1
0
mirror of https://github.com/samba-team/samba.git synced 2025-01-25 06:04:04 +03:00
samba-mirror/ctdb/common/ctdb_util.c

670 lines
15 KiB
C
Raw Normal View History

/*
ctdb utility code
Copyright (C) Andrew Tridgell 2006
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "includes.h"
#include "lib/tdb/include/tdb.h"
#include "system/network.h"
#include "system/filesys.h"
#include "system/wait.h"
#include "system/shmem.h"
#include "../include/ctdb_private.h"
int LogLevel = DEBUG_NOTICE;
int this_log_level = 0;
/*
return error string for last error
*/
const char *ctdb_errstr(struct ctdb_context *ctdb)
{
return ctdb->err_msg;
}
/*
remember an error message
*/
void ctdb_set_error(struct ctdb_context *ctdb, const char *fmt, ...)
{
va_list ap;
talloc_free(ctdb->err_msg);
va_start(ap, fmt);
ctdb->err_msg = talloc_vasprintf(ctdb, fmt, ap);
DEBUG(DEBUG_ERR,("ctdb error: %s\n", ctdb->err_msg));
va_end(ap);
}
/*
a fatal internal error occurred - no hope for recovery
*/
void ctdb_fatal(struct ctdb_context *ctdb, const char *msg)
{
DEBUG(DEBUG_ALERT,("ctdb fatal error: %s\n", msg));
abort();
}
/*
parse a IP:port pair
*/
int ctdb_parse_address(struct ctdb_context *ctdb,
TALLOC_CTX *mem_ctx, const char *str,
struct ctdb_address *address)
{
struct servent *se;
setservent(0);
se = getservbyname("ctdb", "tcp");
endservent();
address->address = talloc_strdup(mem_ctx, str);
CTDB_NO_MEMORY(ctdb, address->address);
if (se == NULL) {
address->port = CTDB_PORT;
} else {
address->port = ntohs(se->s_port);
}
return 0;
}
/*
check if two addresses are the same
*/
bool ctdb_same_address(struct ctdb_address *a1, struct ctdb_address *a2)
{
return strcmp(a1->address, a2->address) == 0 && a1->port == a2->port;
}
/*
hash function for mapping data to a VNN - taken from tdb
*/
uint32_t ctdb_hash(const TDB_DATA *key)
{
return tdb_jenkins_hash(discard_const(key));
}
/*
a type checking varient of idr_find
*/
static void *_idr_find_type(struct idr_context *idp, int id, const char *type, const char *location)
{
void *p = idr_find(idp, id);
if (p && talloc_check_name(p, type) == NULL) {
DEBUG(DEBUG_ERR,("%s idr_find_type expected type %s but got %s\n",
location, type, talloc_get_name(p)));
return NULL;
}
return p;
}
uint32_t ctdb_reqid_new(struct ctdb_context *ctdb, void *state)
{
int id = idr_get_new_above(ctdb->idr, state, ctdb->lastid+1, INT_MAX);
if (id < 0) {
DEBUG(DEBUG_DEBUG, ("Reqid wrap!\n"));
id = idr_get_new(ctdb->idr, state, INT_MAX);
}
ctdb->lastid = id;
return id;
}
void *_ctdb_reqid_find(struct ctdb_context *ctdb, uint32_t reqid, const char *type, const char *location)
{
void *p;
p = _idr_find_type(ctdb->idr, reqid, type, location);
if (p == NULL) {
DEBUG(DEBUG_WARNING, ("Could not find idr:%u\n",reqid));
}
return p;
}
void ctdb_reqid_remove(struct ctdb_context *ctdb, uint32_t reqid)
{
int ret;
ret = idr_remove(ctdb->idr, reqid);
if (ret != 0) {
DEBUG(DEBUG_ERR, ("Removing idr that does not exist\n"));
}
}
/*
form a ctdb_rec_data record from a key/data pair
note that header may be NULL. If not NULL then it is included in the data portion
of the record
*/
struct ctdb_rec_data *ctdb_marshall_record(TALLOC_CTX *mem_ctx, uint32_t reqid,
TDB_DATA key,
struct ctdb_ltdb_header *header,
TDB_DATA data)
{
size_t length;
struct ctdb_rec_data *d;
length = offsetof(struct ctdb_rec_data, data) + key.dsize +
data.dsize + (header?sizeof(*header):0);
