x00, 0x00, 0x01, 0x01, 0x00, 0x00,
0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x8A, 0xE3, 0x13, 0x71, 0x02, 0xF4, 0x36, 0x71,
0x01, 0x00, 0x04, 0x00, 0x01, 0x00, 0x00, 0x00,
0x02, 0x40, 0x28, 0x00, 0x78, 0x57, 0x34, 0x12,
0x34, 0x12, 0xCD, 0xAB, 0xEF, 0x00, 0x01, 0x23,
0x45, 0x67, 0x89, 0xAB, 0x00, 0x00, 0x00, 0x00,
0x04, 0x5D, 0x88, 0x8A, 0xEB, 0x1C, 0xC9, 0x11,
0x9F, 0xE8, 0x08, 0x00, 0x2B, 0x10, 0x48, 0x60,
0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
const DATA_BLOB clear_initial = data_blob_const(_clear_initial,
sizeof(_clear_initial));
const uint8_t crypt_buffer[] = {
0xE2, 0xE5, 0xE3, 0x26, 0x45, 0xFB, 0xFC, 0xF3,
0x9C, 0x14, 0xDD, 0xE1, 0x39, 0x23, 0xE0, 0x55,
0xED, 0x8F, 0xF4, 0x92, 0xA1, 0xBD, 0xDC, 0x40,
0x58, 0x6F, 0xD2, 0x5B, 0xF9, 0xC9, 0xA3, 0x87,
0x46, 0x4B, 0x7F, 0xB2, 0x03, 0xD2, 0x35, 0x22,
0x3E, 0x70, 0x9F, 0x1E, 0x3F, 0x1F, 0xDB, 0x7D,
0x79, 0x88, 0x5A, 0x3D, 0xD3, 0x40, 0x1E, 0x69,
0xD7, 0xE2, 0x1D, 0x5A, 0xE9, 0x3B, 0xE1, 0xE2,
0x98, 0xFD, 0xCB, 0x3A, 0xF7, 0xB5, 0x1C, 0xF8,
0xCA, 0x02, 0x00, 0x99, 0x9F, 0x0C, 0x01, 0xE6,
0xD2, 0x00, 0xAF, 0xE0, 0x51, 0x88, 0x62, 0x50,
0xB7, 0xE8, 0x6D, 0x63, 0x4B, 0x97, 0x05, 0xC1,
0xD4, 0x83, 0x96, 0x29, 0x80, 0xAE, 0xD8, 0xA2,
0xED, 0xC9, 0x5D, 0x0D, 0x29, 0xFF, 0x2C, 0x23,
0x02, 0xFA, 0x3B, 0xEE, 0xE8, 0xBA, 0x06, 0x01,
0x95, 0xDF, 0x80, 0x76, 0x0B, 0x17, 0x0E, 0xD8
};
const DATA_BLOB crypt_expected = data_blob_const(crypt_buffer,
sizeof(crypt_buffer));
int buffer_sizes[] = {
0, 1, 3, 7, 8, 9, 15, 16, 17
};
int i;
torture_gnutls_aes_128_cfb_flags(state,
session_key,
seq_num_initial,
confounder_initial,
confounder_expected,
clear_initial,
crypt_expected);
/* repeat the test for varying buffer sizes */
for (i = 0; i < ARRAY_SIZE(buffer_sizes); i++) {
DATA_BLOB clear_initial_trunc =
data_blob_const(clear_initial.data, buffer_sizes[i]);
DATA_BLOB crypt_expected_trunc =
data_blob_const(crypt_expected.data, buffer_sizes[i]);
torture_gnutls_aes_128_cfb_flags(state,
session_key,
seq_num_initial,
confounder_initial,
confounder_expected,
clear_initial_trunc,
crypt_expected_trunc);
}
#endif
}
static void torture_gnutls_des_crypt56(void **state)
{
static const uint8_t key[7] = {
0x69, 0x88, 0x96, 0x8E, 0xB5, 0x3A, 0x24
};
static const uint8_t clear[8] = {
0x3F, 0x49, 0x5B, 0x20, 0xA7, 0x84, 0xC2, 0x34
};
static const uint8_t crypt_expected[8] = {
0x54, 0x86, 0xCF, 0x51, 0x49, 0x3A, 0x53, 0x5B
};
uint8_t crypt[8];
uint8_t decrypt[8];
des_crypt56(crypt, clear, key, 1);
assert_memory_equal(crypt, crypt_expected, 8);
des_crypt56(decrypt, crypt, key, 0);
assert_memory_equal(decrypt, clear, 8);
}
static void torture_gnutls_E_P16(void **state)
{
static const uint8_t key[14] = {
0x98, 0xFD, 0xCB, 0x3A, 0xF7, 0xB5, 0x1C, 0xF8,
0x69, 0x88, 0x96, 0x8E, 0xB5, 0x3A
};
uint8_t buffer[16] = {
0x9C, 0x14, 0xDD, 0xE1, 0x39, 0x23, 0xE0, 0x55,
0x3F, 0x49, 0x5B, 0x20, 0xA7, 0x84, 0xC2, 0x34
};
static const uint8_t crypt_expected[16] = {
0x41, 0x4A, 0x7B, 0xEA, 0xAB, 0xBB, 0x95, 0xCE,
0x1D, 0xEA, 0xD9, 0xFF, 0xB0, 0xA9, 0xA4, 0x05
};
E_P16(key, buffer);
assert_memory_equal(buffer, crypt_expected, 16);
}
static void torture_gnutls_E_P24(void **state)
{
static const uint8_t key[21] = {
