1
0
mirror of https://github.com/samba-team/samba.git synced 2025-02-02 09:47:23 +03:00

While working on a general-purpose caching module (out soon), I thought of

a better way to handle the node pointer array used in ubi_BinTree.  The
change simplified the code a bigbunch.  It also forced updates to all of
the binary tree modules.  CRH
(This used to be commit db9898559f1493ade4478196b72663759bb18995)
This commit is contained in:
Christopher R. Hertel 1997-12-11 11:44:18 +00:00
parent 419e8823e9
commit 7735e4d586
6 changed files with 493 additions and 706 deletions

View File

@ -9,10 +9,6 @@
* This module provides an implementation of AVL height balanced binary
* trees. (Adelson-Velskii, Landis 1962)
*
* This file implements the core of the height-balanced (AVL) tree management
* routines. The header file, ubi_AVLtree.h, contains function prototypes
* for all "exported" functions.
*
* -------------------------------------------------------------------------- **
*
* This library is free software; you can redistribute it and/or
@ -31,84 +27,20 @@
*
* -------------------------------------------------------------------------- **
*
* Revision 2.4 1997/07/26 04:36:20 crh
* Andrew Leppard, aka "Grazgur", discovered that I still had my brains tied
* on backwards with respect to node deletion. I did some more digging and
* discovered that I was not changing the balance values correctly in the
* single rotation functions. Double rotation was working correctly because
* the formula for changing the balance values is the same for insertion or
* deletion. Not so for single rotation.
* Log: ubi_AVLtree.c,v
* Revision 3.0 1997/12/08 05:38:55 crh
* This is a new major revision level. The handling of the pointers in the
* ubi_trNode structure was redesigned. The result is that there are fewer
* macros floating about, and fewer cases in which values have to be
* incremented or decremented. See ubi_BinTree for more information.
*
* I have tested the fix by loading the tree with over 44 thousand names,
* deleting 2,629 of them (all those in which the second character is 'u')
* and then walking the tree recursively to verify that the balance factor of
* each node is correct. Passed.
* Revision 2; 1995/03/05 - 1997/12/07:
* An overhaul to the node delete process. I had gotten it wrong in a
* couple of places, thought I'd fixed it, and then found that I'd missing
* something more. Thanks to Andrew Leppard for the bug report!
*
* Thanks Andrew!
*
* Also:
* + Changed ubi_TRUE and ubi_FALSE to ubi_trTRUE and ubi_trFALSE.
* + Rewrote the ubi_tr<func> macros because they weren't doing what I'd
* hoped they would do (see the bottom of the header file). They work now.
*
* Revision 2.3 1997/06/03 04:41:35 crh
* Changed TRUE and FALSE to ubi_TRUE and ubi_FALSE to avoid causing
* problems.
*
* Revision 2.2 1995/10/03 22:16:01 CRH
* Ubisized!
*
* Revision 2.1 95/03/09 23:45:59 CRH
* Added the ModuleID static string and function. These modules are now
* self-identifying.
*
* Revision 2.0 95/03/05 14:10:51 CRH
* This revision of ubi_AVLtree coincides with revision 2.0 of ubi_BinTree,
* and so includes all of the changes to that module. In addition, a bug in
* the node deletion process has been fixed.
*
* After rewriting the Locate() function in ubi_BinTree, I decided that it was
* time to overhaul this module. In the process, I discovered a bug related
* to node deletion. To fix the bug, I wrote function Debalance(). A quick
* glance will show that it is very similar to the Rebalance() function. In
* previous versions of this module, I tried to include the functionality of
* Debalance() within Rebalance(), with poor results.
*
* Revision 1.0 93/10/15 22:58:56 CRH
* With this revision, I have added a set of #define's that provide a single,
* standard API to all existing tree modules. Until now, each of the three
* existing modules had a different function and typedef prefix, as follows:
*
* Module Prefix
* ubi_BinTree ubi_bt
* ubi_AVLtree ubi_avl
* ubi_SplayTree ubi_spt
*
* To further complicate matters, only those portions of the base module
* (ubi_BinTree) that were superceeded in the new module had the new names.
* For example, if you were using ubi_AVLtree, the AVL node structure was
* named "ubi_avlNode", but the root structure was still "ubi_btRoot". Using
* SplayTree, the locate function was called "ubi_sptLocate", but the next
* and previous functions remained "ubi_btNext" and "ubi_btPrev".
*
* This was not too terrible if you were familiar with the modules and knew
* exactly which tree model you wanted to use. If you wanted to be able to
* change modules (for speed comparisons, etc), things could get messy very
* quickly.
*
* So, I have added a set of defined names that get redefined in any of the
* descendant modules. To use this standardized interface in your code,
* simply replace all occurances of "ubi_bt", "ubi_avl", and "ubi_spt" with
* "ubi_tr". The "ubi_tr" names will resolve to the correct function or
* datatype names for the module that you are using. Just remember to
* include the header for that module in your program file. Because these
* names are handled by the preprocessor, there is no added run-time
* overhead.
*
* Note that the original names do still exist, and can be used if you wish
* to write code directly to a specific module. This should probably only be
* done if you are planning to implement a new descendant type, such as
* red/black trees. CRH
* Revision 1; 93/10/15 - 95/03/05:
* Added the ubi_tr defines. See ubi_BinTree.h for more info.
*
* V0.0 - May, 1990 - Written by Christopher R. Hertel (CRH).
*
@ -123,8 +55,8 @@
*/
static char ModuleID[] = "ubi_AVLtree\n\
\tRevision: 2.4\n\
\tDate: 1997/07/26 04:36:20\n\
\tRevision: 3.0\n\
\tDate: 1997/12/08 05:38:55\n\
\tAuthor: crh\n";
/* ========================================================================== **
@ -153,22 +85,22 @@ static ubi_avlNodePtr L1( ubi_avlNodePtr p )
{
ubi_avlNodePtr tmp;
tmp = p->Link[RIGHT];
p->Link[RIGHT] = tmp->Link[LEFT];
tmp->Link[LEFT] = p;
tmp = p->Link[ubi_trRIGHT];
p->Link[ubi_trRIGHT] = tmp->Link[ubi_trLEFT];
tmp->Link[ubi_trLEFT] = p;
tmp->Link[PARENT] = p->Link[PARENT];
tmp->gender = p->gender;
if(tmp->Link[PARENT])
(tmp->Link[PARENT])->Link[(tmp->gender)] = tmp;
p->Link[PARENT] = tmp;
p->gender = LEFT;
if( p->Link[RIGHT] )
tmp->Link[ubi_trPARENT] = p->Link[ubi_trPARENT];
tmp->gender = p->gender;
if(tmp->Link[ubi_trPARENT])
(tmp->Link[ubi_trPARENT])->Link[(tmp->gender)] = tmp;
p->Link[ubi_trPARENT] = tmp;
p->gender = ubi_trLEFT;
if( p->Link[ubi_trRIGHT] )
{
p->Link[RIGHT]->Link[PARENT] = p;
(p->Link[RIGHT])->gender = RIGHT;
p->Link[ubi_trRIGHT]->Link[ubi_trPARENT] = p;
(p->Link[ubi_trRIGHT])->gender = ubi_trRIGHT;
}
p->balance -= Normalize( tmp->balance );
p->balance -= tmp->balance;
(tmp->balance)--;
return( tmp );
} /* L1 */
@ -185,22 +117,22 @@ static ubi_avlNodePtr R1( ubi_avlNodePtr p )
{
ubi_avlNodePtr tmp;
tmp = p->Link[LEFT];
p->Link[LEFT] = tmp->Link[RIGHT];
tmp->Link[RIGHT] = p;
tmp = p->Link[ubi_trLEFT];
p->Link[ubi_trLEFT] = tmp->Link[ubi_trRIGHT];
tmp->Link[ubi_trRIGHT] = p;
tmp->Link[PARENT] = p->Link[PARENT];
tmp->gender = p->gender;
if(tmp->Link[PARENT])
(tmp->Link[PARENT])->Link[(tmp->gender)] = tmp;
p->Link[PARENT] = tmp;
p->gender = RIGHT;
if(p->Link[LEFT])
tmp->Link[ubi_trPARENT] = p->Link[ubi_trPARENT];
tmp->gender = p->gender;
if(tmp->Link[ubi_trPARENT])
(tmp->Link[ubi_trPARENT])->Link[(tmp->gender)] = tmp;
p->Link[ubi_trPARENT] = tmp;
p->gender = ubi_trRIGHT;
if(p->Link[ubi_trLEFT])
{
p->Link[LEFT]->Link[PARENT] = p;
p->Link[LEFT]->gender = LEFT;
p->Link[ubi_trLEFT]->Link[ubi_trPARENT] = p;
p->Link[ubi_trLEFT]->gender = ubi_trLEFT;
}
p->balance -= Normalize( tmp->balance );
p->balance -= tmp->balance;
(tmp->balance)++;
return( tmp );
} /* R1 */
@ -217,43 +149,43 @@ static ubi_avlNodePtr L2( ubi_avlNodePtr tree )
{
ubi_avlNodePtr tmp, newroot;
tmp = tree->Link[RIGHT];
newroot = tmp->Link[LEFT];
tmp->Link[LEFT] = newroot->Link[RIGHT];
newroot->Link[RIGHT] = tmp;
tree->Link[RIGHT] = newroot->Link[LEFT];
newroot->Link[LEFT] = tree;
tmp = tree->Link[ubi_trRIGHT];
newroot = tmp->Link[ubi_trLEFT];
tmp->Link[ubi_trLEFT] = newroot->Link[ubi_trRIGHT];
newroot->Link[ubi_trRIGHT] = tmp;
tree->Link[ubi_trRIGHT] = newroot->Link[ubi_trLEFT];
newroot->Link[ubi_trLEFT] = tree;