d = (struct ctdb_rec_data *)talloc_size(mem_ctx, length);
if (d == NULL) {
return NULL;
}
d->length = length;
d->reqid = reqid;
d->keylen = key.dsize;
memcpy(&d->data[0], key.dptr, key.dsize);
if (header) {
d->datalen = data.dsize + sizeof(*header);
memcpy(&d->data[key.dsize], header, sizeof(*header));
memcpy(&d->data[key.dsize+sizeof(*header)], data.dptr, data.dsize);
} else {
d->datalen = data.dsize;
memcpy(&d->data[key.dsize], data.dptr, data.dsize);
}
return d;
}
/* helper function for marshalling multiple records */
struct ctdb_marshall_buffer *ctdb_marshall_add(TALLOC_CTX *mem_ctx,
struct ctdb_marshall_buffer *m,
uint64_t db_id,
uint32_t reqid,
TDB_DATA key,
struct ctdb_ltdb_header *header,
TDB_DATA data)
{
struct ctdb_rec_data *r;
size_t m_size, r_size;
struct ctdb_marshall_buffer *m2;
r = ctdb_marshall_record(mem_ctx, reqid, key, header, data);
if (r == NULL) {
talloc_free(m);
return NULL;
}
if (m == NULL) {
m = talloc_zero_size(mem_ctx, offsetof(struct ctdb_marshall_buffer, data));
if (m == NULL) {
return NULL;
}
m->db_id = db_id;
}
m_size = talloc_get_size(m);
r_size = talloc_get_size(r);
m2 = talloc_realloc_size(mem_ctx, m, m_size + r_size);
if (m2 == NULL) {
talloc_free(m);
return NULL;
}
memcpy(m_size + (uint8_t *)m2, r, r_size);
talloc_free(r);
m2->count++;
return m2;
}
/* we've finished marshalling, return a data blob with the marshalled records */
TDB_DATA ctdb_marshall_finish(struct ctdb_marshall_buffer *m)
{
TDB_DATA data;
data.dptr = (uint8_t *)m;
data.dsize = talloc_get_size(m);
return data;
}
/*
loop over a marshalling buffer
- pass r==NULL to start
- loop the number of times indicated by m->count
*/
struct ctdb_rec_data *ctdb_marshall_loop_next(struct ctdb_marshall_buffer *m, struct ctdb_rec_data *r,
uint32_t *reqid,
struct ctdb_ltdb_header *header,
TDB_DATA *key, TDB_DATA *data)
{
if (r == NULL) {
r = (struct ctdb_rec_data *)&m->data[0];
} else {
r = (struct ctdb_rec_data *)(r->length + (uint8_t *)r);
}
if (reqid != NULL) {
*reqid = r->reqid;
}
if (key != NULL) {
key->dptr = &r->data[0];
key->dsize = r->keylen;
}
if (data != NULL) {
data->dptr = &r->data[r->keylen];
data->dsize = r->datalen;
if (header != NULL) {
data->dptr += sizeof(*header);
data->dsize -= sizeof(*header);
}
}
if (header != NULL) {
if (r->datalen < sizeof(*header)) {
return NULL;
}
*header = *(struct ctdb_ltdb_header *)&r->data[r->keylen];
}
return r;
}
#if HAVE_SCHED_H
#include <sched.h>
#endif
/*
if possible, make this task real time
*/
void ctdb_set_scheduler(struct ctdb_context *ctdb)
{
#if HAVE_SCHED_SETSCHEDULER
struct sched_param p;
if (ctdb->saved_scheduler_param == NULL) {
ctdb->saved_scheduler_param = talloc_size(ctdb, sizeof(p));
}
if (sched_getparam(0, (struct sched_param *)ctdb->saved_scheduler_param) == -1) {
DEBUG(DEBUG_ERR,("Unable to get old scheduler params\n"));
return;
}
p = *(struct sched_param *)ctdb->saved_scheduler_param;
p.sched_priority = 1;
if (sched_setscheduler(0, SCHED_FIFO, &p) == -1) {
DEBUG(DEBUG_CRIT,("Unable to set scheduler to SCHED_FIFO (%s)\n",
strerror(errno)));
} else {
DEBUG(DEBUG_NOTICE,("Set scheduler to SCHED_FIFO\n"));
}
#endif
}
/*
restore previous scheduler parameters
*/
void ctdb_restore_scheduler(struct ctdb_context *ctdb)
{
#if HAVE_SCHED_SETSCHEDULER
if (ctdb->saved_scheduler_param == NULL) {
ctdb_fatal(ctdb, "No saved scheduler parameters\n");
}
