1
0
mirror of https://github.com/samba-team/samba.git synced 2025-02-03 13:47:25 +03:00

lib/compression: LZ77 + Huffman compression

This compresses files as described in MS-XCA 2.2, and as decompressed
by the decompressor in the previous commit.

As with the decompressor, there are two public functions -- one that
uses a talloc context, and one that uses pre-allocated memory. The
compressor requires a tightly bound amount of auxillary memory
(>220kB) in a few different buffers, which is all gathered together in
the public struct lzxhuff_compressor_mem. An instantiated but not
initialised copy of this struct is required by the non-talloc
function; it can be used over and over again.

Our compression speed is about the same as the decompression speed
(between 20 and 500 MB/s on this laptop, depending on the data), and
our compression ratio is very similar to that of Windows.

Signed-off-by: Douglas Bagnall <douglas.bagnall@catalyst.net.nz>
Reviewed-by: Joseph Sutton <josephsutton@catalyst.net.nz>
This commit is contained in:
Douglas Bagnall 2022-11-17 23:14:58 +13:00 committed by Joseph Sutton
parent f86035c65b
commit d4e3f0c88e
3 changed files with 1861 additions and 0 deletions

File diff suppressed because it is too large Load Diff

View File

@ -24,6 +24,55 @@
#define HAVE_LZXPRESS_HUFFMAN_H
struct huffman_node {
struct huffman_node *left;
struct huffman_node *right;
uint32_t count;
uint16_t symbol;
int8_t depth;
};
/*
* LZX_HUFF_COMP_HASH_BITS is how big to make the hash tables
* (12 means 4096, etc).
*
* A larger number (up to 16) will be faster on long messages (fewer
* collisions), but probably slower on short ones (more prep).
*/
#define LZX_HUFF_COMP_HASH_BITS 14
/*
* This struct just coalesces all the memory you need for LZ77 + Huffman
* compresssion together in one bundle.
*
* There are a few different things you want, you usually want them all, so
* this makes it easy to allocate them all at once.
*/
struct lzxhuff_compressor_mem {
struct huffman_node leaf_nodes[512];
struct huffman_node internal_nodes[512];
uint16_t symbol_values[512];
uint16_t intermediate[65536 + 6];
uint16_t hash_table1[1 << LZX_HUFF_COMP_HASH_BITS];
uint16_t hash_table2[1 << LZX_HUFF_COMP_HASH_BITS];
};
ssize_t lzxpress_huffman_compress(struct lzxhuff_compressor_mem *cmp,
const uint8_t *input_bytes,
size_t input_size,
uint8_t *output,
size_t available_size);
ssize_t lzxpress_huffman_compress_talloc(TALLOC_CTX *mem_ctx,
const uint8_t *input_bytes,
size_t input_size,
uint8_t **output);
ssize_t lzxpress_huffman_decompress(const uint8_t *input,
size_t input_size,
uint8_t *output,

View File

@ -322,6 +322,29 @@ static void test_lzxpress_huffman_decompress(void **state)
}
}
static void test_lzxpress_huffman_compress(void **state)
{
size_t i;
ssize_t written;
uint8_t *dest = NULL;
TALLOC_CTX *mem_ctx = talloc_new(NULL);
for (i = 0; bidirectional_pairs[i].name != NULL; i++) {
struct lzx_pair p = bidirectional_pairs[i];
debug_message("%s compressed %zu decomp %zu\n", p.name,
p.compressed.length,
p.decompressed.length);
written = lzxpress_huffman_compress_talloc(mem_ctx,
p.decompressed.data,
p.decompressed.length,
&dest);
assert_int_equal(written, p.compressed.length);
assert_memory_equal(dest, p.compressed.data, p.compressed.length);
talloc_free(dest);
}
}
static DATA_BLOB datablob_from_file(TALLOC_CTX *mem_ctx,
const char *filename)
@ -356,6 +379,7 @@ static DATA_BLOB datablob_from_file(TALLOC_CTX *mem_ctx,
}
static void test_lzxpress_huffman_decompress_files(void **state)
{
size_t i;
@ -473,6 +497,673 @@ static void test_lzxpress_huffman_decompress_more_compressed_files(void **state)
}
/*
* attempt_round_trip() tests whether a data blob can survive a compression
* and decompression cycle. If save_name is not NULL and LZXHUFF_DEBUG_FILES
* evals to true, the various stages are saved in files with that name and the
* '-original', '-compressed', and '-decompressed' suffixes. If ref_compressed
* has data, it'll print a message saying whether the compressed data matches
* that.