newroot->Link[PARENT] = tree->Link[PARENT];
newroot->gender = tree->gender;
tree->Link[PARENT] = newroot;
tree->gender = LEFT;
tmp->Link[PARENT] = newroot;
tmp->gender = RIGHT;
newroot->Link[ubi_trPARENT] = tree->Link[ubi_trPARENT];
newroot->gender = tree->gender;
tree->Link[ubi_trPARENT] = newroot;
tree->gender = ubi_trLEFT;
tmp->Link[ubi_trPARENT] = newroot;
tmp->gender = ubi_trRIGHT;
if( tree->Link[RIGHT] )
if( tree->Link[ubi_trRIGHT] )
{
tree->Link[RIGHT]->Link[PARENT] = tree;
tree->Link[RIGHT]->gender = RIGHT;
tree->Link[ubi_trRIGHT]->Link[ubi_trPARENT] = tree;
tree->Link[ubi_trRIGHT]->gender = ubi_trRIGHT;
}
if( tmp->Link[LEFT] )
if( tmp->Link[ubi_trLEFT] )
{
tmp->Link[LEFT]->Link[PARENT] = tmp;
tmp->Link[LEFT]->gender = LEFT;
tmp->Link[ubi_trLEFT]->Link[ubi_trPARENT] = tmp;
tmp->Link[ubi_trLEFT]->gender = ubi_trLEFT;
}
if(newroot->Link[PARENT])
newroot->Link[PARENT]->Link[newroot->gender] = newroot;
if(newroot->Link[ubi_trPARENT])
newroot->Link[ubi_trPARENT]->Link[newroot->gender] = newroot;
switch( newroot->balance )
{
case LEFT :
tree->balance = EQUAL; tmp->balance = RIGHT; break;
case EQUAL:
tree->balance = EQUAL; tmp->balance = EQUAL; break;
case RIGHT:
tree->balance = LEFT; tmp->balance = EQUAL; break;
case ubi_trLEFT :
tree->balance = ubi_trEQUAL; tmp->balance = ubi_trRIGHT; break;
case ubi_trEQUAL:
tree->balance = ubi_trEQUAL; tmp->balance = ubi_trEQUAL; break;
case ubi_trRIGHT:
tree->balance = ubi_trLEFT; tmp->balance = ubi_trEQUAL; break;
}
newroot->balance = EQUAL;
newroot->balance = ubi_trEQUAL;
return( newroot );
} /* L2 */
@ -269,48 +201,48 @@ static ubi_avlNodePtr R2( ubi_avlNodePtr tree )
{
ubi_avlNodePtr tmp, newroot;
tmp = tree->Link[LEFT];
newroot = tmp->Link[RIGHT];
tmp->Link[RIGHT] = newroot->Link[LEFT];
newroot->Link[LEFT] = tmp;
tree->Link[LEFT] = newroot->Link[RIGHT];
newroot->Link[RIGHT] = tree;
tmp = tree->Link[ubi_trLEFT];
newroot = tmp->Link[ubi_trRIGHT];
tmp->Link[ubi_trRIGHT] = newroot->Link[ubi_trLEFT];
newroot->Link[ubi_trLEFT] = tmp;
tree->Link[ubi_trLEFT] = newroot->Link[ubi_trRIGHT];
newroot->Link[ubi_trRIGHT] = tree;
newroot->Link[PARENT] = tree->Link[PARENT];
newroot->gender = tree->gender;
tree->Link[PARENT] = newroot;
tree->gender = RIGHT;
tmp->Link[PARENT] = newroot;
tmp->gender = LEFT;
newroot->Link[ubi_trPARENT] = tree->Link[ubi_trPARENT];
newroot->gender = tree->gender;
tree->Link[ubi_trPARENT] = newroot;
tree->gender = ubi_trRIGHT;
tmp->Link[ubi_trPARENT] = newroot;
tmp->gender = ubi_trLEFT;
if( tree->Link[LEFT] )
if( tree->Link[ubi_trLEFT] )
{
tree->Link[LEFT]->Link[PARENT] = tree;
tree->Link[LEFT]->gender = LEFT;
tree->Link[ubi_trLEFT]->Link[ubi_trPARENT] = tree;
tree->Link[ubi_trLEFT]->gender = ubi_trLEFT;
}
if( tmp->Link[RIGHT] )
if( tmp->Link[ubi_trRIGHT] )
{
tmp->Link[RIGHT]->Link[PARENT] = tmp;
tmp->Link[RIGHT]->gender = RIGHT;
tmp->Link[ubi_trRIGHT]->Link[ubi_trPARENT] = tmp;
tmp->Link[ubi_trRIGHT]->gender = ubi_trRIGHT;
}
if(newroot->Link[PARENT])
newroot->Link[PARENT]->Link[newroot->gender] = newroot;
if(newroot->Link[ubi_trPARENT])
newroot->Link[ubi_trPARENT]->Link[newroot->gender] = newroot;
switch( newroot->balance )
{
case LEFT :
tree->balance = RIGHT; tmp->balance = EQUAL; break;
case EQUAL :
tree->balance = EQUAL; tmp->balance = EQUAL; break;
case RIGHT :
tree->balance = EQUAL; tmp->balance = LEFT; break;
case ubi_trLEFT :
tree->balance = ubi_trRIGHT; tmp->balance = ubi_trEQUAL; break;
case ubi_trEQUAL :
tree->balance = ubi_trEQUAL; tmp->balance = ubi_trEQUAL; break;
case ubi_trRIGHT :
tree->balance = ubi_trEQUAL; tmp->balance = ubi_trLEFT; break;
}
newroot->balance = EQUAL;
newroot->balance = ubi_trEQUAL;
return( newroot );
} /* R2 */
static ubi_avlNodePtr Adjust( ubi_avlNodePtr p, char LorR )
static ubi_avlNodePtr Adjust( ubi_avlNodePtr p, signed char LorR )
/* ------------------------------------------------------------------------ **
* Adjust the balance value at node *p. If necessary, rotate the subtree
* rooted at p.
@ -329,23 +261,23 @@ static ubi_avlNodePtr Adjust( ubi_avlNodePtr p, char LorR )
*/
{
if( p->balance != LorR )
p->balance += Normalize(LorR);
p->balance += LorR;
else
{
char tallerbal; /* Balance value of the root of the taller subtree of p. */
signed char tallerbal; /* Balance of root of the taller subtree of p. */
tallerbal = p->Link[LorR]->balance;
if( ( EQUAL == tallerbal ) || ( p->balance == tallerbal ) )
p = ( (LEFT==LorR) ? R1(p) : L1(p) ); /* single rotation */
if( ( ubi_trEQUAL == tallerbal ) || ( p->balance == tallerbal ) )
p = ( (ubi_trLEFT==LorR) ? R1(p) : L1(p) ); /* single rotation */
else
p = ( (LEFT==LorR) ? R2(p) : L2(p) ); /* double rotation */
p = ( (ubi_trLEFT==LorR) ? R2(p) : L2(p) ); /* double rotation */
}
return( p );
} /* Adjust */
static ubi_avlNodePtr Rebalance( ubi_avlNodePtr Root,
ubi_avlNodePtr subtree,
char LorR )
signed char LorR )
/* ------------------------------------------------------------------------ **
* Rebalance the tree following an insertion.
*
@ -371,19 +303,19 @@ static ubi_avlNodePtr Rebalance( ubi_avlNodePtr Root,
while( subtree )
{
subtree = Adjust( subtree, LorR );
if( PARENT == subtree->gender )
if( ubi_trPARENT == subtree->gender )
return( subtree );
if( EQUAL == subtree->balance )
if( ubi_trEQUAL == subtree->balance )
return( Root );
LorR = subtree->gender;
subtree = subtree->Link[PARENT];
subtree = subtree->Link[ubi_trPARENT];
}
return( Root );
} /* Rebalance */
static ubi_avlNodePtr Debalance( ubi_avlNodePtr Root,
ubi_avlNodePtr subtree,
char LorR )
signed char LorR )
/* ------------------------------------------------------------------------ **
* Rebalance the tree following a deletion.
*
@ -411,13 +343,13 @@ static ubi_avlNodePtr Debalance( ubi_avlNodePtr Root,
{
while( subtree )
{
subtree = Adjust( subtree, RevWay(LorR) );
if( PARENT == subtree->gender )
subtree = Adjust( subtree, ubi_trRevWay(LorR) );
if( ubi_trPARENT == subtree->gender )
return( subtree );
if( EQUAL != subtree->balance )
if( ubi_trEQUAL != subtree->balance )
return( Root );
LorR = subtree->gender;
subtree = subtree->Link[PARENT];
subtree = subtree->Link[ubi_trPARENT];
}
return( Root );
} /* Debalance */
@ -458,10 +390,10 @@ static void ReplaceNode( ubi_avlNodePtr *parent,
((unsigned char *)newnode)[i] = ((unsigned char *)oldnode)[i];
(*parent) = newnode;
if(oldnode->Link[LEFT ] )
(oldnode->Link[LEFT ])->Link[PARENT] = newnode;
if(oldnode->Link[RIGHT] )
(oldnode->Link[RIGHT])->Link[PARENT] = newnode;
if(oldnode->Link[ubi_trLEFT ] )
(oldnode->Link[ubi_trLEFT ])->Link[ubi_trPARENT] = newnode;
if(oldnode->Link[ubi_trRIGHT] )
(oldnode->Link[ubi_trRIGHT])->Link[ubi_trPARENT] = newnode;
} /* ReplaceNode */
static void SwapNodes( ubi_btRootPtr RootPtr,
@ -489,20 +421,20 @@ static void SwapNodes( ubi_btRootPtr RootPtr,
ubi_avlNode dummy;
ubi_avlNodePtr dummy_p = &dummy;
if( Node1->Link[PARENT] )
Parent = &((Node1->Link[PARENT])->Link[Node1->gender]);
if( Node1->Link[ubi_trPARENT] )
Parent = &((Node1->Link[ubi_trPARENT])->Link[Node1->gender]);
else
Parent = (ubi_avlNodePtr *)&(RootPtr->root);
ReplaceNode( Parent, Node1, dummy_p );
if( Node2->Link[PARENT] )
Parent = &((Node2->Link[PARENT])->Link[Node2->gender]);
if( Node2->Link[ubi_trPARENT] )
Parent = &((Node2->Link[ubi_trPARENT])->Link[Node2->gender]);
else
Parent = (ubi_avlNodePtr *)&(RootPtr->root);
ReplaceNode( Parent, Node2, Node1 );
if( dummy_p->Link[PARENT] )
Parent = &((dummy_p->Link[PARENT])->Link[dummy_p->gender]);
if( dummy_p->Link[ubi_trPARENT] )
Parent = &((dummy_p->Link[ubi_trPARENT])->Link[dummy_p->gender]);
else
Parent = (ubi_avlNodePtr *)&(RootPtr->root);
ReplaceNode( Parent, dummy_p, Node2 );
@ -526,7 +458,7 @@ ubi_avlNodePtr ubi_avlInitNode( ubi_avlNodePtr NodePtr )
*/
{
(void)ubi_btInitNode( (ubi_btNodePtr)NodePtr );
NodePtr->balance = EQUAL;
NodePtr->balance = ubi_trEQUAL;
return( NodePtr );
} /* ubi_avlInitNode */
@ -591,9 +523,9 @@ ubi_trBool ubi_avlInsert( ubi_btRootPtr RootPtr,
NewNode->balance = (*OldNode)->balance;
else
{
NewNode->balance = EQUAL;
NewNode->balance = ubi_trEQUAL;
RootPtr->root = (ubi_btNodePtr)Rebalance( (ubi_avlNodePtr)RootPtr->root,
NewNode->Link[PARENT],
NewNode->Link[ubi_trPARENT],
NewNode->gender );
}
return( ubi_trTRUE );
@ -625,33 +557,33 @@ ubi_avlNodePtr ubi_avlRemove( ubi_btRootPtr RootPtr,
/* if the node has both left and right subtrees, then we have to swap
* it with another node.
