1
0
mirror of https://github.com/samba-team/samba.git synced 2024-12-22 13:34:15 +03:00

lib/compression: more tests for lzxpress plain compression

These are based on (i.e. copied and pasted from) the LZ77 + Huffman
tests.

Signed-off-by: Douglas Bagnall <douglas.bagnall@catalyst.net.nz>
Reviewed-by: Joseph Sutton <josephsutton@catalyst.net.nz>
This commit is contained in:
Douglas Bagnall 2022-11-24 11:44:35 +13:00 committed by Joseph Sutton
parent c0f28d7185
commit e4066b2be6

View File

@ -27,6 +27,746 @@
#include "lzxpress.h"
#include "lib/util/base64.h"
/* set LZX_DEBUG_FILES to true to save round-trip files in /tmp. */
#define LZX_DEBUG_FILES false
/* set LZX_DEBUG_VERBOSE to true to print more. */
#define LZX_DEBUG_VERBOSE false
#if LZX_DEBUG_VERBOSE
#define debug_message(...) print_message(__VA_ARGS__)
#include <time.h>
struct timespec start = {0};
struct timespec end = {0};
static void debug_start_timer(void)
{
clock_gettime(CLOCK_MONOTONIC, &start);
}
static void debug_end_timer(const char *name, size_t len)
{
uint64_t ns;
double secs;
double rate;
clock_gettime(CLOCK_MONOTONIC, &end);
ns = end.tv_nsec;
ns += end.tv_sec * 1000 * 1000 * 1000;
ns -= start.tv_nsec;
ns -= start.tv_sec * 1000 * 1000 * 1000;
secs = ns / 1e9;
rate = len / (secs * 1024 * 1024);
debug_message("%s %zu bytes in %.2g: \033[1;35m%.2f\033[0m MB per second\n",
name, len, secs, rate);
}
#else
#define debug_message(...) /* debug_message */
#define debug_start_timer(...) /* debug_start_timer */
#define debug_end_timer(...) /* debug_end_timer */
#endif
struct lzx_pair {
const char *name;
DATA_BLOB compressed;
DATA_BLOB decompressed;
};
struct lzx_file_pair {
const char *name;
const char *compressed_file;
const char *decompressed_file;
};
#define DECOMP_DIR "testdata/compression/decompressed"
#define COMP_DIR "testdata/compression/compressed-plain"
#define MORE_COMP_DIR "testdata/compression/compressed-more-plain"
#define BLOB_FROM_ARRAY(...) \
{ \
.data = (uint8_t[]){__VA_ARGS__}, \
.length = sizeof((uint8_t[]){__VA_ARGS__}) \
}
#define BLOB_FROM_STRING(s) \
{ \
.data = discard_const_p(uint8_t, s), \
.length = (sizeof(s) - 1) \
}
const char * file_names[] = {
"generate-windows-test-vectors.c",
"fib_shuffle-128k+",
"fuzzing-0fc2d461b56cd8103c91",
"fuzzing-3ec3bca27bb9eb40c128",
"fuzzing-a3115a81d1ac500318f9",
"fuzzing-3591f9dc02bb00a54b60",
"27826-8.txt",
"5d049b4cb1bd933f5e8ex19",
"638e61e96d54279981c3x5",
"64k-minus-one-zeros",
"64k-plus-one-zeros",
"64k-zeros",
"96f696a4e5ce56c61a3dx10",
"9e0b6a12febf38e98f13",
"abc-times-101",
"abc-times-105",
"abc-times-200",
"b63289ccc7f218c0d56b",
"beta-variate1-128k+",
"beta-variate3-128k+",
"decayed_alphabet_128k+",
"decayed_alphabet_64k",
"f00842317dc6d5695b02",
"fib_shuffle",
"midsummer-nights-dream.txt",
"notes-on-the-underground.txt",
"pg22009.txt",
"repeating",
"repeating-exactly-64k",
"setup.log",
"slow-015ddc36a71412ccc50d",
"slow-100e9f966a7feb9ca40a",
"slow-2a671c3cff4f1574cbab",
"slow-33d90a24e70515b14cd0",
"slow-49d8c05261e3f412fc72",
"slow-50a249d2fe56873e56a0",
"slow-63e9f0b52235fb0129fa",
"slow-73b7f971d65908ac0095",
"slow-8b61e3dd267908544531",
"slow-9d1c5a079b0462986f1f",
"slow-aa7262a821dabdcf04a6",
