1
0
mirror of https://github.com/samba-team/samba.git synced 2025-01-11 05:18:09 +03:00
samba-mirror/python/samba/gkdi.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

398 lines
12 KiB
Python
Raw Normal View History

# Unix SMB/CIFS implementation.
# Copyright (C) Catalyst.Net Ltd 2023
#
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
#
"""Group Key Distribution Service module"""
from enum import Enum
from functools import total_ordering
from typing import Optional, Tuple
from cryptography.hazmat.primitives import hashes
from samba import _glue
from samba.dcerpc import gkdi, misc
from samba.ndr import ndr_pack, ndr_unpack
from samba.nt_time import NtTime, NtTimeDelta
uint64_max: int = 2**64 - 1
L1_KEY_ITERATION: int = _glue.GKDI_L1_KEY_ITERATION
L2_KEY_ITERATION: int = _glue.GKDI_L2_KEY_ITERATION
KEY_CYCLE_DURATION: NtTimeDelta = _glue.GKDI_KEY_CYCLE_DURATION
MAX_CLOCK_SKEW: NtTimeDelta = _glue.GKDI_MAX_CLOCK_SKEW
KEY_LEN_BYTES = 64
class Algorithm(Enum):
SHA1 = "SHA1"
SHA256 = "SHA256"
SHA384 = "SHA384"
SHA512 = "SHA512"
def algorithm(self) -> hashes.HashAlgorithm:
if self is Algorithm.SHA1:
return hashes.SHA1()
if self is Algorithm.SHA256:
return hashes.SHA256()
if self is Algorithm.SHA384:
return hashes.SHA384()
if self is Algorithm.SHA512:
return hashes.SHA512()
raise RuntimeError("unknown hash algorithm {self}")
def __repr__(self) -> str:
return str(self)
@staticmethod
def from_kdf_parameters(kdf_param: Optional[bytes]) -> "Algorithm":
if not kdf_param:
return Algorithm.SHA256 # the default used by Windows.
kdf_parameters = ndr_unpack(gkdi.KdfParameters, kdf_param)
return Algorithm(kdf_parameters.hash_algorithm)
class GkidType(Enum):
DEFAULT = object()
L0_SEED_KEY = object()
L1_SEED_KEY = object()
L2_SEED_KEY = object()
def description(self) -> str:
if self is GkidType.DEFAULT:
return "a default GKID"
if self is GkidType.L0_SEED_KEY:
return "an L0 seed key"
if self is GkidType.L1_SEED_KEY:
return "an L1 seed key"
if self is GkidType.L2_SEED_KEY:
return "an L2 seed key"
raise RuntimeError("unknown GKID type {self}")
class InvalidDerivation(Exception):
pass
class UndefinedStartTime(Exception):
pass
@total_ordering
class Gkid:
__slots__ = ["_l0_idx", "_l1_idx", "_l2_idx"]
max_l0_idx = 0x7FFF_FFFF
def __init__(self, l0_idx: int, l1_idx: int, l2_idx: int) -> None:
if not -1 <= l0_idx <= Gkid.max_l0_idx:
raise ValueError(f"L0 index {l0_idx} out of range")
if not -1 <= l1_idx < L1_KEY_ITERATION:
raise ValueError(f"L1 index {l1_idx} out of range")
if not -1 <= l2_idx < L2_KEY_ITERATION:
raise ValueError(f"L2 index {l2_idx} out of range")
if l0_idx == -1 and l1_idx != -1:
raise ValueError("invalid combination of negative and nonnegative indices")
if l1_idx == -1 and l2_idx != -1:
raise ValueError("invalid combination of negative and nonnegative indices")
self._l0_idx = l0_idx
self._l1_idx = l1_idx
self._l2_idx = l2_idx
@property
def l0_idx(self) -> int:
return self._l0_idx
@property
def l1_idx(self) -> int:
return self._l1_idx
@property
def l2_idx(self) -> int:
return self._l2_idx