*/
if( (DeadNode->Link[LEFT]) && (DeadNode->Link[RIGHT]) )
if( (DeadNode->Link[ubi_trLEFT]) && (DeadNode->Link[ubi_trRIGHT]) )
SwapNodes( RootPtr, DeadNode, ubi_trPrev( DeadNode ) );
/* The parent of the node to be deleted may be another node, or it may be
* the root of the tree. Since we're not sure, it's best just to have
* a pointer to the parent pointer, whatever it is.
*/
if( DeadNode->Link[PARENT] )
if( DeadNode->Link[ubi_trPARENT] )
parentp = (ubi_btNodePtr *)
&((DeadNode->Link[PARENT])->Link[(DeadNode->gender)]);
&((DeadNode->Link[ubi_trPARENT])->Link[(DeadNode->gender)]);
else
parentp = &( RootPtr->root );
/* Now link the parent to the only grand-child. Patch up the gender and
* such, and rebalance.
*/
if( EQUAL == DeadNode->balance )
if( ubi_trEQUAL == DeadNode->balance )
(*parentp) = NULL;
else
{
p = (ubi_btNodePtr)(DeadNode->Link[(DeadNode->balance)]);
p->Link[PARENT] = (ubi_btNodePtr)DeadNode->Link[PARENT];
p->gender = DeadNode->gender;
p->Link[ubi_trPARENT] = (ubi_btNodePtr)DeadNode->Link[ubi_trPARENT];
p->gender = DeadNode->gender;
(*parentp) = p;
}
RootPtr->root = (ubi_btNodePtr)Debalance( (ubi_avlNodePtr)RootPtr->root,
DeadNode->Link[PARENT],
DeadNode->Link[ubi_trPARENT],
DeadNode->gender );
(RootPtr->count)--;

View File

@ -34,85 +34,20 @@
* Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* -------------------------------------------------------------------------- **
* Log: ubi_AVLtree.h,v
* Revision 3.0 1997/12/08 05:39:01 crh
* This is a new major revision level. The handling of the pointers in the
* ubi_trNode structure was redesigned. The result is that there are fewer
* macros floating about, and fewer cases in which values have to be
* incremented or decremented. See ubi_BinTree for more information.
*
* Revision 2.4 1997/07/26 04:36:23 crh
* Andrew Leppard, aka "Grazgur", discovered that I still had my brains tied
* on backwards with respect to node deletion. I did some more digging and
* discovered that I was not changing the balance values correctly in the
* single rotation functions. Double rotation was working correctly because
* the formula for changing the balance values is the same for insertion or
* deletion. Not so for single rotation.
*
* I have tested the fix by loading the tree with over 44 thousand names,
* deleting 2,629 of them (all those in which the second character is 'u')
* and then walking the tree recursively to verify that the balance factor of
* each node is correct. Passed.
*
* Thanks Andrew!
*
* Also:
* + Changed ubi_TRUE and ubi_FALSE to ubi_trTRUE and ubi_trFALSE.
* + Rewrote the ubi_tr<func> macros because they weren't doing what I'd
* hoped they would do (see the bottom of the header file). They work now.
*
* Revision 2.3 1997/06/03 05:22:07 crh
* Changed TRUE and FALSE to ubi_TRUE and ubi_FALSE to avoid causing
* problems.
*
* Revision 2.2 1995/10/03 22:15:47 CRH
* Ubisized!
*
* Revision 2.1 95/03/09 23:46:44 CRH
* Added the ModuleID static string and function. These modules are now
* self-identifying.
* Revision 2; 1995/03/05 - 1997/12/07:
* An overhaul to the node delete process. I had gotten it wrong in a
* couple of places, thought I'd fixed it, and then found that I'd missed
* something more. Thanks to Andrew Leppard for the bug report!
*
* Revision 2.0 95/03/05 14:11:22 CRH
* This revision of ubi_AVLtree coincides with revision 2.0 of ubi_BinTree,
* and so includes all of the changes to that module. In addition, a bug in
* the node deletion process has been fixed.
*
* After rewriting the Locate() function in ubi_BinTree, I decided that it was
* time to overhaul this module. In the process, I discovered a bug related
* to node deletion. To fix the bug, I wrote function Debalance(). A quick
* glance will show that it is very similar to the Rebalance() function. In
* previous versions of this module, I tried to include the functionality of
* Debalance() within Rebalance(), with poor results.
*
* Revision 1.0 93/10/15 22:58:48 CRH
* With this revision, I have added a set of #define's that provide a single,
* standard API to all existing tree modules. Until now, each of the three
* existing modules had a different function and typedef prefix, as follows:
*
* Module Prefix
* ubi_BinTree ubi_bt
* ubi_AVLtree ubi_avl
* ubi_SplayTree ubi_spt
*
* To further complicate matters, only those portions of the base module
* (ubi_BinTree) that were superceeded in the new module had the new names.
* For example, if you were using ubi_AVLtree, the AVL node structure was
* named "ubi_avlNode", but the root structure was still "ubi_btRoot". Using
* SplayTree, the locate function was called "ubi_sptLocate", but the next
* and previous functions remained "ubi_btNext" and "ubi_btPrev".
*
* This was not too terrible if you were familiar with the modules and knew
* exactly which tree model you wanted to use. If you wanted to be able to
* change modules (for speed comparisons, etc), things could get messy very
* quickly.
*
* So, I have added a set of defined names that get redefined in any of the
* descendant modules. To use this standardized interface in your code,
* simply replace all occurances of "ubi_bt", "ubi_avl", and "ubi_spt" with
* "ubi_tr". The "ubi_tr" names will resolve to the correct function or
* datatype names for the module that you are using. Just remember to
* include the header for that module in your program file. Because these
* names are handled by the preprocessor, there is no added run-time
* overhead.
*
* Note that the original names do still exist, and can be used if you wish
* to write code directly to a specific module. This should probably only be
* done if you are planning to implement a new descendant type, such as
* red/black trees. CRH
* Revision 1; 93/10/15 - 95/03/05:
* Added the ubi_tr defines. See ubi_BinTree.h for more info.
*
* V0.0 - May, 1990 - Written by Christopher R. Hertel (CRH).
*
@ -128,6 +63,7 @@
* header so that you can use the structure as a building block.
*
* The fields are as follows:
* leftlink - A space filler. This field will be accessed as Link[-1].
* Link - An array of pointers. These pointers are manipulated by the
* BT and AVL routines, and indicate the left and right child
* nodes, plus the parent node. By keeping track of the parent
@ -142,25 +78,21 @@
* indicates which subtree of the current node is longer, or if
* the subtrees are, in fact, balanced with respect to each
* other.
* ------------------------------------------------------------------------- **
*
*/
typedef struct ubi_avlNodeStruct {
struct ubi_avlNodeStruct
*Link[3]; /* Normal Binary Tree Node type. */
char gender; /* The node is either the RIGHT or LEFT child of its */
/* parent, or is the root node. */
char balance; /* In an AVL tree, each node is the root of a subtree */
/* that may be balanced, or be one node longer to the */
/* right or left. This field keeps track of the */
/* balance value of each node. */
} ubi_avlNode; /* Typedef'd name for an avl tree node. */
typedef struct ubi_avlNodeStruct
{
struct ubi_avlNodeStruct *leftlink;
struct ubi_avlNodeStruct *Link[2];
signed char gender;
signed char balance;
} ubi_avlNode;
typedef ubi_avlNode *ubi_avlNodePtr; /* a Pointer to an AVL node */
typedef ubi_avlNode *ubi_avlNodePtr; /* a Pointer to an AVL node. */
/* -------------------------------------------------------------------------- **
* Function prototypes.
* -------------------------------------------------------------------------- **
* Function prototypes...
*/
ubi_avlNodePtr ubi_avlInitNode( ubi_avlNodePtr NodePtr );

View File

@ -6,12 +6,7 @@
* Email: crh@ubiqx.mn.org
* -------------------------------------------------------------------------- **
*
* ubi_BinTree manages a simple binary tree. Nothing fancy here. No height
* balancing, no restructuring. Still, a good tool for creating short, low-
* overhead sorted lists of things that need to be found in a hurry.
*
* In addition, this module provides a good basis for creating other types
* of binary tree handling modules.
* This module implements simple binary trees.
*
* -------------------------------------------------------------------------- **
*
@ -31,64 +26,73 @@
*
* -------------------------------------------------------------------------- **
*
* Revision 2.4 1997/07/26 04:11:10 crh
* + Just to be annoying I changed ubi_TRUE and ubi_FALSE to ubi_trTRUE
* and ubi_trFALSE.
* + There is now a type ubi_trBool to go with ubi_trTRUE and ubi_trFALSE.
* + There used to be something called "ubi_TypeDefs.h". I got rid of it.
* + Added function ubi_btLeafNode().
* Log: ubi_BinTree.c,v
* Revision 3.0 1997/12/08 06:49:11 crh
* This is a new major revision level for all ubiqx binary tree modules.
* In previous releases, the ubi_trNode structure looked like this:
*
* Revision 2.3 1997/06/03 05:16:17 crh
* Changed TRUE and FALSE to ubi_TRUE and ubi_FALSE to avoid conflicts.
* Also changed the interface to function InitTree(). See the comments
* for this function for more information.
* typedef struct ubi_btNodeStruct
* {
* struct ubi_btNodeStruct *Link[3];
* signed char gender;
* } ubi_btNode;
*
* Revision 2.2 1995/10/03 22:00:07 CRH
* Ubisized!
*
* Revision 2.1 95/03/09 23:37:10 CRH
* Added the ModuleID static string and function. These modules are now
* self-identifying.
*
* Revision 2.0 95/02/27 22:00:17 CRH
* Revision 2.0 of this program includes the following changes:
* As a result, the pointers were indexed as
*
* 1) A fix to a major typo in the RepaceNode() function.
* 2) The addition of the static function Border().
* 3) The addition of the public functions FirstOf() and LastOf(), which
* use Border(). These functions are used with trees that allow
* duplicate keys.
* 4) A complete rewrite of the Locate() function. Locate() now accepts
* a "comparison" operator.
* 5) Overall enhancements to both code and comments.
* Link[0] == Left Child
* Link[1] == Parent
* Link[2] == Right Child
*
* I decided to give this a new major rev number because the interface has
* changed. In particular, there are two new functions, and changes to the
* Locate() function.