*/
static ssize_t attempt_round_trip(TALLOC_CTX *mem_ctx,
DATA_BLOB original,
const char *save_name,
DATA_BLOB ref_compressed)
{
TALLOC_CTX *tmp_ctx = talloc_new(mem_ctx);
DATA_BLOB compressed = data_blob_talloc(tmp_ctx, NULL,
original.length * 4 / 3 + 260);
DATA_BLOB decompressed = data_blob_talloc(tmp_ctx, NULL,
original.length);
ssize_t comp_written, decomp_written;
comp_written = lzxpress_huffman_compress_talloc(tmp_ctx,
original.data,
original.length,
&compressed.data);
if (comp_written <= 0) {
talloc_free(tmp_ctx);
return -1;
}
if (ref_compressed.data != NULL) {
/*
* This is informational, not an assertion; there are
* ~infinite legitimate ways to compress the data, many as
* good as each other (think of compression as a language, not
* a format).
*/
debug_message("compressed size %zd vs reference %zu\n",
comp_written, ref_compressed.length);
if (comp_written == compressed.length &&
memcmp(compressed.data, ref_compressed.data, comp_written) == 0) {
debug_message("\033[1;32mbyte identical!\033[0m\n");
}
}
decomp_written = lzxpress_huffman_decompress(compressed.data,
comp_written,
decompressed.data,
original.length);
if (save_name != NULL && LZXHUFF_DEBUG_FILES) {
char s[300];
FILE *fh = NULL;
snprintf(s, sizeof(s), "%s-original", save_name);
fprintf(stderr, "Saving %zu bytes to %s\n", original.length, s);
fh = fopen(s, "w");
fwrite(original.data, 1, original.length, fh);
fclose(fh);
snprintf(s, sizeof(s), "%s-compressed", save_name);
fprintf(stderr, "Saving %zu bytes to %s\n", comp_written, s);
fh = fopen(s, "w");
fwrite(compressed.data, 1, comp_written, fh);
fclose(fh);
/*
* We save the decompressed file using original.length, not
* the returned size. If these differ, the returned size will
* be -1. By saving the whole buffer we can see at what point
* it went haywire.
*/
snprintf(s, sizeof(s), "%s-decompressed", save_name);
fprintf(stderr, "Saving %zu bytes to %s\n", original.length, s);
fh = fopen(s, "w");
fwrite(decompressed.data, 1, original.length, fh);
fclose(fh);
}
if (original.length != decomp_written ||
memcmp(decompressed.data,
original.data,
original.length) != 0) {
debug_message("\033[1;31mgot %zd, expected %zu\033[0m\n",
decomp_written,
original.length);
talloc_free(tmp_ctx);
return -1;
}
talloc_free(tmp_ctx);
return comp_written;
}
static void test_lzxpress_huffman_round_trip(void **state)
{
size_t i;
int score = 0;
ssize_t compressed_total = 0;
ssize_t reference_total = 0;
TALLOC_CTX *mem_ctx = talloc_new(NULL);
for (i = 0; file_names[i] != NULL; i++) {
char filename[200];
char *debug_files = NULL;
TALLOC_CTX *tmp_ctx = talloc_new(mem_ctx);
ssize_t comp_size;
struct lzx_pair p = {
.name = file_names[i]
};
debug_message("-------------------\n");
debug_message("%s\n", p.name);
snprintf(filename, sizeof(filename),
"%s/%s.decomp", DECOMP_DIR, p.name);
p.decompressed = datablob_from_file(tmp_ctx, filename);
assert_non_null(p.decompressed.data);
snprintf(filename, sizeof(filename),
"%s/%s.lzhuff", COMP_DIR, p.name);
p.compressed = datablob_from_file(tmp_ctx, filename);
if (p.compressed.data == NULL) {
debug_message(
"Could not load %s reference file %s\n",
p.name, filename);
debug_message("%s decompressed %zu\n", p.name,
p.decompressed.length);
} else {
debug_message("%s: reference compressed %zu decomp %zu\n",
p.name,
p.compressed.length,
p.decompressed.length);
}
if (1) {
/*
* We're going to save copies in /tmp.