"slow-b8a91d142b0d2af7f5ca",
"slow-c79142457734bbc8d575",
"slow-d736544545b90d83fe75",
"slow-e3b9bdfaed7d1a606fdb",
"slow-f3f1c02a9d006e5e1703",
"trigram_128k+",
"trigram_64k",
"trigram_sum_128k+",
"trigram_sum_64k",
NULL
};
static DATA_BLOB datablob_from_file(TALLOC_CTX *mem_ctx,
const char *filename)
{
DATA_BLOB b = {0};
FILE *fh = fopen(filename, "rb");
int ret;
struct stat s;
size_t len;
if (fh == NULL) {
debug_message("could not open '%s'\n", filename);
return b;
}
ret = fstat(fileno(fh), &s);
if (ret != 0) {
fclose(fh);
return b;
}
b.data = talloc_array(mem_ctx, uint8_t, s.st_size);
if (b.data == NULL) {
fclose(fh);
return b;
}
len = fread(b.data, 1, s.st_size, fh);
if (ferror(fh) || len != s.st_size) {
TALLOC_FREE(b.data);
} else {
b.length = len;
}
fclose(fh);
return b;
}
static void test_lzxpress_plain_decompress_files(void **state)
{
size_t i;
int score = 0;
TALLOC_CTX *mem_ctx = talloc_new(NULL);
for (i = 0; file_names[i] != NULL; i++) {
char filename[200];
uint8_t *dest = NULL;
ssize_t written;
TALLOC_CTX *tmp_ctx = talloc_new(mem_ctx);
struct lzx_pair p = {
.name = file_names[i]
};
debug_message("%s\n", p.name);
snprintf(filename, sizeof(filename),
"%s/%s.decomp", DECOMP_DIR, p.name);
p.decompressed = datablob_from_file(tmp_ctx, filename);
assert_non_null(p.decompressed.data);
snprintf(filename, sizeof(filename),
"%s/%s.lzplain", COMP_DIR, p.name);
p.compressed = datablob_from_file(tmp_ctx, filename);
assert_non_null(p.compressed.data);
dest = talloc_array(tmp_ctx, uint8_t, p.decompressed.length);
debug_start_timer();
written = lzxpress_decompress(p.compressed.data,
p.compressed.length,
dest,
p.decompressed.length);
debug_end_timer("decompress", p.decompressed.length);
if (written == p.decompressed.length &&
memcmp(dest, p.decompressed.data, p.decompressed.length) == 0) {
debug_message("\033[1;32mdecompressed %s!\033[0m\n", p.name);
score++;
} else {
debug_message("\033[1;31mfailed to decompress %s!\033[0m\n",
p.name);
debug_message("size %zd vs reference %zu\n",
written, p.decompressed.length);
}
talloc_free(tmp_ctx);
}
debug_message("%d/%zu correct\n", score, i);
assert_int_equal(score, i);
}
static void test_lzxpress_plain_decompress_more_compressed_files(void **state)
{
/*
* This tests the decompression of files that have been compressed on
* Windows with the level turned up (to 1, default for MS-XCA is 0).
*
* The format is identical, but it will have tried harder to find
* matches.
*/
size_t i;
int score = 0;
int found = 0;
TALLOC_CTX *mem_ctx = talloc_new(NULL);
for (i = 0; file_names[i] != NULL; i++) {
char filename[200];
uint8_t *dest = NULL;
ssize_t written;
TALLOC_CTX *tmp_ctx = talloc_new(mem_ctx);
struct lzx_pair p = {
.name = file_names[i]
};
debug_message("%s\n", p.name);
snprintf(filename, sizeof(filename),
"%s/%s.decomp", DECOMP_DIR, p.name);
p.decompressed = datablob_from_file(tmp_ctx, filename);
assert_non_null(p.decompressed.data);
snprintf(filename, sizeof(filename),
"%s/%s.lzplain", MORE_COMP_DIR, p.name);
p.compressed = datablob_from_file(tmp_ctx, filename);
if (p.compressed.data == NULL) {
/*
* We don't have all the vectors in the
* more-compressed directory, which is OK, we skip
* them.