* With this release, the node structure changes to:
*
* Revision 1.0 93/10/15 22:44:59 CRH
* With this revision, I have added a set of #define's that provide a single,
* standard API to all existing tree modules. Until now, each of the three
* existing modules had a different function and typedef prefix, as follows:
* typedef struct ubi_btNodeStruct
* {
* struct ubi_btNodeStruct *leftlink
* struct ubi_btNodeStruct *Link[2];
* signed char gender;
* } ubi_btNode;
*
* The leftlink field is used as a place holder, and the pointers are now
* index as
*
* Link[-1] == Left Child (aka. leftlink)
* Link[ 0] == Parent
* Link[ 1] == Right Child
*
* which is much nicer. Doing things this way removes the need to shift
* values between the two numbering schemes, thus removing one macro,
* simplifying another, and getting rid of a whole bunch of increment &
* decrement operations.
*
* Revision 2; 1995/02/27 - 1997/12/07 included:
* - The addition of the ModuleID static string and ubi_ModuleID() function.
* - The addition of the public functions FirstOf() and LastOf(). These
* functions are used with trees that allow duplicate keys.
* - The addition of the ubi_btLeafNode() function.
* - A rewrite of the Locate() function.
* - A change to the parameter list in function ubi_btInitTree().
* - Bugfixes.
*
* Revision 1; 93/10/15 - 95/02/27:
* Revision 1 introduced a set of #define's that provide a single API to all
* of the existing tree modules. Each of these modules has a different name
* prefix, as follows:
*
* Module Prefix
* ubi_BinTree ubi_bt
* ubi_AVLtree ubi_avl
* ubi_SplayTree ubi_spt
*
* To further complicate matters, only those portions of the base module
* (ubi_BinTree) that were superceeded in the new module had the new names.
* For example, if you were using ubi_AVLtree, the AVL node structure was
* named "ubi_avlNode", but the root structure was still "ubi_btRoot". Using
* SplayTree, the locate function was called "ubi_sptLocate", but the next
* and previous functions remained "ubi_btNext" and "ubi_btPrev".
* Only those portions of the base module (ubi_BinTree) that are superceeded
* in the descendant module have new names. For example, the AVL node
* structure in ubi_AVLtree.h is named "ubi_avlNode", but the root structure
* is still "ubi_btRoot". Using SplayTree, the locate function is called
* "ubi_sptLocate", but the next and previous functions remained "ubi_btNext"
* and "ubi_btPrev".
*
* This was not too terrible if you were familiar with the modules and knew
* exactly which tree model you wanted to use. If you wanted to be able to
* change modules (for speed comparisons, etc), things could get messy very
* quickly.
* This is confusing.
*
* So, I have added a set of defined names that get redefined in any of the
* So, I added a set of defined names that get redefined in any of the
* descendant modules. To use this standardized interface in your code,
* simply replace all occurances of "ubi_bt", "ubi_avl", and "ubi_spt" with
* "ubi_tr". The "ubi_tr" names will resolve to the correct function or
@ -100,7 +104,8 @@
* Note that the original names do still exist, and can be used if you wish
* to write code directly to a specific module. This should probably only be
* done if you are planning to implement a new descendant type, such as
* red/black trees. CRH
* red/black trees, or if you plan to use two or more specific tree types
* in the same piece of code. CRH
*
* V0.0 - June, 1991 - Written by Christopher R. Hertel (CRH).
*
@ -115,8 +120,8 @@
*/
static char ModuleID[] = "ubi_BinTree\n\
\tRevision: 2.4\n\
\tDate: 1997/07/26 04:11:10\n\
\tRevision: 3.0\n\
\tDate: 1997/12/08 06:49:11\n\
\tAuthor: crh\n";
/* ========================================================================== **
@ -129,7 +134,7 @@ static ubi_btNodePtr qFind( ubi_btCompFunc cmp,
/* ------------------------------------------------------------------------ **
* This function performs a non-recursive search of a tree for a node
* matching a specific key. It is called "qFind()" because it is
* faster that TreeFind (below).
* (probably a little bit) faster that TreeFind (below).
*
* Input:
* cmp - a pointer to the tree's comparison function.
@ -148,9 +153,9 @@ static ubi_btNodePtr qFind( ubi_btCompFunc cmp,
* ------------------------------------------------------------------------ **
*/
{
char tmp;
signed char tmp;
while( p && (( tmp = AbNormal((*cmp)(FindMe, p)) ) != EQUAL) )
while( p && (( tmp = ubi_trNormalize((*cmp)(FindMe, p)) ) != ubi_trEQUAL) )
p = p->Link[tmp];
return( p );
@ -159,7 +164,7 @@ static ubi_btNodePtr qFind( ubi_btCompFunc cmp,
static ubi_btNodePtr TreeFind( ubi_btItemPtr findme,
ubi_btNodePtr p,
ubi_btNodePtr *parentp,
char *gender,
signed char *gender,
ubi_btCompFunc CmpFunc )
/* ------------------------------------------------------------------------ **
* TreeFind() searches a tree for a given value (findme). It will return a
@ -189,25 +194,27 @@ static ubi_btNodePtr TreeFind( ubi_btItemPtr findme,
*/
{
register ubi_btNodePtr tmp_p = p;
ubi_btNodePtr tmp_pp = NULL;
char tmp_sex = EQUAL;
char tmp_cmp;
ubi_btNodePtr tmp_pp = NULL;
signed char tmp_gender = ubi_trEQUAL;
signed char tmp_cmp;
while( tmp_p && (EQUAL != (tmp_cmp = AbNormal((*CmpFunc)(findme, tmp_p)))) )
while( tmp_p
&& (ubi_trEQUAL != (tmp_cmp = ubi_trNormalize((*CmpFunc)(findme, tmp_p))))
)
{
tmp_pp = tmp_p; /* Keep track of previous node. */
tmp_sex = tmp_cmp; /* Keep track of sex of child. */
tmp_gender = tmp_cmp; /* Keep track of sex of child. */
tmp_p = tmp_p->Link[tmp_cmp]; /* Go to child. */
}
*parentp = tmp_pp; /* Return results. */
*gender = tmp_sex;
*gender = tmp_gender;
return( tmp_p );
} /* TreeFind */
static void ReplaceNode( ubi_btNodePtr *parent,
ubi_btNodePtr oldnode,
ubi_btNodePtr newnode )
/* ------------------------------------------------------------------ *
/* ------------------------------------------------------------------------ **
* Remove node oldnode from the tree, replacing it with node newnode.
*
* Input:
@ -220,12 +227,8 @@ static void ReplaceNode( ubi_btNodePtr *parent,
* place of <*oldnode>.
*
* Notes: Don't forget to free oldnode.
* Also, this function used to have a really nasty typo
* bug. "oldnode" and "newnode" were swapped in the line
* that now reads:
* ((unsigned char *)newnode)[i] = ((unsigned char *)oldnode)[i];
* Bleah!
* ------------------------------------------------------------------ *
*
* ------------------------------------------------------------------------ **
*/
{
register int i;
@ -233,10 +236,17 @@ static void ReplaceNode( ubi_btNodePtr *parent,
for( i = 0; i < btNodeSize; i++ ) /* Copy node internals to new node. */
((unsigned char *)newnode)[i] = ((unsigned char *)oldnode)[i];
(*parent) = newnode; /* Old node's parent points to new child. */
/* Old node's parent points to new child. */
(*parent) = newnode;
/* Now tell the children about their new step-parent. */
if( oldnode->Link[LEFT ] ) (oldnode->Link[LEFT ])->Link[PARENT] = newnode;
if( oldnode->Link[RIGHT] ) (oldnode->Link[RIGHT])->Link[PARENT] = newnode;
if( oldnode->Link[ubi_trLEFT ] )
(oldnode->Link[ubi_trLEFT ])->Link[ubi_trPARENT] = newnode;
if( oldnode->Link[ubi_trRIGHT] )
(oldnode->Link[ubi_trRIGHT])->Link[ubi_trPARENT] = newnode;
} /* ReplaceNode */
static void SwapNodes( ubi_btRootPtr RootPtr,
@ -263,22 +273,22 @@ static void SwapNodes( ubi_btRootPtr RootPtr,
ubi_btNodePtr dummy_p = &dummy;
/* Replace Node 1 with the dummy, thus removing Node1 from the tree. */
if( Node1->Link[PARENT] )
Parent = &((Node1->Link[PARENT])->Link[Node1->gender]);
if( Node1->Link[ubi_trPARENT] )
Parent = &((Node1->Link[ubi_trPARENT])->Link[Node1->gender]);
else
Parent = &(RootPtr->root);
ReplaceNode( Parent, Node1, dummy_p );
/* Swap Node 1 with Node 2, placing Node 1 back into the tree. */
if( Node2->Link[PARENT] )
Parent = &((Node2->Link[PARENT])->Link[Node2->gender]);
if( Node2->Link[ubi_trPARENT] )
Parent = &((Node2->Link[ubi_trPARENT])->Link[Node2->gender]);
else
Parent = &(RootPtr->root);
ReplaceNode( Parent, Node2, Node1 );
/* Swap Node 2 and the dummy, thus placing Node 2 back into the tree. */
if( dummy_p->Link[PARENT] )
Parent = &((dummy_p->Link[PARENT])->Link[dummy_p->gender]);
if( dummy_p->Link[ubi_trPARENT] )
Parent = &((dummy_p->Link[ubi_trPARENT])->Link[dummy_p->gender]);
else
Parent = &(RootPtr->root);
ReplaceNode( Parent, dummy_p, Node2 );
@ -289,7 +299,7 @@ static void SwapNodes( ubi_btRootPtr RootPtr,
*/
static ubi_btNodePtr SubSlide( register ubi_btNodePtr P,
register char whichway )
register signed char whichway )
/* ------------------------------------------------------------------------ **
* Slide down the side of a subtree.
*
@ -317,7 +327,7 @@ static ubi_btNodePtr SubSlide( register ubi_btNodePtr P,
} /* SubSlide */
static ubi_btNodePtr Neighbor( register ubi_btNodePtr P,
register char whichway )
register signed char whichway )
/* ------------------------------------------------------------------------ **
* Given starting point p, return the (key order) next or preceeding node
* in the tree.
@ -336,14 +346,14 @@ static ubi_btNodePtr Neighbor( register ubi_btNodePtr P,
if( P )
{
if( P->Link[ whichway ] )
return( SubSlide( P->Link[ whichway ], (char)RevWay(whichway) ) );
return( SubSlide( P->Link[ whichway ], ubi_trRevWay(whichway) ) );
else
while( P->Link[ PARENT ] )
while( P->Link[ ubi_trPARENT ] )
{
if( (P->Link[ PARENT ])->Link[ whichway ] == P )
P = P->Link[ PARENT ];
if( (P->Link[ ubi_trPARENT ])->Link[ whichway ] == P )
P = P->Link[ ubi_trPARENT ];
else
return( P->Link[ PARENT ] );
return( P->Link[ ubi_trPARENT ] );
}
}
return( NULL );
@ -352,7 +362,7 @@ static ubi_btNodePtr Neighbor( register ubi_btNodePtr P,
static ubi_btNodePtr Border( ubi_btRootPtr RootPtr,
ubi_btItemPtr FindMe,
ubi_btNodePtr p,
char whichway )
signed char whichway )
/* ------------------------------------------------------------------------ **
* Given starting point p, which has a key value equal to *FindMe, locate
* the first (index order) node with the same key value.