def gkid_type(self) -> GkidType:
if self.l0_idx == -1:
return GkidType.DEFAULT
if self.l1_idx == -1:
return GkidType.L0_SEED_KEY
if self.l2_idx == -1:
return GkidType.L1_SEED_KEY
return GkidType.L2_SEED_KEY
def wrapped_l1_idx(self) -> int:
if self.l1_idx == -1:
return L1_KEY_ITERATION
return self.l1_idx
def wrapped_l2_idx(self) -> int:
if self.l2_idx == -1:
return L2_KEY_ITERATION
return self.l2_idx
def derive_l1_seed_key(self) -> "Gkid":
gkid_type = self.gkid_type()
if (
gkid_type is not GkidType.L0_SEED_KEY
and gkid_type is not GkidType.L1_SEED_KEY
):
raise InvalidDerivation(
"Invalid attempt to derive an L1 seed key from"
f" {gkid_type.description()}"
)
if self.l1_idx == 0:
raise InvalidDerivation("No further derivation of L1 seed keys is possible")
return Gkid(self.l0_idx, self.wrapped_l1_idx() - 1, self.l2_idx)
def derive_l2_seed_key(self) -> "Gkid":
gkid_type = self.gkid_type()
if (
gkid_type is not GkidType.L1_SEED_KEY
and gkid_type is not GkidType.L2_SEED_KEY
):
raise InvalidDerivation(
f"Attempt to derive an L2 seed key from {gkid_type.description()}"
)
if self.l2_idx == 0:
raise InvalidDerivation("No further derivation of L2 seed keys is possible")
return Gkid(self.l0_idx, self.l1_idx, self.wrapped_l2_idx() - 1)
def __str__(self) -> str:
return f"Gkid({self.l0_idx}, {self.l1_idx}, {self.l2_idx})"
def __repr__(self) -> str:
cls = type(self)
return (
f"{cls.__qualname__}({repr(self.l0_idx)}, {repr(self.l1_idx)},"
f" {repr(self.l2_idx)})"
)
def __eq__(self, other: object) -> bool:
if not isinstance(other, Gkid):
return NotImplemented
return (self.l0_idx, self.l1_idx, self.l2_idx) == (
other.l0_idx,
other.l1_idx,
other.l2_idx,
)
def __lt__(self, other: object) -> bool:
if not isinstance(other, Gkid):
return NotImplemented
def as_tuple(gkid: Gkid) -> Tuple[int, int, int]:
l0_idx, l1_idx, l2_idx = gkid.l0_idx, gkid.l1_idx, gkid.l2_idx
# DEFAULT is considered less than everything else, so that the
# lexical ordering requirement in [MS-GKDI] 3.1.4.1.3 (GetKey) makes
# sense.
if gkid.gkid_type() is not GkidType.DEFAULT:
# Use the wrapped indices so that L1 seed keys are considered
# greater than their children L2 seed keys, and L0 seed keys are
# considered greater than their children L1 seed keys.
l1_idx = gkid.wrapped_l1_idx()
l2_idx = gkid.wrapped_l2_idx()
return l0_idx, l1_idx, l2_idx
return as_tuple(self) < as_tuple(other)
def __hash__(self) -> int:
return hash((self.l0_idx, self.l1_idx, self.l2_idx))
@staticmethod
def default() -> "Gkid":
return Gkid(-1, -1, -1)
@staticmethod
def l0_seed_key(l0_idx: int) -> "Gkid":
return Gkid(l0_idx, -1, -1)
@staticmethod
def l1_seed_key(l0_idx: int, l1_idx: int) -> "Gkid":
return Gkid(l0_idx, l1_idx, -1)
@staticmethod
def from_nt_time(nt_time: NtTime) -> "Gkid":
l0 = nt_time // (L1_KEY_ITERATION * L2_KEY_ITERATION * KEY_CYCLE_DURATION)
l1 = (
nt_time
% (L1_KEY_ITERATION * L2_KEY_ITERATION * KEY_CYCLE_DURATION)
// (L2_KEY_ITERATION * KEY_CYCLE_DURATION)
)
l2 = nt_time % (L2_KEY_ITERATION * KEY_CYCLE_DURATION) // KEY_CYCLE_DURATION