if (sched_setscheduler(0, SCHED_OTHER, (struct sched_param *)ctdb->saved_scheduler_param) == -1) {
ctdb_fatal(ctdb, "Unable to restore old scheduler parameters\n");
}
#endif
}
void set_nonblocking(int fd)
{
unsigned v;
v = fcntl(fd, F_GETFL, 0);
fcntl(fd, F_SETFL, v | O_NONBLOCK);
}
void set_close_on_exec(int fd)
{
unsigned v;
v = fcntl(fd, F_GETFD, 0);
fcntl(fd, F_SETFD, v | FD_CLOEXEC);
}
bool parse_ipv4(const char *s, unsigned port, struct sockaddr_in *sin)
{
sin->sin_family = AF_INET;
sin->sin_port = htons(port);
if (inet_pton(AF_INET, s, &sin->sin_addr) != 1) {
DEBUG(DEBUG_ERR, (__location__ " Failed to translate %s into sin_addr\n", s));
return false;
}
return true;
}
static bool parse_ipv6(const char *s, const char *ifaces, unsigned port, ctdb_sock_addr *saddr)
{
saddr->ip6.sin6_family = AF_INET6;
saddr->ip6.sin6_port = htons(port);
saddr->ip6.sin6_flowinfo = 0;
saddr->ip6.sin6_scope_id = 0;
if (inet_pton(AF_INET6, s, &saddr->ip6.sin6_addr) != 1) {
DEBUG(DEBUG_ERR, (__location__ " Failed to translate %s into sin6_addr\n", s));
return false;
}
if (ifaces && IN6_IS_ADDR_LINKLOCAL(&saddr->ip6.sin6_addr)) {
if (strchr(ifaces, ',')) {
DEBUG(DEBUG_ERR, (__location__ " Link local address %s "
"is specified for multiple ifaces %s\n",
s, ifaces));
return false;
}
saddr->ip6.sin6_scope_id = if_nametoindex(ifaces);
}
return true;
}
/*
parse a ip:port pair
*/
bool parse_ip_port(const char *addr, ctdb_sock_addr *saddr)
{
TALLOC_CTX *tmp_ctx = talloc_new(NULL);
char *s, *p;
unsigned port;
char *endp = NULL;
bool ret;
s = talloc_strdup(tmp_ctx, addr);
if (s == NULL) {
DEBUG(DEBUG_ERR, (__location__ " Failed strdup()\n"));
talloc_free(tmp_ctx);
return false;
}
p = rindex(s, ':');
if (p == NULL) {
DEBUG(DEBUG_ERR, (__location__ " This addr: %s does not contain a port number\n", s));
talloc_free(tmp_ctx);
return false;
}
port = strtoul(p+1, &endp, 10);
if (endp == NULL || *endp != 0) {
/* trailing garbage */
DEBUG(DEBUG_ERR, (__location__ " Trailing garbage after the port in %s\n", s));
talloc_free(tmp_ctx);
return false;
}
*p = 0;
/* now is this a ipv4 or ipv6 address ?*/
ret = parse_ip(s, NULL, port, saddr);
talloc_free(tmp_ctx);
return ret;
}
/*
parse an ip
*/
bool parse_ip(const char *addr, const char *ifaces, unsigned port, ctdb_sock_addr *saddr)
{
char *p;
bool ret;
/* now is this a ipv4 or ipv6 address ?*/
p = index(addr, ':');
if (p == NULL) {
ret = parse_ipv4(addr, port, &saddr->ip);
} else {
ret = parse_ipv6(addr, ifaces, port, saddr);
}
return ret;
}
/*
parse a ip/mask pair
*/
bool parse_ip_mask(const char *str, const char *ifaces, ctdb_sock_addr *addr, unsigned *mask)
{
TALLOC_CTX *tmp_ctx = talloc_new(NULL);
char *s, *p;
char *endp = NULL;
bool ret;
ZERO_STRUCT(*addr);
s = talloc_strdup(tmp_ctx, str);
if (s == NULL) {
DEBUG(DEBUG_ERR, (__location__ " Failed strdup()\n"));
talloc_free(tmp_ctx);
return false;
}
p = rindex(s, '/');
if (p == NULL) {
DEBUG(DEBUG_ERR, (__location__ " This addr: %s does not contain a mask\n", s));
talloc_free(tmp_ctx);
return false;
}
*mask = strtoul(p+1, &endp, 10);
if (endp == NULL || *endp != 0) {
/* trailing garbage */
DEBUG(DEBUG_ERR, (__location__ " Trailing garbage after the mask in %s\n", s));
talloc_free(tmp_ctx);
return false;
}
*p = 0;
/* now is this a ipv4 or ipv6 address ?*/
ret = parse_ip(s, ifaces, 0, addr);
talloc_free(tmp_ctx);
return ret;
}
/*
This is used to canonicalize a ctdb_sock_addr structure.