@ -384,17 +394,17 @@ static ubi_btNodePtr Border( ubi_btRootPtr RootPtr,
register ubi_btNodePtr q;
/* Exit if there's nothing that can be done. */
if( !Dups_OK( RootPtr ) || (PARENT == whichway) )
if( !ubi_trDups_OK( RootPtr ) || (ubi_trPARENT == whichway) )
return( p );
/* First, if needed, move up the tree. We need to get to the root of the
* subtree that contains all of the matching nodes.
*/
q = p->Link[PARENT];
while( q && (EQUAL == AbNormal( (*(RootPtr->cmp))(FindMe, q) )) )
q = p->Link[ubi_trPARENT];
while( q && (ubi_trEQUAL == ubi_trNormalize( (*(RootPtr->cmp))(FindMe, q) )) )
{
p = q;
q = p->Link[PARENT];
q = p->Link[ubi_trPARENT];
}
/* Next, move back down in the "whichway" direction. */
@ -421,15 +431,15 @@ long ubi_btSgn( register long x )
*
* Input: x - a signed long integer value.
*
* Output: the "sign" of x, represented as follows:
* Output: -1, 0, or 1 representing the "sign" of x as follows:
* -1 == negative
* 0 == zero (no sign)
* 1 == positive
*
* Note: This utility is provided in order to facilitate the conversion
* of C comparison function return values into BinTree direction
* values: {LEFT, PARENT, EQUAL}. It is INCORPORATED into the
* AbNormal() conversion macro!
* Note: This utility is provided in order to facilitate the conversion
* of C comparison function return values into BinTree direction
* values: {ubi_trLEFT, ubi_trPARENT, ubi_trEQUAL}. It is
* incorporated into the ubi_trNormalize() conversion macro.
*
* ------------------------------------------------------------------------ **
*/
@ -447,10 +457,10 @@ ubi_btNodePtr ubi_btInitNode( ubi_btNodePtr NodePtr )
* ------------------------------------------------------------------------ **
*/
{
NodePtr->Link[ LEFT ] = NULL;
NodePtr->Link[ PARENT ] = NULL;
NodePtr->Link[ RIGHT ] = NULL;
NodePtr->gender = EQUAL;
NodePtr->Link[ ubi_trLEFT ] = NULL;
NodePtr->Link[ ubi_trPARENT ] = NULL;
NodePtr->Link[ ubi_trRIGHT ] = NULL;
NodePtr->gender = ubi_trEQUAL;
return( NodePtr );
} /* ubi_btInitNode */
@ -543,7 +553,7 @@ ubi_trBool ubi_btInsert( ubi_btRootPtr RootPtr,
{
ubi_btNodePtr OtherP,
parent = NULL;
char tmp;
signed char tmp;
if( !(OldNode) ) /* If they didn't give us a pointer, supply our own. */
OldNode = &OtherP;
@ -560,9 +570,9 @@ ubi_trBool ubi_btInsert( ubi_btRootPtr RootPtr,
RootPtr->root = NewNode;
else
{
parent->Link[tmp] = NewNode;
NewNode->Link[PARENT] = parent;
NewNode->gender = tmp;
parent->Link[tmp] = NewNode;
NewNode->Link[ubi_trPARENT] = parent;
NewNode->gender = tmp;
}
(RootPtr->count)++;
return( ubi_trTRUE );
@ -571,24 +581,25 @@ ubi_trBool ubi_btInsert( ubi_btRootPtr RootPtr,
/* If we reach this point, we know that a duplicate node exists. This
* section adds the node to the tree if duplicate keys are allowed.
*/
if( Dups_OK(RootPtr) ) /* Key exists, add duplicate */
if( ubi_trDups_OK(RootPtr) ) /* Key exists, add duplicate */
{
ubi_btNodePtr q;
tmp = RIGHT;
tmp = ubi_trRIGHT;
q = (*OldNode);
*OldNode = NULL;
while( q )
{
parent = q;
if( tmp == EQUAL ) tmp = RIGHT;
if( tmp == ubi_trEQUAL )
tmp = ubi_trRIGHT;
q = q->Link[tmp];
if ( q )
tmp = AbNormal( (*(RootPtr->cmp))(ItemPtr, q) );
tmp = ubi_trNormalize( (*(RootPtr->cmp))(ItemPtr, q) );
}
parent->Link[tmp] = NewNode;
NewNode->Link[PARENT] = parent;
NewNode->gender = tmp;
parent->Link[tmp] = NewNode;
NewNode->Link[ubi_trPARENT] = parent;
NewNode->gender = tmp;
(RootPtr->count)++;
return( ubi_trTRUE );
}
@ -597,7 +608,7 @@ ubi_trBool ubi_btInsert( ubi_btRootPtr RootPtr,
* duplicate nodes, but our node keys match, so... may we replace the
* old one?
*/
if( Ovwt_OK(RootPtr) ) /* Key exists, we replace */
if( ubi_trOvwt_OK(RootPtr) ) /* Key exists, we replace */
{
if (!(parent))
ReplaceNode( &(RootPtr->root), *OldNode, NewNode );
@ -628,32 +639,32 @@ ubi_btNodePtr ubi_btRemove( ubi_btRootPtr RootPtr,
{
ubi_btNodePtr p,
*parentp;
char tmp;
signed char tmp;
/* if the node has both left and right subtrees, then we have to swap
* it with another node. The other node we choose will be the Prev()ious
* node, which is garunteed to have no RIGHT child.
*/
if( (DeadNode->Link[LEFT]) && (DeadNode->Link[RIGHT]) )
if( (DeadNode->Link[ubi_trLEFT]) && (DeadNode->Link[ubi_trRIGHT]) )
SwapNodes( RootPtr, DeadNode, ubi_btPrev( DeadNode ) );
/* The parent of the node to be deleted may be another node, or it may be
* the root of the tree. Since we're not sure, it's best just to have
* a pointer to the parent pointer, whatever it is.
*/
if (DeadNode->Link[PARENT])
parentp = &((DeadNode->Link[PARENT])->Link[DeadNode->gender]);
if (DeadNode->Link[ubi_trPARENT])
parentp = &((DeadNode->Link[ubi_trPARENT])->Link[DeadNode->gender]);
else
parentp = &( RootPtr->root );
/* Now link the parent to the only grand-child and patch up the gender. */
tmp = ((DeadNode->Link[LEFT])?LEFT:RIGHT);
tmp = ((DeadNode->Link[ubi_trLEFT]) ? ubi_trLEFT : ubi_trRIGHT);
p = (DeadNode->Link[tmp]);
if( p )
{
p->Link[PARENT] = DeadNode->Link[PARENT];
p->gender = DeadNode->gender;
p->Link[ubi_trPARENT] = DeadNode->Link[ubi_trPARENT];
p->gender = DeadNode->gender;
}
(*parentp) = p;
@ -716,7 +727,7 @@ ubi_btNodePtr ubi_btLocate( ubi_btRootPtr RootPtr,
{
register ubi_btNodePtr p;
ubi_btNodePtr parent;
char whichkid;
signed char whichkid;
/* Start by searching for a matching node. */
p = TreeFind( FindMe,
@ -730,13 +741,13 @@ ubi_btNodePtr ubi_btLocate( ubi_btRootPtr RootPtr,
switch( CompOp )
{
case ubi_trLT: /* It's just a jump to the left... */
p = Border( RootPtr, FindMe, p, LEFT );
return( Neighbor( p, LEFT ) );
p = Border( RootPtr, FindMe, p, ubi_trLEFT );
return( Neighbor( p, ubi_trLEFT ) );
case ubi_trGT: /* ...and then a jump to the right. */
p = Border( RootPtr, FindMe, p, RIGHT );
return( Neighbor( p, RIGHT ) );
p = Border( RootPtr, FindMe, p, ubi_trRIGHT );
return( Neighbor( p, ubi_trRIGHT ) );
}
p = Border( RootPtr, FindMe, p, LEFT );
p = Border( RootPtr, FindMe, p, ubi_trLEFT );
return( p );
}
@ -750,9 +761,9 @@ ubi_btNodePtr ubi_btLocate( ubi_btRootPtr RootPtr,
* Remaining possibilities are LT and GT (including LE & GE).