return Gkid(l0, l1, l2)
def start_nt_time(self) -> NtTime:
gkid_type = self.gkid_type()
if gkid_type is not GkidType.L2_SEED_KEY:
raise UndefinedStartTime(
f"{gkid_type.description()} has no defined start time"
)
start_time = NtTime(
(
self.l0_idx * L1_KEY_ITERATION * L2_KEY_ITERATION
+ self.l1_idx * L2_KEY_ITERATION
+ self.l2_idx
)
* KEY_CYCLE_DURATION
)
if not 0 <= start_time <= uint64_max:
raise OverflowError(f"start time {start_time} out of range")
return start_time
class SeedKeyPair:
__slots__ = ["l1_key", "l2_key", "gkid", "hash_algorithm", "root_key_id"]
def __init__(
self,
l1_key: Optional[bytes],
l2_key: Optional[bytes],
gkid: Gkid,
hash_algorithm: Algorithm,
root_key_id: misc.GUID,
) -> None:
if l1_key is not None and len(l1_key) != KEY_LEN_BYTES:
raise ValueError(f"L1 key ({repr(l1_key)}) must be {KEY_LEN_BYTES} bytes")
if l2_key is not None and len(l2_key) != KEY_LEN_BYTES:
raise ValueError(f"L2 key ({repr(l2_key)}) must be {KEY_LEN_BYTES} bytes")
self.l1_key = l1_key
self.l2_key = l2_key
self.gkid = gkid
self.hash_algorithm = hash_algorithm
self.root_key_id = root_key_id
def __str__(self) -> str:
l1_key_hex = None if self.l1_key is None else self.l1_key.hex()
l2_key_hex = None if self.l2_key is None else self.l2_key.hex()
return (
f"SeedKeyPair(L1Key({l1_key_hex}), L2Key({l2_key_hex}), {self.gkid},"
f" {self.root_key_id}, {self.hash_algorithm})"
)
def __repr__(self) -> str:
cls = type(self)
return (
f"{cls.__qualname__}({repr(self.l1_key)}, {repr(self.l2_key)},"
f" {repr(self.gkid)}, {repr(self.hash_algorithm)},"
f" {repr(self.root_key_id)})"
)
def __eq__(self, other: object) -> bool:
if not isinstance(other, SeedKeyPair):
return NotImplemented
return (
self.l1_key,
self.l2_key,
self.gkid,
self.hash_algorithm,
self.root_key_id,
) == (
other.l1_key,
other.l2_key,
other.gkid,
other.hash_algorithm,
other.root_key_id,
)
def __hash__(self) -> int:
return hash((
self.l1_key,
self.l2_key,
self.gkid,
self.hash_algorithm,
ndr_pack(self.root_key_id),
))
class GroupKey:
__slots__ = ["gkid", "key", "hash_algorithm", "root_key_id"]
def __init__(
self, key: bytes, gkid: Gkid, hash_algorithm: Algorithm, root_key_id: misc.GUID
) -> None:
if key is not None and len(key) != KEY_LEN_BYTES:
raise ValueError(f"Key ({repr(key)}) must be {KEY_LEN_BYTES} bytes")
self.key = key
self.gkid = gkid
self.hash_algorithm = hash_algorithm
self.root_key_id = root_key_id
def __str__(self) -> str:
return (
f"GroupKey(Key({self.key.hex()}), {self.gkid}, {self.hash_algorithm},"
f" {self.root_key_id})"
)
def __repr__(self) -> str:
cls = type(self)
return (
f"{cls.__qualname__}({repr(self.key)}, {repr(self.gkid)},"
f" {repr(self.hash_algorithm)}, {repr(self.root_key_id)})"
)
def __eq__(self, other: object) -> bool:
if not isinstance(other, GroupKey):
return NotImplemented
return (self.key, self.gkid, self.hash_algorithm, self.root_key_id) == (
other.key,
other.gkid,
other.hash_algorithm,
other.root_key_id,
)
def __hash__(self) -> int:
return hash(
(self.key, self.gkid, self.hash_algorithm, ndr_pack(self.root_key_id))
)