1
0
mirror of https://github.com/samba-team/samba.git synced 2024-12-25 23:21:54 +03:00
samba-mirror/lib/tevent/tevent_req.c

339 lines
8.2 KiB
C
Raw Normal View History

/*
Unix SMB/CIFS implementation.
Infrastructure for async requests
Copyright (C) Volker Lendecke 2008
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "includes.h"
#include "lib/tevent/tevent.h"
#include "lib/talloc/talloc.h"
#include "lib/util/dlinklist.h"
#include "lib/async_req/async_req.h"
#ifndef TALLOC_FREE
#define TALLOC_FREE(ctx) do { talloc_free(ctx); ctx=NULL; } while(0)
#endif
/**
* @brief Print an async_req structure
* @param[in] mem_ctx The memory context for the result
* @param[in] req The request to be printed
* @retval Text representation of req
*
* This is a default print function for async requests. Implementations should
* override this with more specific information.
*
* This function should not be used by async API users, this is non-static
* only to allow implementations to easily provide default information in
* their specific functions.
*/
char *async_req_print(TALLOC_CTX *mem_ctx, struct async_req *req)
{
return talloc_asprintf(mem_ctx, "async_req: state=%d, error=%d, "
"priv=%s", req->state, (int)req->error,
talloc_get_name(req->private_data));
}
/**
* @brief Create an async request
* @param[in] mem_ctx The memory context for the result
* @param[in] ev The event context this async request will be driven by
* @retval A new async request
*
* The new async request will be initialized in state ASYNC_REQ_IN_PROGRESS
*/
struct async_req *async_req_new(TALLOC_CTX *mem_ctx)
{
struct async_req *result;
result = talloc_zero(mem_ctx, struct async_req);
if (result == NULL) {
return NULL;
}
result->state = ASYNC_REQ_IN_PROGRESS;
result->print = async_req_print;
return result;
}
static void async_req_finish(struct async_req *req, enum async_req_state state)
{
req->state = state;
if (req->async.fn != NULL) {
req->async.fn(req);
}
}
/**
* @brief An async request has successfully finished
* @param[in] req The finished request
*
* async_req_done is to be used by implementors of async requests. When a
* request is successfully finished, this function calls the user's completion
* function.
*/
void async_req_done(struct async_req *req)
{
async_req_finish(req, ASYNC_REQ_DONE);
}
/**
* @brief An async request has seen an error
* @param[in] req The request with an error
* @param[in] error The error code
*
* async_req_done is to be used by implementors of async requests. When a
* request can not successfully completed, the implementation should call this
* function with the appropriate status code.
*/
void async_req_error(struct async_req *req, uint64_t error)
{
req->error = error;
async_req_finish(req, ASYNC_REQ_USER_ERROR);
}
/**
* @brief Timed event callback
* @param[in] ev Event context
* @param[in] te The timed event
* @param[in] now zero time
* @param[in] priv The async request to be finished
*/
static void async_trigger(struct tevent_context *ev, struct tevent_timer *te,
struct timeval now, void *priv)
{
struct async_req *req = talloc_get_type_abort(priv, struct async_req);
TALLOC_FREE(te);
if (req->error == 0) {
async_req_done(req);
}
else {
async_req_error(req, req->error);
}
}
/**
* @brief Helper function for nomem check
* @param[in] p The pointer to be checked
* @param[in] req The request being processed
*
* Convenience helper to easily check alloc failure within a callback
* implementing the next step of an async request.
*
* Call pattern would be
* \code
* p = talloc(mem_ctx, bla);
* if (async_req_ntnomem(p, req)) {
* return;
* }
* \endcode
*/
bool async_req_nomem(const void *p, struct async_req *req)
{
if (p != NULL) {
return false;
}
async_req_finish(req, ASYNC_REQ_NO_MEMORY);
return true;
}
/**
* @brief Finish a request before it started processing
* @param[in] req The finished request
* @param[in] status The success code
*
* An implementation of an async request might find that it can either finish
* the request without waiting for an external event, or it can't even start
* the engine. To present the illusion of a callback to the user of the API,
* the implementation can call this helper function which triggers an
* immediate timed event. This way the caller can use the same calling
* conventions, independent of whether the request was actually deferred.