*/
if( (ubi_trLT == CompOp) || (ubi_trLE == CompOp) )
return( (LEFT == whichkid) ? Neighbor( parent, whichkid ) : parent );
return( (ubi_trLEFT == whichkid) ? Neighbor( parent, whichkid ) : parent );
else
return( (RIGHT == whichkid) ? Neighbor( parent, whichkid ) : parent );
return( (ubi_trRIGHT == whichkid) ? Neighbor( parent, whichkid ) : parent );
} /* ubi_btLocate */
ubi_btNodePtr ubi_btFind( ubi_btRootPtr RootPtr,
@ -789,7 +800,7 @@ ubi_btNodePtr ubi_btNext( ubi_btNodePtr P )
* ------------------------------------------------------------------------ **
*/
{
return( Neighbor( P, RIGHT ) );
return( Neighbor( P, ubi_trRIGHT ) );
} /* ubi_btNext */
ubi_btNodePtr ubi_btPrev( ubi_btNodePtr P )
@ -802,7 +813,7 @@ ubi_btNodePtr ubi_btPrev( ubi_btNodePtr P )
* ------------------------------------------------------------------------ **
*/
{
return( Neighbor( P, LEFT ) );
return( Neighbor( P, ubi_trLEFT ) );
} /* ubi_btPrev */
ubi_btNodePtr ubi_btFirst( ubi_btNodePtr P )
@ -817,7 +828,7 @@ ubi_btNodePtr ubi_btFirst( ubi_btNodePtr P )
* ------------------------------------------------------------------------ **
*/
{
return( SubSlide( P, LEFT ) );
return( SubSlide( P, ubi_trLEFT ) );
} /* ubi_btFirst */
ubi_btNodePtr ubi_btLast( ubi_btNodePtr P )
@ -832,7 +843,7 @@ ubi_btNodePtr ubi_btLast( ubi_btNodePtr P )
* ------------------------------------------------------------------------ **
*/
{
return( SubSlide( P, RIGHT ) );
return( SubSlide( P, ubi_trRIGHT ) );
} /* ubi_btLast */
ubi_btNodePtr ubi_btFirstOf( ubi_btRootPtr RootPtr,
@ -855,9 +866,9 @@ ubi_btNodePtr ubi_btFirstOf( ubi_btRootPtr RootPtr,
*/
{
/* If our starting point is invalid, return NULL. */
if( !p || AbNormal( (*(RootPtr->cmp))( MatchMe, p ) != EQUAL ) )
if( !p || ubi_trNormalize( (*(RootPtr->cmp))( MatchMe, p ) != ubi_trEQUAL ) )
return( NULL );
return( Border( RootPtr, MatchMe, p, LEFT ) );
return( Border( RootPtr, MatchMe, p, ubi_trLEFT ) );
} /* ubi_btFirstOf */
ubi_btNodePtr ubi_btLastOf( ubi_btRootPtr RootPtr,
@ -880,9 +891,9 @@ ubi_btNodePtr ubi_btLastOf( ubi_btRootPtr RootPtr,
*/
{
/* If our starting point is invalid, return NULL. */
if( !p || AbNormal( (*(RootPtr->cmp))( MatchMe, p ) != EQUAL ) )
if( !p || ubi_trNormalize( (*(RootPtr->cmp))( MatchMe, p ) != ubi_trEQUAL ) )
return( NULL );
return( Border( RootPtr, MatchMe, p, RIGHT ) );
return( Border( RootPtr, MatchMe, p, ubi_trRIGHT ) );
} /* ubi_btLastOf */
ubi_trBool ubi_btTraverse( ubi_btRootPtr RootPtr,
@ -941,11 +952,11 @@ ubi_trBool ubi_btKillTree( ubi_btRootPtr RootPtr,
while( p )
{
q = p;
while( q->Link[RIGHT] )
q = SubSlide( q->Link[RIGHT], LEFT );
p = q->Link[PARENT];
while( q->Link[ubi_trRIGHT] )
q = SubSlide( q->Link[ubi_trRIGHT], ubi_trLEFT );
p = q->Link[ubi_trPARENT];
if( p )
p->Link[ ((p->Link[LEFT] == q)?LEFT:RIGHT) ] = NULL;
p->Link[ ((p->Link[ubi_trLEFT] == q)?ubi_trLEFT:ubi_trRIGHT) ] = NULL;
FreeNode((void *)q);
}
@ -979,20 +990,24 @@ ubi_btNodePtr ubi_btLeafNode( ubi_btNodePtr leader )
* in pointers to nodes other than the root node each time. A
* pointer to any node in the tree will do. Of course, if you
* pass a pointer to a leaf node you'll get the same thing back.
* + If using a splay tree, splaying the tree will tend to randomize
* things a bit too. See ubi_SplayTree for more info.
*
* ------------------------------------------------------------------------ **
*/
{
ubi_btNodePtr follower = NULL;
int whichway = LEFT;
int whichway = ubi_trLEFT;
while( NULL != leader )
{
/* The next line is a weak attempt at randomizing. */
whichway = ((int)leader & 0x0010) ? whichway : ubi_trRevWay(whichway);
follower = leader;
leader = follower->Link[ whichway ];
leader = leader->Link[ whichway ];
if( NULL == leader )
{
whichway = RevWay( whichway );
whichway = ubi_trRevWay( whichway );
leader = follower->Link[ whichway ];
}
}
@ -1028,5 +1043,4 @@ int ubi_btModuleID( int size, char *list[] )
return( 0 );
} /* ubi_btModuleID */
/* ========================================================================== */

View File

@ -8,12 +8,7 @@
* Email: crh@ubiqx.mn.org
* -------------------------------------------------------------------------- **
*
* ubi_BinTree manages a simple binary tree. Nothing fancy here. No height
* balancing, no restructuring. Still, a good tool for creating short, low-
* overhead sorted lists of things that need to be found in a hurry.
*
* In addition, this module provides a good basis for creating other types
* of binary tree handling modules.
* This module implements simple binary trees.
*
* -------------------------------------------------------------------------- **
*
@ -33,64 +28,73 @@
*
* -------------------------------------------------------------------------- **
*
* Revision 2.4 1997/07/26 04:11:14 crh
* + Just to be annoying I changed ubi_TRUE and ubi_FALSE to ubi_trTRUE
* and ubi_trFALSE.
* + There is now a type ubi_trBool to go with ubi_trTRUE and ubi_trFALSE.
* + There used to be something called "ubi_TypeDefs.h". I got rid of it.
* + Added function ubi_btLeafNode().
* Log: ubi_BinTree.h,v
* Revision 3.0 1997/12/08 06:49:15 crh
* This is a new major revision level for all ubiqx binary tree modules.
* In previous releases, the ubi_trNode structure looked like this:
*
* Revision 2.3 1997/06/03 05:15:27 crh
* Changed TRUE and FALSE to ubi_TRUE and ubi_FALSE to avoid conflicts.
* Also changed the interface to function InitTree(). See the comments
* for this function for more information.
* typedef struct ubi_btNodeStruct
* {
* struct ubi_btNodeStruct *Link[3];
* signed char gender;
* } ubi_btNode;
*
* Revision 2.2 1995/10/03 22:00:40 CRH
* Ubisized!
*
* Revision 2.1 95/03/09 23:43:46 CRH
* Added the ModuleID static string and function. These modules are now
* self-identifying.
*
* Revision 2.0 95/02/27 22:00:33 CRH
* Revision 2.0 of this program includes the following changes:
* As a result, the pointers were indexed as
*
* 1) A fix to a major typo in the RepaceNode() function.
* 2) The addition of the static function Border().
* 3) The addition of the public functions FirstOf() and LastOf(), which
* use Border(). These functions are used with trees that allow
* duplicate keys.
* 4) A complete rewrite of the Locate() function. Locate() now accepts
* a "comparison" operator.
* 5) Overall enhancements to both code and comments.
* Link[0] == Left Child
* Link[1] == Parent
* Link[2] == Right Child
*
* I decided to give this a new major rev number because the interface has
* changed. In particular, there are two new functions, and changes to the
* Locate() function.
* With this release, the node structure changes to:
*
* Revision 1.0 93/10/15 22:55:04 CRH
* With this revision, I have added a set of #define's that provide a single,
* standard API to all existing tree modules. Until now, each of the three
* existing modules had a different function and typedef prefix, as follows:
* typedef struct ubi_btNodeStruct
* {
* struct ubi_btNodeStruct *leftlink
* struct ubi_btNodeStruct *Link[2];
* signed char gender;
* } ubi_btNode;
*
* The leftlink field is used as a place holder, and the pointers are now
* index as
*
* Link[-1] == Left Child (aka. leftlink)
* Link[ 0] == Parent
* Link[ 1] == Right Child
*
* which is much nicer. Doing things this way removes the need to shift
* values between the two numbering schemes, thus removing one macro,
* simplifying another, and getting rid of a whole bunch of increment &
* decrement operations.
*
* Revision 2; 1995/02/27 - 1997/12/07 included:
* - The addition of the ModuleID static string and ubi_ModuleID() function.
* - The addition of the public functions FirstOf() and LastOf(). These
* functions are used with trees that allow duplicate keys.
* - The addition of the ubi_btLeafNode() function.
* - A rewrite of the Locate() function.
* - A change to the parameter list in function ubi_btInitTree().
* - Bugfixes.
*
* Revision 1; 93/10/15 - 95/02/27:
* Revision 1 introduced a set of #define's that provide a single API to all
* of the existing tree modules. Each of these modules has a different name
* prefix, as follows:
*
* Module Prefix
* ubi_BinTree ubi_bt
* ubi_AVLtree ubi_avl
* ubi_SplayTree ubi_spt
*
* To further complicate matters, only those portions of the base module
* (ubi_BinTree) that were superceeded in the new module had the new names.
* For example, if you were using ubi_AVLtree, the AVL node structure was
* named "ubi_avlNode", but the root structure was still "ubi_btRoot". Using
* SplayTree, the locate function was called "ubi_sptLocate", but the next
* and previous functions remained "ubi_btNext" and "ubi_btPrev".
* Only those portions of the base module (ubi_BinTree) that are superceeded
* in the descendant module have new names. For example, the AVL node
* structure in ubi_AVLtree.h is named "ubi_avlNode", but the root structure
* is still "ubi_btRoot". Using SplayTree, the locate function is called
* "ubi_sptLocate", but the next and previous functions remained "ubi_btNext"
* and "ubi_btPrev".
*
* This was not too terrible if you were familiar with the modules and knew
* exactly which tree model you wanted to use. If you wanted to be able to
* change modules (for speed comparisons, etc), things could get messy very
* quickly.
* This is confusing.
*
* So, I have added a set of defined names that get redefined in any of the
* So, I added a set of defined names that get redefined in any of the
* descendant modules. To use this standardized interface in your code,
* simply replace all occurances of "ubi_bt", "ubi_avl", and "ubi_spt" with
* "ubi_tr". The "ubi_tr" names will resolve to the correct function or
@ -102,7 +106,8 @@
* Note that the original names do still exist, and can be used if you wish
* to write code directly to a specific module. This should probably only be
* done if you are planning to implement a new descendant type, such as
* red/black trees. CRH
* red/black trees, or if you plan to use two or more specific tree types
* in the same piece of code. CRH
*
* V0.0 - June, 1991 - Written by Christopher R. Hertel (CRH).
*
@ -110,7 +115,7 @@
*/
/* -------------------------------------------------------------------------- **
* Macros and constants.
* Constants...
*
* General purpose:
* ubi_trTRUE - Boolean TRUE.
@ -120,16 +125,16 @@
* ubi_trOVERWRITE - This flag indicates that an existing node may be
* overwritten by a new node with a matching key.
* ubi_trDUPKEY - This flag indicates that the tree allows duplicate
* keys. If the tree does allow duplicates, the
* overwrite flag is ignored.
* keys. If the tree allows duplicates, the overwrite
* flag is ignored.
*
* Node link array index constants: (Each node has an array of three
* pointers. One to the left, one to the right, and one back to the
* parent.)
* LEFT - Left child pointer.
* PARENT - Parent pointer.
* RIGHT - Right child pointer.
* EQUAL - Synonym for PARENT.
* Node link array index constants:
* (Each node has an array of three pointers; pointer to the left child,
* pointer to the right child, and a pointer back to the parent node.)
* ubi_trLEFT - Left child pointer.
* ubi_trPARENT - Parent pointer.
* ubi_trRIGHT - Right child pointer.
* ubi_trEQUAL - Synonym for PARENT.
*
* ubi_trCompOps: These values are used in the ubi_trLocate() function.
* ubi_trLT - request the first instance of the greatest key less than
@ -142,7 +147,6 @@
* or equal to the search key.
* ubi_trGT - request the first instance of the first key that is greater
* than the search key.