*/
continue;
}
found++;
dest = talloc_array(tmp_ctx, uint8_t, p.decompressed.length);
debug_start_timer();
written = lzxpress_decompress(p.compressed.data,
p.compressed.length,
dest,
p.decompressed.length);
debug_end_timer("decompress", p.decompressed.length);
if (written == p.decompressed.length &&
memcmp(dest, p.decompressed.data, p.decompressed.length) == 0) {
debug_message("\033[1;32mdecompressed %s!\033[0m\n", p.name);
score++;
} else {
debug_message("\033[1;31mfailed to decompress %s!\033[0m\n",
p.name);
debug_message("size %zd vs reference %zu\n",
written, p.decompressed.length);
}
talloc_free(tmp_ctx);
}
debug_message("%d/%d correct\n", score, found);
assert_int_equal(score, found);
}
/*
* attempt_round_trip() tests whether a data blob can survive a compression
* and decompression cycle. If save_name is not NULL and LZX_DEBUG_FILES
* evals to true, the various stages are saved in files with that name and the
* '-original', '-compressed', and '-decompressed' suffixes. If ref_compressed
* has data, it'll print a message saying whether the compressed data matches
* that.
*/
static ssize_t attempt_round_trip(TALLOC_CTX *mem_ctx,
DATA_BLOB original,
const char *save_name,
DATA_BLOB ref_compressed)
{
TALLOC_CTX *tmp_ctx = talloc_new(mem_ctx);
DATA_BLOB compressed = data_blob_talloc(tmp_ctx, NULL,
original.length * 8 / 7 + 8);
DATA_BLOB decompressed = data_blob_talloc(tmp_ctx, NULL,
original.length);
ssize_t comp_written, decomp_written;
debug_start_timer();
comp_written = lzxpress_compress(original.data,
original.length,
compressed.data,
compressed.length);
debug_end_timer("compress", original.length);
if (comp_written <= 0) {
talloc_free(tmp_ctx);
return -1;
}
if (ref_compressed.data != NULL) {
/*
* This is informational, not an assertion; there are
* ~infinite legitimate ways to compress the data, many as
* good as each other (think of compression as a language, not
* a format).
*/
debug_message("compressed size %zd vs reference %zu\n",
comp_written, ref_compressed.length);
if (comp_written == compressed.length &&
memcmp(compressed.data, ref_compressed.data, comp_written) == 0) {
debug_message("\033[1;32mbyte identical!\033[0m\n");
}
}
debug_start_timer();
decomp_written = lzxpress_decompress(compressed.data,
comp_written,
decompressed.data,
decompressed.length);
debug_end_timer("decompress", original.length);
if (save_name != NULL && LZX_DEBUG_FILES) {
char s[300];
FILE *fh = NULL;
snprintf(s, sizeof(s), "%s-original", save_name);
fprintf(stderr, "Saving %zu bytes to %s\n", original.length, s);
fh = fopen(s, "w");
fwrite(original.data, 1, original.length, fh);
fclose(fh);
snprintf(s, sizeof(s), "%s-compressed", save_name);
fprintf(stderr, "Saving %zu bytes to %s\n", comp_written, s);
fh = fopen(s, "w");
fwrite(compressed.data, 1, comp_written, fh);
fclose(fh);
/*
* We save the decompressed file using original.length, not
* the returned size. If these differ, the returned size will
* be -1. By saving the whole buffer we can see at what point
* it went haywire.