*/
snprintf(filename, sizeof(filename),
"/tmp/lzxhuffman-%s", p.name);
debug_files = filename;
}
comp_size = attempt_round_trip(mem_ctx, p.decompressed,
debug_files,
p.compressed);
if (comp_size > 0) {
debug_message("\033[1;32mround trip!\033[0m\n");
score++;
if (p.compressed.length) {
compressed_total += comp_size;
reference_total += p.compressed.length;
}
}
talloc_free(tmp_ctx);
}
debug_message("%d/%zu correct\n", score, i);
print_message("\033[1;34mtotal compressed size: %zu\033[0m\n",
compressed_total);
print_message("total reference size: %zd \n", reference_total);
print_message("diff: %7zd \n",
reference_total - compressed_total);
print_message("ratio: \033[1;3%dm%.2f\033[0m \n",
2 + (compressed_total >= reference_total),
((double)compressed_total) / reference_total);
/*
* Assert that the compression is *about* as good as Windows. Of course
* it doesn't matter if we do better, but mysteriously getting better
* is usually a sign that something is wrong.
*
* At the time of writing, compressed_total is 2674004, or 10686 more
* than the Windows reference total. That's < 0.5% difference, we're
* asserting at 2%.
*/
assert_true(labs(compressed_total - reference_total) <
compressed_total / 50);
assert_int_equal(score, i);
talloc_free(mem_ctx);
}
/*
* Bob Jenkins' Small Fast RNG.
*
* We don't need it to be this good, but we do need it to be reproduceable
* across platforms, which rand() etc aren't.
*
* http://burtleburtle.net/bob/rand/smallprng.html
*/
struct jsf_rng {
uint32_t a;
uint32_t b;
uint32_t c;
uint32_t d;
};
#define ROTATE32(x, k) (((x) << (k)) | ((x) >> (32 - (k))))
static uint32_t jsf32(struct jsf_rng *x) {
uint32_t e = x->a - ROTATE32(x->b, 27);
x->a = x->b ^ ROTATE32(x->c, 17);
x->b = x->c + x->d;
x->c = x->d + e;
x->d = e + x->a;
return x->d;
}
static void jsf32_init(struct jsf_rng *x, uint32_t seed) {
size_t i;
x->a = 0xf1ea5eed;
x->b = x->c = x->d = seed;
for (i = 0; i < 20; ++i) {
jsf32(x);
}
}
static void test_lzxpress_huffman_long_gpl_round_trip(void **state)
{
/*
* We use a kind of model-free Markov model to generate a massively
* extended pastiche of the GPLv3 (chosen because it is right there in
* "COPYING" and won't change often).
*
* The point is to check a round trip of a very long message with
* multiple repetitions on many scales, without having to add a very
* large file.