* -------------------------------------------------------------------------- **
*/
#define ubi_trTRUE 0xFF
@ -152,12 +156,13 @@
#define ubi_trDUPKEY 0x02 /* Turn on allow duplicate keys */
/* Pointer array index constants... */
#define LEFT 0x00
#define PARENT 0x01
#define RIGHT 0x02
#define EQUAL PARENT
#define ubi_trLEFT -1
#define ubi_trPARENT 0
#define ubi_trRIGHT 1
#define ubi_trEQUAL ubi_trPARENT
typedef enum {
typedef enum
{
ubi_trLT = 1,
ubi_trLE,
ubi_trEQ,
@ -166,57 +171,57 @@ typedef enum {
} ubi_trCompOps;
/* -------------------------------------------------------------------------- **
* These three macros allow simple manipulation of pointer index values (LEFT,
* RIGHT, and PARENT).
* Macros...
* ubi_trNormalize() - "Normalize" a value with respect to ubi_trLEFT,
* ubi_trRIGHT, and ubi_trPARENT. This macro calls
* ubi_btSgn() to convert the input to -1, 0, or 1.
* The resultant value is returned as a signed char.
*
* Normalize() - converts {LEFT, PARENT, RIGHT} into {-1, 0 ,1}. C
* uses {negative, zero, positive} values to indicate
* {less than, equal to, greater than}.
* AbNormal() - converts {negative, zero, positive} to {LEFT, PARENT,
* RIGHT} (opposite of Normalize()). Note: C comparison
* functions, such as strcmp(), return {negative, zero,
* positive} values, which are not necessarily {-1, 0,
* 1}. This macro uses the the ubi_btSgn() function to
* compensate.
* RevWay() - converts LEFT to RIGHT and RIGHT to LEFT. PARENT (EQUAL)
* is left as is.
* -------------------------------------------------------------------------- **
* ubi_trRevWay() - converts ubi_trLEFT to ubi_trRIGHT and vice versa.
* ubi_trPARENT (ubi_trEQUAL) is left as is.
*
* ubi_trDups_OK() - returns TRUE if the tree allows duplicates.
*
* ubi_trOvwt_OK() - returns TRUE if the overwrite flag is on. Note
* that overwrites will not occur in a tree that
* allows duplicates.
*/
#define Normalize(W) ((char)((W)-EQUAL))
#define AbNormal(W) ((char)( EQUAL+((char)ubi_btSgn( (W) )) ))
#define RevWay(W) ((char)((W)==LEFT?RIGHT:((W)==RIGHT?LEFT:EQUAL)))
/* -------------------------------------------------------------------------- **
* These macros allow us to quickly read the values of the OVERWRITE and
* DUPlicate KEY bits of the tree root flags field.
* -------------------------------------------------------------------------- **
*/
#define Dups_OK(A) ((ubi_trDUPKEY & ((A)->flags))?(ubi_trTRUE):(ubi_trFALSE))
#define Ovwt_OK(A) ((ubi_trOVERWRITE & ((A)->flags))?(ubi_trTRUE):(ubi_trFALSE))
#define ubi_trNormalize(W) ((signed char)ubi_btSgn(W))
#define ubi_trRevWay(W) (-(W))
#define ubi_trDups_OK(A) \
((ubi_trDUPKEY & ((A)->flags)) ? (ubi_trTRUE) : (ubi_trFALSE))
#define ubi_trOvwt_OK(A) \
((ubi_trOVERWRITE & ((A)->flags))? (ubi_trTRUE) : (ubi_trFALSE))
/* -------------------------------------------------------------------------- **
* Typedefs...
*
* ubi_trBool - Your typcial true or false...
* ubi_trBool - Your typcial true or false...
*
* Item Pointer: The ubi_btItemPtr is a generic pointer. It is used to
* indicate a key that is being searched for within the tree.
* Searching occurs whenever the ubi_trFind(), ubi_trLocate(),
* or ubi_trInsert() functions are called.
* -------------------------------------------------------------------------- **
* ubi_btItemPtr - The Item Pointer is a generic pointer. It is used to
* indicate a key for which to search within the tree.
* The ubi_trFind(), ubi_trLocate(), and ubi_trInsert()
* functions all perform searches.
*/
typedef unsigned char ubi_trBool;
typedef unsigned char ubi_trBool; /* Our own name for "boolean". */
typedef void *ubi_btItemPtr; /* A pointer to data within a node. */
typedef void *ubi_btItemPtr; /* A pointer to (key) data within a node. */
/* ------------------------------------------------------------------------- **
/* -------------------------------------------------------------------------- **
* Typedefs continued...
*
* Binary Tree Node Structure: This structure defines the basic elements of
* the tree nodes. In general you *SHOULD NOT PLAY WITH THESE FIELDS*!
* But, of course, I have to put the structure into this header so that
* you can use it as a building block.
*
* The fields are as follows:
* leftlink - pointer to the left child of the node. This field will
* be accessed as Link[-1].
* Link - an array of pointers. These pointers are manipulated by
* the BT routines. The pointers indicate the left and right
* child nodes and the parent node. By keeping track of the
@ -227,18 +232,22 @@ typedef void *ubi_btItemPtr; /* A pointer to data within a node. */
* gender - a one-byte field indicating whether the node is the RIGHT or
* LEFT child of its parent. If the node is the root of the
* tree, gender will be PARENT.
* ------------------------------------------------------------------------- **
*/
typedef struct ubi_btNodeStruct {
struct ubi_btNodeStruct *Link[ 3 ];
char gender;
typedef struct ubi_btNodeStruct
{
struct ubi_btNodeStruct *leftlink; /* Will be accessed as Link[-1]. */
struct ubi_btNodeStruct *Link[2]; /* Parent & Right links. */
signed char gender; /* Indicates Left/Right of parent. */
} ubi_btNode;
typedef ubi_btNode *ubi_btNodePtr; /* Pointer to an ubi_btNode structure. */
/* ------------------------------------------------------------------------- **
* The next three typedefs define standard function types used by the binary
* tree management routines. In particular:
/* -------------------------------------------------------------------------- **
* Typedefs continued...
*
* The next three typedefs define standard function types used by the binary
* tree management routines. In particular:
*
* ubi_btCompFunc is a pointer to a comparison function. Comparison
* functions are passed an ubi_btItemPtr and an
@ -258,7 +267,6 @@ typedef ubi_btNode *ubi_btNodePtr; /* Pointer to an ubi_btNode structure. */
* mean anything that you want it to mean. Just remember
* that the tree *will* be destroyed and that none of the
* node pointers will be valid any more.
* ------------------------------------------------------------------------- **
*/
typedef int (*ubi_btCompFunc)( ubi_btItemPtr, ubi_btNodePtr );
@ -268,8 +276,10 @@ typedef void (*ubi_btActionRtn)( ubi_btNodePtr, void * );
typedef void (*ubi_btKillNodeRtn)( ubi_btNodePtr );
/* -------------------------------------------------------------------------- **
* Tree Root Structure: This structure gives us a convenient handle for
* accessing whole AVL trees. The fields are:
* Typedefs continued...
*
* Tree Root Structure: This structure gives us a convenient handle for
* accessing whole AVL trees. The fields are:
* root - A pointer to the root node of the AVL tree.
* count - A count of the number of nodes stored in the tree.
* cmp - A pointer to the comparison routine to be used when building or
@ -283,13 +293,15 @@ typedef void (*ubi_btKillNodeRtn)( ubi_btNodePtr );
* (bit 0x02) allowed to contain nodes with duplicate keys.
*
* NOTE: ubi_trInsert() tests ubi_trDUPKEY before ubi_trOVERWRITE.
* If duplicate keys are allowed, then no entry will be
* overwritten.
*
* All of these values are set when you initialize the root structure by
* calling ubi_trInitTree().
* -------------------------------------------------------------------------- **
* All of these values are set when you initialize the root structure by
* calling ubi_trInitTree().
*/
typedef struct {
typedef struct
{
ubi_btNodePtr root; /* A pointer to the root node of the tree */
unsigned long count; /* A count of the number of nodes in the tree */
ubi_btCompFunc cmp; /* A pointer to the tree's comparison function */
@ -309,15 +321,15 @@ long ubi_btSgn( long x );
*
* Input: x - a signed long integer value.
*
* Output: the "sign" of x, represented as follows:
* Output: -1, 0, or 1 representing the "sign" of x as follows:
* -1 == negative
* 0 == zero (no sign)
* 1 == positive
*
* Note: This utility is provided in order to facilitate the conversion
* of C comparison function return values into BinTree direction
* values: {LEFT, PARENT, EQUAL}. It is INCORPORATED into the
* AbNormal() conversion macro!
* Notes: This utility is provided in order to facilitate the conversion
* of C comparison function return values into BinTree direction
* values: {ubi_trLEFT, ubi_trPARENT, ubi_trEQUAL}. It is
* incorporated into the Normalize() conversion macro.
*
* ------------------------------------------------------------------------ **
*/
@ -332,9 +344,9 @@ ubi_btNodePtr ubi_btInitNode( ubi_btNodePtr NodePtr );
* ------------------------------------------------------------------------ **
*/
ubi_btRootPtr ubi_btInitTree( ubi_btRootPtr RootPtr,
ubi_btCompFunc CompFunc,
unsigned char Flags );
ubi_btRootPtr ubi_btInitTree( ubi_btRootPtr RootPtr,
ubi_btCompFunc CompFunc,
unsigned char Flags );
/* ------------------------------------------------------------------------ **
* Initialize the fields of a Tree Root header structure.
*
@ -636,6 +648,8 @@ ubi_btNodePtr ubi_btLeafNode( ubi_btNodePtr leader );
* in pointers to nodes other than the root node each time. A
* pointer to any node in the tree will do. Of course, if you
* pass a pointer to a leaf node you'll get the same thing back.
* + If using a splay tree, splaying the tree will tend to randomize
* things a bit too. See ubi_SplayTree for more info.
*
* ------------------------------------------------------------------------ **
*/

View File

@ -34,73 +34,17 @@
*
* -------------------------------------------------------------------------- **
*
* Revision 2.5 1997/07/26 04:15:42 crh
* + Cleaned up a few minor syntax annoyances that gcc discovered for me.
* + Changed ubi_TRUE and ubi_FALSE to ubi_trTRUE and ubi_trFALSE.
* Log: ubi_SplayTree.c,v
* Revision 3.0 1997/12/08 05:32:28 crh
* This is a new major revision level because of a redesign of the handling
* of the pointers in the ubi_trNode structure. See ubi_BinTree for more
* info.
*
* Revision 2.4 1997/06/03 04:42:21 crh
* Changed TRUE and FALSE to ubi_TRUE and ubi_FALSE to avoid causing
* problems.
* Revision 2; 1995/02/27 - 1997/12/07:
* Major changes: added the function ubi_sptSplay().