*/
snprintf(s, sizeof(s), "%s-decompressed", save_name);
fprintf(stderr, "Saving %zu bytes to %s\n", original.length, s);
fh = fopen(s, "w");
fwrite(decompressed.data, 1, original.length, fh);
fclose(fh);
}
if (original.length != decomp_written ||
memcmp(decompressed.data,
original.data,
original.length) != 0) {
debug_message("\033[1;31mgot %zd, expected %zu\033[0m\n",
decomp_written,
original.length);
talloc_free(tmp_ctx);
return -1;
}
talloc_free(tmp_ctx);
return comp_written;
}
static void test_lzxpress_plain_round_trip_files(void **state)
{
size_t i;
int score = 0;
ssize_t compressed_total = 0;
ssize_t reference_total = 0;
TALLOC_CTX *mem_ctx = talloc_new(NULL);
for (i = 0; file_names[i] != NULL; i++) {
char filename[200];
char *debug_files = NULL;
TALLOC_CTX *tmp_ctx = talloc_new(mem_ctx);
ssize_t comp_size;
struct lzx_pair p = {
.name = file_names[i]
};
debug_message("-------------------\n");
debug_message("%s\n", p.name);
snprintf(filename, sizeof(filename),
"%s/%s.decomp", DECOMP_DIR, p.name);
p.decompressed = datablob_from_file(tmp_ctx, filename);
assert_non_null(p.decompressed.data);
snprintf(filename, sizeof(filename),
"%s/%s.lzplain", COMP_DIR, p.name);
p.compressed = datablob_from_file(tmp_ctx, filename);
if (p.compressed.data == NULL) {
debug_message(
"Could not load %s reference file %s\n",
p.name, filename);
debug_message("%s decompressed %zu\n", p.name,
p.decompressed.length);
} else {
debug_message("%s: reference compressed %zu decomp %zu\n",
p.name,
p.compressed.length,
p.decompressed.length);
}
if (1) {
/*
* We're going to save copies in /tmp.
*/
snprintf(filename, sizeof(filename),
"/tmp/lzxplain-%s", p.name);
debug_files = filename;
}
comp_size = attempt_round_trip(mem_ctx, p.decompressed,
debug_files,
p.compressed);
if (comp_size > 0) {
debug_message("\033[1;32mround trip!\033[0m\n");
score++;
if (p.compressed.length) {
compressed_total += comp_size;
reference_total += p.compressed.length;
}
}
talloc_free(tmp_ctx);
}
debug_message("%d/%zu correct\n", score, i);
print_message("\033[1;34mtotal compressed size: %zu\033[0m\n",
compressed_total);
print_message("total reference size: %zd \n", reference_total);
print_message("diff: %7zd \n",
reference_total - compressed_total);
print_message("ratio: \033[1;3%dm%.2f\033[0m \n",
2 + (compressed_total >= reference_total),
((double)compressed_total) / reference_total);
/*
* Assert that the compression is better than Windows. Unlike the
* Huffman varient, where things are very even, here we do much better
* than Windows without especially trying.
*/
assert_true(compressed_total <= reference_total);
assert_int_equal(score, i);
talloc_free(mem_ctx);
}
/*
* Bob Jenkins' Small Fast RNG.
*
* We don't need it to be this good, but we do need it to be reproduceable
* across platforms, which rand() etc aren't.
*
* http://burtleburtle.net/bob/rand/smallprng.html
*/
struct jsf_rng {
uint32_t a;
uint32_t b;
uint32_t c;
uint32_t d;
};
#define ROTATE32(x, k) (((x) << (k)) | ((x) >> (32 - (k))))
static uint32_t jsf32(struct jsf_rng *x) {
uint32_t e = x->a - ROTATE32(x->b, 27);
x->a = x->b ^ ROTATE32(x->c, 17);
x->b = x->c + x->d;
x->c = x->d + e;
x->d = e + x->a;
return x->d;
}
static void jsf32_init(struct jsf_rng *x, uint32_t seed) {
size_t i;
x->a = 0xf1ea5eed;
x->b = x->c = x->d = seed;
for (i = 0; i < 20; ++i) {
jsf32(x);
}
}
static void test_lzxpress_plain_long_gpl_round_trip(void **state)
{
/*
* We use a kind of model-free Markov model to generate a massively
* extended pastiche of the GPLv3 (chosen because it is right there in
* "COPYING" and won't change often).
*
* The point is to check a round trip of a very long message with
* multiple repetitions on many scales, without having to add a very
* large file.