*/
void ctdb_canonicalize_ip(const ctdb_sock_addr *ip, ctdb_sock_addr *cip)
{
char prefix[12] = { 0,0,0,0,0,0,0,0,0,0,0xff,0xff };
memcpy(cip, ip, sizeof (*cip));
if ( (ip->sa.sa_family == AF_INET6)
&& !memcmp(&ip->ip6.sin6_addr, prefix, 12)) {
memset(cip, 0, sizeof(*cip));
#ifdef HAVE_SOCK_SIN_LEN
cip->ip.sin_len = sizeof(*cip);
#endif
cip->ip.sin_family = AF_INET;
cip->ip.sin_port = ip->ip6.sin6_port;
memcpy(&cip->ip.sin_addr, &ip->ip6.sin6_addr.s6_addr[12], 4);
}
}
bool ctdb_same_ip(const ctdb_sock_addr *tip1, const ctdb_sock_addr *tip2)
{
ctdb_sock_addr ip1, ip2;
ctdb_canonicalize_ip(tip1, &ip1);
ctdb_canonicalize_ip(tip2, &ip2);
if (ip1.sa.sa_family != ip2.sa.sa_family) {
return false;
}
switch (ip1.sa.sa_family) {
case AF_INET:
return ip1.ip.sin_addr.s_addr == ip2.ip.sin_addr.s_addr;
case AF_INET6:
return !memcmp(&ip1.ip6.sin6_addr.s6_addr[0],
&ip2.ip6.sin6_addr.s6_addr[0],
16);
default:
DEBUG(DEBUG_ERR, (__location__ " CRITICAL Can not compare sockaddr structures of type %u\n", ip1.sa.sa_family));
return false;
}
return true;
}
/*
compare two ctdb_sock_addr structures
*/
bool ctdb_same_sockaddr(const ctdb_sock_addr *ip1, const ctdb_sock_addr *ip2)
{
return ctdb_same_ip(ip1, ip2) && ip1->ip.sin_port == ip2->ip.sin_port;
}
char *ctdb_addr_to_str(ctdb_sock_addr *addr)
{
static char cip[128] = "";
switch (addr->sa.sa_family) {
case AF_INET:
inet_ntop(addr->ip.sin_family, &addr->ip.sin_addr, cip, sizeof(cip));
break;
case AF_INET6:
inet_ntop(addr->ip6.sin6_family, &addr->ip6.sin6_addr, cip, sizeof(cip));
break;
default:
DEBUG(DEBUG_ERR, (__location__ " ERROR, unknown family %u\n", addr->sa.sa_family));
}
return cip;
}
unsigned ctdb_addr_to_port(ctdb_sock_addr *addr)
{
switch (addr->sa.sa_family) {
case AF_INET:
return ntohs(addr->ip.sin_port);
break;
case AF_INET6:
return ntohs(addr->ip6.sin6_port);
break;
default:
DEBUG(DEBUG_ERR, (__location__ " ERROR, unknown family %u\n", addr->sa.sa_family));
}
return 0;
}
void ctdb_block_signal(int signum)
{
sigset_t set;
sigemptyset(&set);
sigaddset(&set,signum);
sigprocmask(SIG_BLOCK,&set,NULL);
}
void ctdb_unblock_signal(int signum)
{
sigset_t set;
sigemptyset(&set);
sigaddset(&set,signum);
sigprocmask(SIG_UNBLOCK,&set,NULL);
}
struct debug_levels debug_levels[] = {
{DEBUG_EMERG, "EMERG"},
{DEBUG_ALERT, "ALERT"},
{DEBUG_CRIT, "CRIT"},
{DEBUG_ERR, "ERR"},
{DEBUG_WARNING, "WARNING"},
{DEBUG_NOTICE, "NOTICE"},
{DEBUG_INFO, "INFO"},
{DEBUG_DEBUG, "DEBUG"},
{0, NULL}
};
const char *get_debug_by_level(int32_t level)
{
int i;
for (i=0; debug_levels[i].description != NULL; i++) {
if (debug_levels[i].level == level) {
return debug_levels[i].description;
}
}
return "Unknown";
}
int32_t get_debug_by_desc(const char *desc)
{
int i;
for (i=0; debug_levels[i].description != NULL; i++) {
if (!strcmp(debug_levels[i].description, desc)) {
return debug_levels[i].level;
}
}
return DEBUG_ERR;
}
/* we don't lock future pages here; it would increase the chance that
* we'd fail to mmap later on. */
void ctdb_lockdown_memory(struct ctdb_context *ctdb)
{
#ifdef HAVE_MLOCKALL
/* Extra stack, please! */
char dummy[10000];
memset(dummy, 0, sizeof(dummy));
if (ctdb->valgrinding) {
return;
}
/* Avoid compiler optimizing out dummy. */
mlock(dummy, sizeof(dummy));
if (mlockall(MCL_CURRENT) != 0) {
DEBUG(DEBUG_WARNING,("Failed to lock memory: %s'\n",
strerror(errno)));
}
#endif
}
const char *ctdb_eventscript_call_names[] = {
"init",
"setup",
"startup",
"startrecovery",
"recovered",
"takeip",
"releaseip",
"stopped",
"monitor",
"status",
"shutdown",
"reload",
"updateip",
"ipreallocated"
};