*
* Revision 2.3 1995/10/03 22:19:07 CRH
* Ubisized!
* Also, added the function ubi_sptSplay().
*
* Revision 2.1 95/03/09 23:54:42 CRH
* Added the ModuleID static string and function. These modules are now
* self-identifying.
*
* Revision 2.0 95/02/27 22:34:46 CRH
* This module was updated to match the interface changes made to the
* ubi_BinTree module. In particular, the interface to the Locate() function
* has changed. See ubi_BinTree for more information on changes and new
* functions.
*
* The revision number was also upped to match ubi_BinTree.
*
* Revision 1.1 93/10/18 20:35:16 CRH
* I removed the hard-coded logical device names from the include file
* specifications. CRH
*
* Revision 1.0 93/10/15 23:00:15 CRH
* With this revision, I have added a set of #define's that provide a single,
* standard API to all existing tree modules. Until now, each of the three
* existing modules had a different function and typedef prefix, as follows:
*
* Module Prefix
* ubi_BinTree ubi_bt
* ubi_AVLtree ubi_avl
* ubi_SplayTree ubi_spt
*
* To further complicate matters, only those portions of the base module
* (ubi_BinTree) that were superceeded in the new module had the new names.
* For example, if you were using ubi_AVLtree, the AVL node structure was
* named "ubi_avlNode", but the root structure was still "ubi_btRoot". Using
* SplayTree, the locate function was called "ubi_sptLocate", but the next
* and previous functions remained "ubi_btNext" and "ubi_btPrev".
*
* This was not too terrible if you were familiar with the modules and knew
* exactly which tree model you wanted to use. If you wanted to be able to
* change modules (for speed comparisons, etc), things could get messy very
* quickly.
*
* So, I have added a set of defined names that get redefined in any of the
* descendant modules. To use this standardized interface in your code,
* simply replace all occurances of "ubi_bt", "ubi_avl", and "ubi_spt" with
* "ubi_tr". The "ubi_tr" names will resolve to the correct function or
* datatype names for the module that you are using. Just remember to
* include the header for that module in your program file. Because these
* names are handled by the preprocessor, there is no added run-time
* overhead.
*
* Note that the original names do still exist, and can be used if you wish
* to write code directly to a specific module. This should probably only be
* done if you are planning to implement a new descendant type, such as
* red/black trees. CRH
*
* Revision 0.1 93/04/25 22:03:32 CRH
* Simply changed the <exec/types.h> #include reference the .c file to
* use <stdlib.h> instead. The latter is portable, the former is not.
* Revision 1; 93/10/15 - 95/02/27:
* Added the ubi_tr defines. See ubi_BinTree.h for more info.
*
* Revision 0.0 93/04/21 23:05:52 CRH
* Initial version, written by Christopher R. Hertel.
@ -117,8 +61,8 @@
*/
static char ModuleID[] = "ubi_SplayTree\n\
\tRevision: 2.5\n\
\tDate: 1997/07/26 04:15:42\n\
\tRevision: 3.0\n\
\tDate: 1997/12/08 05:32:28\n\
\tAuthor: crh\n";
@ -143,33 +87,33 @@ static void Rotate( ubi_btNodePtr p )
{
ubi_btNodePtr parentp;
ubi_btNodePtr tmp;
char way;
char revway;
signed char way;
signed char revway;
parentp = p->Link[PARENT]; /* Find parent. */
parentp = p->Link[ubi_trPARENT]; /* Find parent. */
if( parentp ) /* If no parent, then we're already the root. */
{
way = p->gender;
revway = RevWay(way);
revway = ubi_trRevWay(way);
tmp = p->Link[revway];
parentp->Link[way] = tmp;
if( tmp )
{
tmp->Link[PARENT] = parentp;
tmp->gender = way;
tmp->Link[ubi_trPARENT] = parentp;
tmp->gender = way;
}
tmp = parentp->Link[PARENT];
p->Link[PARENT] = tmp;
p->gender = parentp->gender;
tmp = parentp->Link[ubi_trPARENT];
p->Link[ubi_trPARENT] = tmp;
p->gender = parentp->gender;
if( tmp )
tmp->Link[p->gender] = p;
parentp->Link[PARENT] = p;
parentp->gender = revway;
p->Link[revway] = parentp;
parentp->Link[ubi_trPARENT] = p;
parentp->gender = revway;
p->Link[revway] = parentp;
}
} /* Rotate */
@ -187,17 +131,17 @@ static ubi_btNodePtr Splay( ubi_btNodePtr SplayWithMe )
{
ubi_btNodePtr parent;
while( (parent = SplayWithMe->Link[PARENT]) )
while( (parent = SplayWithMe->Link[ubi_trPARENT]) )
{
if( parent->gender == SplayWithMe->gender ) /* Zig-Zig */
Rotate( parent );
else
{
if( EQUAL != parent->gender ) /* Zig-Zag */
if( ubi_trEQUAL != parent->gender ) /* Zig-Zag */
Rotate( SplayWithMe );
}
Rotate( SplayWithMe ); /* Zig */
} /* while */
}
return( SplayWithMe );
} /* Splay */
@ -289,24 +233,24 @@ ubi_btNodePtr ubi_sptRemove( ubi_btRootPtr RootPtr, ubi_btNodePtr DeadNode )
ubi_btNodePtr p;
(void)Splay( DeadNode ); /* Move dead node to root. */
if( (p = DeadNode->Link[LEFT]) ) /* If left subtree exists... */
if( (p = DeadNode->Link[ubi_trLEFT]) ) /* If left subtree exists... */
{
ubi_btNodePtr q = DeadNode->Link[RIGHT];
ubi_btNodePtr q = DeadNode->Link[ubi_trRIGHT];
p->Link[PARENT] = NULL; /* Left subtree node becomes root.*/
p->gender = PARENT;
p->Link[ubi_trPARENT] = NULL; /* Left subtree node becomes root.*/
p->gender = ubi_trPARENT;
p = ubi_btLast( p ); /* Find rightmost left tree node..*/
p->Link[RIGHT] = q; /* ...attach right tree. */
p->Link[ubi_trRIGHT] = q; /* ...attach right tree. */
if( q )
q->Link[PARENT] = p;
q->Link[ubi_trPARENT] = p;
RootPtr->root = Splay( p ); /* Resplay at p. */
}
else
{
if( (p = DeadNode->Link[RIGHT]) ) /* No left, but right subtree... */
if( (p = DeadNode->Link[ubi_trRIGHT]) ) /* No left, but right subtree... */
{ /* ...exists... */
p->Link[PARENT] = NULL; /* Right subtree root becomes... */
p->gender = PARENT; /* ...overall tree root. */
p->Link[ubi_trPARENT] = NULL; /* Right subtree root becomes... */
p->gender = ubi_trPARENT; /* ...overall tree root. */
RootPtr->root = p;
}
else
@ -424,7 +368,7 @@ void ubi_sptSplay( ubi_btRootPtr RootPtr,
* Splaying the tree will not damage it (assuming that I've done
* *my* job), but there is overhead involved. I don't recommend
* that you use this function unless you understand the underlying
* Splay Tree principles involved.
* Splay Tree.
* ------------------------------------------------------------------------ **
*/
{

View File

@ -36,66 +36,17 @@
*
* -------------------------------------------------------------------------- **
*
* Revision 2.5 1997/07/26 04:15:46 crh
* + Cleaned up a few minor syntax annoyances that gcc discovered for me.
* + Changed ubi_TRUE and ubi_FALSE to ubi_trTRUE and ubi_trFALSE.
* Log: ubi_SplayTree.h,v
* Revision 3.0 1997/12/08 05:32:35 crh
* This is a new major revision level because of a redesign of the handling
* of the pointers in the ubi_trNode structure. See ubi_BinTree for more
* info.
*
* Revision 2.4 1997/06/03 05:22:56 crh
* Changed TRUE and FALSE to ubi_TRUE and ubi_FALSE to avoid causing
* problems.
* Revision 2; 1995/02/27 - 1997/12/07:
* Major changes: added the function ubi_sptSplay().
*
* Revision 2.3 1995/10/03 22:19:37 CRH
* Ubisized!
* Also, added the function ubi_sptSplay().
*
* Revision 2.1 95/03/09 23:55:04 CRH
* Added the ModuleID static string and function. These modules are now
* self-identifying.
*
* Revision 2.0 95/02/27 22:34:55 CRH
* This module was updated to match the interface changes made to the
* ubi_BinTree module. In particular, the interface to the Locate() function
* has changed. See ubi_BinTree for more information on changes and new
* functions.
*
* The revision number was also upped to match ubi_BinTree.
*
*
* Revision 1.0 93/10/15 22:59:36 CRH
* With this revision, I have added a set of #define's that provide a single,
* standard API to all existing tree modules. Until now, each of the three
* existing modules had a different function and typedef prefix, as follows:
*
* Module Prefix
* ubi_BinTree ubi_bt
* ubi_AVLtree ubi_avl
* ubi_SplayTree ubi_spt
*
* To further complicate matters, only those portions of the base module
* (ubi_BinTree) that were superceeded in the new module had the new names.
* For example, if you were using ubi_AVLtree, the AVL node structure was
* named "ubi_avlNode", but the root structure was still "ubi_btRoot". Using
* SplayTree, the locate function was called "ubi_sptLocate", but the next
* and previous functions remained "ubi_btNext" and "ubi_btPrev".
*
* This was not too terrible if you were familiar with the modules and knew
* exactly which tree model you wanted to use. If you wanted to be able to
* change modules (for speed comparisons, etc), things could get messy very
* quickly.
*
* So, I have added a set of defined names that get redefined in any of the
* descendant modules. To use this standardized interface in your code,
* simply replace all occurances of "ubi_bt", "ubi_avl", and "ubi_spt" with
* "ubi_tr". The "ubi_tr" names will resolve to the correct function or
* datatype names for the module that you are using. Just remember to
* include the header for that module in your program file. Because these
* names are handled by the preprocessor, there is no added run-time
* overhead.
*
* Note that the original names do still exist, and can be used if you wish
* to write code directly to a specific module. This should probably only be
* done if you are planning to implement a new descendant type, such as
* red/black trees. CRH
* Revision 1; 93/10/15 - 95/02/27:
* Added the ubi_tr defines. See ubi_BinTree.h for more info.
*
* Revision 0.0 93/04/21 23:07:13 CRH
* Initial version, written by Christopher R. Hertel.
@ -266,7 +217,7 @@ void ubi_sptSplay( ubi_btRootPtr RootPtr,
* Splaying the tree will not damage it (assuming that I've done
* *my* job), but there is overhead involved. I don't recommend
* that you use this function unless you understand the underlying
* Splay Tree principles involved.
* Splay Tree.
* ------------------------------------------------------------------------ **
*/