*/
size_t i, j, k;
uint8_t c;
TALLOC_CTX *mem_ctx = talloc_new(NULL);
DATA_BLOB gpl = datablob_from_file(mem_ctx, "COPYING");
DATA_BLOB original = data_blob_talloc(mem_ctx, NULL, 5 * 1024 * 1024);
DATA_BLOB ref = {0};
ssize_t comp_size;
struct jsf_rng rng;
if (gpl.data == NULL) {
print_message("could not read COPYING\n");
fail();
}
jsf32_init(&rng, 1);
j = 1;
original.data[0] = gpl.data[0];
for (i = 1; i < original.length; i++) {
size_t m;
char p = original.data[i - 1];
c = gpl.data[j];
original.data[i] = c;
j++;
m = (j + jsf32(&rng)) % (gpl.length - 50);
for (k = m; k < m + 30; k++) {
if (p == gpl.data[k] &&
c == gpl.data[k + 1]) {
j = k + 2;
break;
}
}
if (j == gpl.length) {
j = 1;
}
}
comp_size = attempt_round_trip(mem_ctx, original, "/tmp/gpl", ref);
assert_true(comp_size > 0);
assert_true(comp_size < original.length);
talloc_free(mem_ctx);
}
static void test_lzxpress_huffman_long_random_graph_round_trip(void **state)
{
size_t i;
TALLOC_CTX *mem_ctx = talloc_new(NULL);
DATA_BLOB original = data_blob_talloc(mem_ctx, NULL, 5 * 1024 * 1024);
DATA_BLOB ref = {0};
/*
* There's a random trigram graph, with each pair of sequential bytes
* pointing to a successor. This would probably fall into a fairly
* simple loop, but we introduce damage into the system, randomly
* flipping about 1 bit in 64.
*
* The result is semi-structured and compressable.
*/
uint8_t *d = original.data;
uint8_t *table = talloc_array(mem_ctx, uint8_t, 65536);
uint32_t *table32 = (void*)table;
ssize_t comp_size;
struct jsf_rng rng;
jsf32_init(&rng, 1);
for (i = 0; i < (65536 / 4); i++) {
table32[i] = jsf32(&rng);
}
d[0] = 'a';
d[1] = 'b';
for (i = 2; i < original.length; i++) {
uint16_t k = (d[i - 2] << 8) | d[i - 1];
uint32_t damage = jsf32(&rng) & jsf32(&rng) & jsf32(&rng);
damage &= (damage >> 16);
k ^= damage & 0xffff;
d[i] = table[k];
}
comp_size = attempt_round_trip(mem_ctx, original, "/tmp/random-graph", ref);
assert_true(comp_size > 0);
assert_true(comp_size < original.length);
talloc_free(mem_ctx);
}
static void test_lzxpress_huffman_chaos_graph_round_trip(void **state)
{
size_t i;
TALLOC_CTX *mem_ctx = talloc_new(NULL);
DATA_BLOB original = data_blob_talloc(mem_ctx, NULL, 5 * 1024 * 1024);
DATA_BLOB ref = {0};
/*
* There's a random trigram graph, with each pair of sequential bytes
* pointing to a successor. This would probably fall into a fairly
* simple loop, but we keep changing the graph. The result is long
* periods of stability separatd by bursts of noise.
*/
uint8_t *d = original.data;
uint8_t *table = talloc_array(mem_ctx, uint8_t, 65536);
uint32_t *table32 = (void*)table;
ssize_t comp_size;
struct jsf_rng rng;
jsf32_init(&rng, 1);
for (i = 0; i < (65536 / 4); i++) {
table32[i] = jsf32(&rng);
}
d[0] = 'a';
d[1] = 'b';
for (i = 2; i < original.length; i++) {
uint16_t k = (d[i - 2] << 8) | d[i - 1];
uint32_t damage = jsf32(&rng);
d[i] = table[k];
if ((damage >> 29) == 0) {
uint16_t index = damage & 0xffff;
uint8_t value = (damage >> 16) & 0xff;
table[index] = value;
}
}
comp_size = attempt_round_trip(mem_ctx, original, "/tmp/chaos-graph", ref);
assert_true(comp_size > 0);
assert_true(comp_size < original.length);
talloc_free(mem_ctx);
}
static void test_lzxpress_huffman_sparse_random_graph_round_trip(void **state)
{
size_t i;
TALLOC_CTX *mem_ctx = talloc_new(NULL);
DATA_BLOB original = data_blob_talloc(mem_ctx, NULL, 5 * 1024 * 1024);
DATA_BLOB ref = {0};
/*
* There's a random trigram graph, with each pair of sequential bytes
* pointing to a successor. This will fall into a fairly simple loops,
* but we introduce damage into the system, randomly mangling about 1
* byte in 65536.
*
* The result has very long repetitive runs, which should lead to
* oversized blocks.