*/
size_t i, j, k;
uint8_t c;
TALLOC_CTX *mem_ctx = talloc_new(NULL);
DATA_BLOB gpl = datablob_from_file(mem_ctx, "COPYING");
DATA_BLOB original = data_blob_talloc(mem_ctx, NULL, 5 * 1024 * 1024);
DATA_BLOB ref = {0};
ssize_t comp_size;
struct jsf_rng rng;
jsf32_init(&rng, 1);
j = 1;
original.data[0] = gpl.data[0];
for (i = 1; i < original.length; i++) {
size_t m;
char p = original.data[i - 1];
c = gpl.data[j];
original.data[i] = c;
j++;
m = (j + jsf32(&rng)) % (gpl.length - 50);
for (k = m; k < m + 30; k++) {
if (p == gpl.data[k] &&
c == gpl.data[k + 1]) {
j = k + 2;
break;
}
}
if (j == gpl.length) {
j = 1;
}
}
comp_size = attempt_round_trip(mem_ctx, original, "/tmp/gpl", ref);
assert_true(comp_size > 0);
assert_true(comp_size < original.length);
talloc_free(mem_ctx);
}
static void test_lzxpress_plain_long_random_graph_round_trip(void **state)
{
size_t i;
TALLOC_CTX *mem_ctx = talloc_new(NULL);
DATA_BLOB original = data_blob_talloc(mem_ctx, NULL, 5 * 1024 * 1024);
DATA_BLOB ref = {0};
/*
* There's a random trigram graph, with each pair of sequential bytes
* pointing to a successor. This would probably fall into a fairly
* simple loop, but we introduce damage into the system, randomly
* flipping about 1 bit in 64.
*
* The result is semi-structured and compressable.
*/
uint8_t *d = original.data;
uint8_t *table = talloc_array(mem_ctx, uint8_t, 65536);
uint32_t *table32 = (void*)table;
ssize_t comp_size;
struct jsf_rng rng;
jsf32_init(&rng, 1);
for (i = 0; i < (65536 / 4); i++) {
table32[i] = jsf32(&rng);
}
d[0] = 'a';
d[1] = 'b';
for (i = 2; i < original.length; i++) {
uint16_t k = (d[i - 2] << 8) | d[i - 1];
uint32_t damage = jsf32(&rng) & jsf32(&rng) & jsf32(&rng);
damage &= (damage >> 16);
k ^= damage & 0xffff;
d[i] = table[k];
}
comp_size = attempt_round_trip(mem_ctx, original, "/tmp/random-graph", ref);
assert_true(comp_size > 0);
assert_true(comp_size < original.length);
talloc_free(mem_ctx);
}
static void test_lzxpress_plain_chaos_graph_round_trip(void **state)
{
size_t i;
TALLOC_CTX *mem_ctx = talloc_new(NULL);
DATA_BLOB original = data_blob_talloc(mem_ctx, NULL, 5 * 1024 * 1024);
DATA_BLOB ref = {0};
/*
* There's a random trigram graph, with each pair of sequential bytes
* pointing to a successor. This would probably fall into a fairly
* simple loop, but we keep changing the graph. The result is long
* periods of stability separatd by bursts of noise.
*/
uint8_t *d = original.data;
uint8_t *table = talloc_array(mem_ctx, uint8_t, 65536);
uint32_t *table32 = (void*)table;
ssize_t comp_size;
struct jsf_rng rng;
jsf32_init(&rng, 1);
for (i = 0; i < (65536 / 4); i++) {
table32[i] = jsf32(&rng);
}
d[0] = 'a';
d[1] = 'b';
for (i = 2; i < original.length; i++) {
uint16_t k = (d[i - 2] << 8) | d[i - 1];
uint32_t damage = jsf32(&rng);
d[i] = table[k];
if ((damage >> 29) == 0) {
uint16_t index = damage & 0xffff;
uint8_t value = (damage >> 16) & 0xff;
table[index] = value;
}
}
comp_size = attempt_round_trip(mem_ctx, original, "/tmp/chaos-graph", ref);
assert_true(comp_size > 0);
assert_true(comp_size < original.length);
talloc_free(mem_ctx);
}
static void test_lzxpress_plain_sparse_random_graph_round_trip(void **state)
{
size_t i;
TALLOC_CTX *mem_ctx = talloc_new(NULL);
DATA_BLOB original = data_blob_talloc(mem_ctx, NULL, 5 * 1024 * 1024);
DATA_BLOB ref = {0};
/*
* There's a random trigram graph, with each pair of sequential bytes
* pointing to a successor. This will fall into a fairly simple loops,
* but we introduce damage into the system, randomly mangling about 1
* byte in 65536.