0xFB, 0x67, 0x99, 0xA4, 0x83, 0xF3, 0xD4, 0xED,
0x98, 0xFD, 0xCB, 0x3A, 0xF7, 0xB5, 0x1C, 0xF8,
0x69, 0x88, 0x96, 0x8E, 0x3A
};
const uint8_t c8[8] = {
0x44, 0xFB, 0xAC, 0xFB, 0x83, 0xB6, 0x75, 0x2A
};
static const uint8_t crypt_expected[24] = {
0x1A, 0x5E, 0x11, 0xA1, 0x59, 0xA9, 0x6B, 0x4E,
0x12, 0x5D, 0x81, 0x75, 0xA6, 0x62, 0x15, 0x6D,
0x5D, 0x20, 0x25, 0xC1, 0xA3, 0x92, 0xB3, 0x28
};
uint8_t crypt[24];
E_P24(key, c8, crypt);
assert_memory_equal(crypt, crypt_expected, 24);
}
static void torture_gnutls_SMBOWFencrypt(void **state)
{
static const uint8_t password[16] = {
'M', 'y', 'p', 'a', 's', 's', 'w', 'o',
'r', 'd', 'i', 's', '1', '1', '1', '1'
};
const uint8_t c8[8] = {
0x79, 0x88, 0x5A, 0x3D, 0xD3, 0x40, 0x1E, 0x69
};
static const uint8_t crypt_expected[24] = {
0x3F, 0xE3, 0x53, 0x75, 0x81, 0xB4, 0xF0, 0xE7,
0x0C, 0xDE, 0xCD, 0xAE, 0x39, 0x1F, 0x14, 0xB4,
0xA4, 0x2B, 0x3E, 0x39, 0x16, 0xFD, 0x1D, 0x62
};
uint8_t crypt[24];
SMBOWFencrypt(password, c8, crypt);
assert_memory_equal(crypt, crypt_expected, 24);
}
static void torture_gnutls_E_old_pw_hash(void **state)
{
static uint8_t key[14] = {
0x98, 0xFD, 0xCB, 0x3A, 0xF7, 0xB5, 0x1C, 0xF8,
0x69, 0x88, 0x96, 0x8E, 0xB5, 0x3A
};
uint8_t clear[16] = {
0x9C, 0x14, 0xDD, 0xE1, 0x39, 0x23, 0xE0, 0x55,
0x3F, 0x49, 0x5B, 0x20, 0xA7, 0x84, 0xC2, 0x34
};
static const uint8_t crypt_expected[16] = {
0x6A, 0xC7, 0x08, 0xCA, 0x2A, 0xC1, 0xAA, 0x64,
0x37, 0xEF, 0xBE, 0x58, 0xC2, 0x59, 0x33, 0xEC
};
uint8_t crypt[16];
E_old_pw_hash(key, clear, crypt);
assert_memory_equal(crypt, crypt_expected, 16);
}
static void torture_gnutls_des_crypt128(void **state)
{
static uint8_t key[16] = {
0x98, 0xFD, 0xCB, 0x3A, 0xF7, 0xB5, 0x1C, 0xF8,
0xA9, 0x69, 0x88, 0x96, 0x8E, 0xB5, 0x3A, 0x24
};
static const uint8_t clear[8] = {
0x3F, 0x49, 0x5B, 0x20, 0xA7, 0x84, 0xC2, 0x34
};
static const uint8_t crypt_expected[8] = {
0x4C, 0xB4, 0x4B, 0xD3, 0xC8, 0xC1, 0xA5, 0x50
};
uint8_t crypt[8];
des_crypt128(crypt, clear, key);
assert_memory_equal(crypt, crypt_expected, 8);
}
static void torture_gnutls_sam_rid_crypt(void **state)
{
static const uint8_t clear[16] = {
0x02, 0xFA, 0x3B, 0xEE, 0xE8, 0xBA, 0x06, 0x01,
0x3F, 0x49, 0x5B, 0x20, 0xA7, 0x84, 0xC2, 0x34
};
static const uint8_t crypt_expected[16] = {
0x1E, 0x38, 0x27, 0x5B, 0x3B, 0xB8, 0x67, 0xEB,
0xFB, 0x67, 0x99, 0xA4, 0x83, 0xF3, 0xD4, 0xED
};
uint8_t crypt[16];
uint8_t decrypt[16];
int rid = 500;
sam_rid_crypt(rid, clear, crypt, 1);
assert_memory_equal(crypt, crypt_expected, 16);
sam_rid_crypt(rid, crypt, decrypt, 0);
assert_memory_equal(decrypt, clear, 16);
}
int main(int argc, char *argv[])
{
int rc;
const struct CMUnitTest tests[] = {
cmocka_unit_test(torture_gnutls_aes_128_cfb),
cmocka_unit_test(torture_gnutls_des_crypt56),
cmocka_unit_test(torture_gnutls_E_P16),
cmocka_unit_test(torture_gnutls_E_P24),
cmocka_unit_test(torture_gnutls_SMBOWFencrypt),
cmocka_unit_test(torture_gnutls_E_old_pw_hash),
cmocka_unit_test(torture_gnutls_des_crypt128),
cmocka_unit_test(torture_gnutls_sam_rid_crypt),
};
if (argc == 2) {
cmocka_set_test_filter(argv[1]);
}
cmocka_set_message_output(CM_OUTPUT_SUBUNIT);
rc = cmocka_run_group_tests(tests, NULL, NULL);
return rc;
}