*/
uint8_t *d = original.data;
uint8_t *table = talloc_array(mem_ctx, uint8_t, 65536);
uint32_t *table32 = (void*)table;
ssize_t comp_size;
struct jsf_rng rng;
jsf32_init(&rng, 3);
for (i = 0; i < (65536 / 4); i++) {
table32[i] = jsf32(&rng);
}
d[0] = 'a';
d[1] = 'b';
for (i = 2; i < original.length; i++) {
uint16_t k = (d[i - 2] << 8) | d[i - 1];
uint32_t damage = jsf32(&rng);
if ((damage & 0xffff0000) == 0) {
k ^= damage & 0xffff;
}
d[i] = table[k];
}
comp_size = attempt_round_trip(mem_ctx, original, "/tmp/sparse-random-graph", ref);
assert_true(comp_size > 0);
assert_true(comp_size < original.length);
talloc_free(mem_ctx);
}
static void test_lzxpress_huffman_random_noise_round_trip(void **state)
{
size_t i;
size_t len = 1024 * 1024;
TALLOC_CTX *mem_ctx = talloc_new(NULL);
DATA_BLOB original = data_blob_talloc(mem_ctx, NULL, len);
DATA_BLOB ref = {0};
ssize_t comp_size;
/*
* We are filling this up with incompressible noise, but we can assert
* quite tight bounds on how badly it will fail to compress.
*
* Specifically, with randomly distributed codes, the Huffman table
* should come out as roughly even, averaging 8 bit codes. Then there
* will be a 256 byte table every 64k, which is a 1/256 overhead (i.e.
* the compressed length will be 257/256 the original *on average*).
* We assert it is less than 1 in 200 but more than 1 in 300.
*/
uint32_t *d32 = (uint32_t*)((void*)original.data);
struct jsf_rng rng;
jsf32_init(&rng, 2);
for (i = 0; i < (len / 4); i++) {
d32[i] = jsf32(&rng);
}
comp_size = attempt_round_trip(mem_ctx, original, "/tmp/random-noise", ref);
assert_true(comp_size > 0);
assert_true(comp_size > original.length + original.length / 300);
assert_true(comp_size < original.length + original.length / 200);
debug_message("original size %zu; compressed size %zd; ratio %.3f\n",
len, comp_size, ((double)comp_size) / len);
talloc_free(mem_ctx);
}
static void test_lzxpress_huffman_overlong_matches(void **state)
{
size_t i, j;
TALLOC_CTX *mem_ctx = talloc_new(NULL);
DATA_BLOB original = data_blob_talloc(mem_ctx, NULL, 1024 * 1024);
DATA_BLOB ref = {0};
uint8_t *d = original.data;
char filename[300];
/*
* We are testing with something like "aaaaaaaaaaaaaaaaaaaaaaabbbbb"
* where typically the number of "a"s is > 65536, and the number of
* "b"s is < 42.
*/
ssize_t na[] = {65535, 65536, 65537, 65559, 65575, 200000, -1};
ssize_t nb[] = {1, 2, 20, 39, 40, 41, 42, -1};
int score = 0;
ssize_t comp_size;
for (i = 0; na[i] >= 0; i++) {
ssize_t a = na[i];
memset(d, 'a', a);
for (j = 0; nb[j] >= 0; j++) {
ssize_t b = nb[j];
memset(d + a, 'b', b);
original.length = a + b;
snprintf(filename, sizeof(filename),
"/tmp/overlong-%zd-%zd", a, b);
comp_size = attempt_round_trip(mem_ctx,
original,
filename, ref);
if (comp_size > 0) {
score++;
}
}
}
debug_message("%d/%zu correct\n", score, i * j);
assert_int_equal(score, i * j);
talloc_free(mem_ctx);
}
static void test_lzxpress_huffman_overlong_matches_abc(void **state)
{
size_t i, j, k;
TALLOC_CTX *mem_ctx = talloc_new(NULL);
DATA_BLOB original = data_blob_talloc(mem_ctx, NULL, 1024 * 1024);
DATA_BLOB ref = {0};
uint8_t *d = original.data;
char filename[300];
/*
* We are testing with something like "aaaabbbbcc" where typically
* the number of "a"s + "b"s is around 65536, and the number of "c"s
* is < 43.