*/
bool async_post_error(struct async_req *req, struct tevent_context *ev,
uint64_t error)
{
req->error = error;
if (tevent_add_timer(ev, req, timeval_zero(),
async_trigger, req) == NULL) {
return false;
}
return true;
}
bool async_req_is_error(struct async_req *req, enum async_req_state *state,
uint64_t *error)
{
if (req->state == ASYNC_REQ_DONE) {
return false;
}
if (req->state == ASYNC_REQ_USER_ERROR) {
*error = req->error;
}
*state = req->state;
return true;
}
static void async_req_timedout(struct tevent_context *ev,
struct tevent_timer *te,
struct timeval now,
void *priv)
{
struct async_req *req = talloc_get_type_abort(priv, struct async_req);
TALLOC_FREE(te);
async_req_finish(req, ASYNC_REQ_TIMED_OUT);
}
bool async_req_set_timeout(struct async_req *req, struct tevent_context *ev,
struct timeval to)
{
return (tevent_add_timer(
ev, req, timeval_current_ofs(to.tv_sec, to.tv_usec),
async_req_timedout, req)
!= NULL);
}
struct async_req *async_wait_send(TALLOC_CTX *mem_ctx,
struct tevent_context *ev,
struct timeval to)
{
struct async_req *result;
result = async_req_new(mem_ctx);
if (result == NULL) {
return result;
}
if (!async_req_set_timeout(result, ev, to)) {
TALLOC_FREE(result);
return NULL;
}
return result;
}
bool async_wait_recv(struct async_req *req)
{
return true;
}
struct async_queue_entry {
struct async_queue_entry *prev, *next;
struct async_req_queue *queue;
struct async_req *req;
void (*trigger)(struct async_req *req);
};
struct async_req_queue {
struct async_queue_entry *queue;
};
struct async_req_queue *async_req_queue_init(TALLOC_CTX *mem_ctx)
{
return talloc_zero(mem_ctx, struct async_req_queue);
}
static int async_queue_entry_destructor(struct async_queue_entry *e)
{
struct async_req_queue *queue = e->queue;
DLIST_REMOVE(queue->queue, e);
if (queue->queue != NULL) {
queue->queue->trigger(queue->queue->req);
}
return 0;
}
static void async_req_immediate_trigger(struct tevent_context *ev,
struct tevent_timer *te,
struct timeval now,
void *priv)
{
struct async_queue_entry *e = talloc_get_type_abort(
priv, struct async_queue_entry);
TALLOC_FREE(te);
e->trigger(e->req);
}
bool async_req_enqueue(struct async_req_queue *queue, struct tevent_context *ev,
struct async_req *req,
void (*trigger)(struct async_req *req))
{
struct async_queue_entry *e;
bool busy;
busy = (queue->queue != NULL);
e = talloc(req, struct async_queue_entry);
if (e == NULL) {
return false;
}
e->req = req;
e->trigger = trigger;
e->queue = queue;
DLIST_ADD_END(queue->queue, e, struct async_queue_entry *);
talloc_set_destructor(e, async_queue_entry_destructor);
if (!busy) {
struct tevent_timer *te;
te = tevent_add_timer(ev, e, timeval_zero(),
async_req_immediate_trigger,
e);
if (te == NULL) {
TALLOC_FREE(e);
return false;
}
}
return true;
}
bool _async_req_setup(TALLOC_CTX *mem_ctx, struct async_req **preq,
void *pstate, size_t state_size, const char *typename)
{
struct async_req *req;
void **ppstate = (void **)pstate;
void *state;
req = async_req_new(mem_ctx);
if (req == NULL) {
return false;
}
state = talloc_size(req, state_size);
if (state == NULL) {
TALLOC_FREE(req);
return false;
}
talloc_set_name_const(state, typename);
req->private_data = state;
*preq = req;
*ppstate = state;
return true;
}