*/
ssize_t nab[] = {1, 21, 32767, 32768, 32769, -1};
ssize_t nc[] = {1, 2, 20, 39, 40, 41, 42, -1};
int score = 0;
ssize_t comp_size;
for (i = 0; nab[i] >= 0; i++) {
ssize_t a = nab[i];
memset(d, 'a', a);
for (j = 0; nab[j] >= 0; j++) {
ssize_t b = nab[j];
memset(d + a, 'b', b);
for (k = 0; nc[k] >= 0; k++) {
ssize_t c = nc[k];
memset(d + a + b, 'c', c);
original.length = a + b + c;
snprintf(filename, sizeof(filename),
"/tmp/overlong-abc-%zd-%zd-%zd",
a, b, c);
comp_size = attempt_round_trip(mem_ctx,
original,
filename, ref);
if (comp_size > 0) {
score++;
}
}
}
}
debug_message("%d/%zu correct\n", score, i * j * k);
assert_int_equal(score, i * j * k);
talloc_free(mem_ctx);
}
static void test_lzxpress_huffman_extremely_compressible_middle(void **state)
{
size_t len = 192 * 1024;
TALLOC_CTX *mem_ctx = talloc_new(NULL);
DATA_BLOB original = data_blob_talloc(mem_ctx, NULL, len);
DATA_BLOB ref = {0};
ssize_t comp_size;
/*
* When a middle block (i.e. not the first and not the last of >= 3),
* can be entirely expressed as a match starting in the previous
* block, the Huffman tree would end up with 1 element, which does not
* work for the code construction. It really wants to use both bits.
* So we need to ensure we have some way of dealing with this.
*/
memset(original.data, 'a', 0x10000 - 1);
memset(original.data + 0x10000 - 1, 'b', 0x10000 + 1);
memset(original.data + 0x20000, 'a', 0x10000);
comp_size = attempt_round_trip(mem_ctx, original, "/tmp/compressible-middle", ref);
assert_true(comp_size > 0);
assert_true(comp_size < 1024);
debug_message("original size %zu; compressed size %zd; ratio %.3f\n",
len, comp_size, ((double)comp_size) / len);
talloc_free(mem_ctx);
}
static void test_lzxpress_huffman_max_length_limit(void **state)
{
size_t len = 65 * 1024 * 1024;
TALLOC_CTX *mem_ctx = talloc_new(NULL);
DATA_BLOB original = data_blob_talloc_zero(mem_ctx, len);
DATA_BLOB ref = {0};
ssize_t comp_size;
/*
* Reputedly Windows has a 64MB limit in the maximum match length it
* will encode. We follow this, and test that here with nearly 65 MB
* of zeros between two letters; this should be encoded in three
* blocks:
*
* 1. 'a', 64M × '\0'
* 2. (1M - 2) × '\0' -- finishing off what would have been the same match
* 3. 'b' EOF
*
* Which we can assert by saying the length is > 768, < 1024.
*/
original.data[0] = 'a';
original.data[len - 1] = 'b';
comp_size = attempt_round_trip(mem_ctx, original, "/tmp/max-length-limit", ref);
assert_true(comp_size > 0x300);
assert_true(comp_size < 0x400);
debug_message("original size %zu; compressed size %zd; ratio %.3f\n",
len, comp_size, ((double)comp_size) / len);
talloc_free(mem_ctx);
}
static void test_lzxpress_huffman_short_boring_strings(void **state)
{
size_t len = 64 * 1024;
TALLOC_CTX *mem_ctx = talloc_new(NULL);
DATA_BLOB original = data_blob_talloc(mem_ctx, NULL, len);
DATA_BLOB ref = {0};
ssize_t comp_size;
ssize_t lengths[] = {
1, 2, 20, 39, 40, 41, 42, 256, 270, 273, 274, 1000, 64000, -1};
char filename[300];
size_t i;
/*
* How do short repetitive strings work? We're poking at the limit
* around which LZ77 comprssion is turned on.
*
* For this test we don't change the blob memory between runs, just
* the declared length.
*/
memset(original.data, 'a', len);
for (i = 0; lengths[i] >= 0; i++) {
original.length = lengths[i];
snprintf(filename, sizeof(filename),
"/tmp/short-boring-%zu",
original.length);
comp_size = attempt_round_trip(mem_ctx, original, filename, ref);
if (original.length < 41) {
assert_true(comp_size > 256 + original.length / 8);
} else if (original.length < 274) {
assert_true(comp_size == 261);
} else {
assert_true(comp_size == 263);
}
assert_true(comp_size < 261 + original.length / 8);
}
/* let's just show we didn't change the original */
for (i = 0; i < len; i++) {
if (original.data[i] != 'a') {
fail_msg("input data[%zu] was changed! (%2x, expected %2x)\n",
i, original.data[i], 'a');
}
}
talloc_free(mem_ctx);
}
static void test_lzxpress_huffman_compress_empty_or_null(void **state)
{
/*
* We expect these to fail with a -1, except the last one, which does
* the real thing.
*/
ssize_t ret;
const uint8_t *input = bidirectional_pairs[0].decompressed.data;
size_t ilen = bidirectional_pairs[0].decompressed.length;
size_t olen = bidirectional_pairs[0].compressed.length;
uint8_t output[olen];
struct lzxhuff_compressor_mem cmp_mem;
ret = lzxpress_huffman_compress(&cmp_mem, input, 0, output, olen);
assert_int_equal(ret, -1LL);
ret = lzxpress_huffman_compress(&cmp_mem, input, ilen, output, 0);
assert_int_equal(ret, -1LL);
ret = lzxpress_huffman_compress(&cmp_mem, NULL, ilen, output, olen);
assert_int_equal(ret, -1LL);
ret = lzxpress_huffman_compress(&cmp_mem, input, ilen, NULL, olen);
assert_int_equal(ret, -1LL);
ret = lzxpress_huffman_compress(NULL, input, ilen, output, olen);
assert_int_equal(ret, -1LL);
ret = lzxpress_huffman_compress(&cmp_mem, input, ilen, output, olen);
assert_int_equal(ret, olen);
}
static void test_lzxpress_huffman_decompress_empty_or_null(void **state)
{
/*
@ -501,10 +1192,24 @@ static void test_lzxpress_huffman_decompress_empty_or_null(void **state)
int main(void) {
const struct CMUnitTest tests[] = {
cmocka_unit_test(test_lzxpress_huffman_short_boring_strings),
cmocka_unit_test(test_lzxpress_huffman_max_length_limit),
cmocka_unit_test(test_lzxpress_huffman_extremely_compressible_middle),
cmocka_unit_test(test_lzxpress_huffman_long_random_graph_round_trip),
cmocka_unit_test(test_lzxpress_huffman_chaos_graph_round_trip),
cmocka_unit_test(test_lzxpress_huffman_sparse_random_graph_round_trip),
cmocka_unit_test(test_lzxpress_huffman_round_trip),
cmocka_unit_test(test_lzxpress_huffman_decompress_files),
cmocka_unit_test(test_lzxpress_huffman_decompress_more_compressed_files),
cmocka_unit_test(test_lzxpress_huffman_compress),
cmocka_unit_test(test_lzxpress_huffman_decompress),
cmocka_unit_test(test_lzxpress_huffman_long_gpl_round_trip),
cmocka_unit_test(test_lzxpress_huffman_long_random_graph_round_trip),
cmocka_unit_test(test_lzxpress_huffman_random_noise_round_trip),
cmocka_unit_test(test_lzxpress_huffman_overlong_matches_abc),
cmocka_unit_test(test_lzxpress_huffman_overlong_matches),
cmocka_unit_test(test_lzxpress_huffman_decompress_empty_or_null),
cmocka_unit_test(test_lzxpress_huffman_compress_empty_or_null),
};
if (!isatty(1)) {
cmocka_set_message_output(CM_OUTPUT_SUBUNIT);