*
* The result has very long repetitive runs, which should lead to
* oversized blocks.
*/
uint8_t *d = original.data;
uint8_t *table = talloc_array(mem_ctx, uint8_t, 65536);
uint32_t *table32 = (void*)table;
ssize_t comp_size;
struct jsf_rng rng;
jsf32_init(&rng, 3);
for (i = 0; i < (65536 / 4); i++) {
table32[i] = jsf32(&rng);
}
d[0] = 'a';
d[1] = 'b';
for (i = 2; i < original.length; i++) {
uint16_t k = (d[i - 2] << 8) | d[i - 1];
uint32_t damage = jsf32(&rng);
if ((damage & 0xffff0000) == 0) {
k ^= damage & 0xffff;
}
d[i] = table[k];
}
comp_size = attempt_round_trip(mem_ctx, original, "/tmp/sparse-random-graph", ref);
assert_true(comp_size > 0);
assert_true(comp_size < original.length);
talloc_free(mem_ctx);
}
static void test_lzxpress_plain_random_noise_round_trip(void **state)
{
size_t i;
size_t len = 10 * 1024 * 1024;
TALLOC_CTX *mem_ctx = talloc_new(NULL);
DATA_BLOB original = data_blob_talloc(mem_ctx, NULL, len);
DATA_BLOB ref = {0};
ssize_t comp_size;
/*
* We are filling this up with incompressible noise, but we can assert
* quite tight bounds on how badly it will fail to compress.
*
* There is one additional bit for each code, which says whether the
* code is a literal byte or a match. If *all* codes are literal
* bytes, the length should be 9/8 the original (with rounding
* issues regarding the indicator bit blocks).
*
* If some matches are found the length will be a bit less. We would
* expect one 3 byte match per 1 << 24 tries, but we try 8192 times
* per position. That means there'll a match 1/2048 of the time at
* best. 255 times out of 256 this will be exactly a 3 byte match,
* encoded as two bytes, so we could get a 1 / 2048 saving on top of
* the 1/8 cost. There'll be a smattering of longer matches too, and
* the potential for complicated maths to account for those, but we'll
* skimp on that by allowing for a 1/1500 saving.
*
* With the hash table, we take a shortcut in the "8192 tries", and
* the size of the table makes a difference in how we perform, with 13
* bits (8192 slots) naturally being luckier than 12. Ultimately,
* either way, the compressed file is still 12.5% bigger than the
* original.
*/
size_t limit = len * 9 / 8 + 4;
uint32_t *d32 = (uint32_t*)((void*)original.data);
struct jsf_rng rng;
jsf32_init(&rng, 2);
for (i = 0; i < (len / 4); i++) {
d32[i] = jsf32(&rng);
}
comp_size = attempt_round_trip(mem_ctx, original, "/tmp/random-noise", ref);
debug_message("original size %zu; compressed size %zd; ratio %.5f\n",
len, comp_size, ((double)comp_size) / len);
debug_message("expected range %zu - %zu\n",
limit - limit / 1500, limit);
assert_true(comp_size > 0);
assert_true(comp_size < limit);
assert_true(comp_size >= limit - limit / 1500);
talloc_free(mem_ctx);
}
/* Tests based on [MS-XCA] 3.1 Examples */
static void test_msft_data1(void **state)
{
@ -414,6 +1154,15 @@ static void test_lzxpress_round_trip(void **state)
int main(void)
{
const struct CMUnitTest tests[] = {
cmocka_unit_test(test_lzxpress_plain_decompress_files),
cmocka_unit_test(test_lzxpress_plain_decompress_more_compressed_files),
cmocka_unit_test(test_lzxpress_plain_round_trip_files),
cmocka_unit_test(test_lzxpress_plain_long_gpl_round_trip),
cmocka_unit_test(test_lzxpress_plain_long_random_graph_round_trip),
cmocka_unit_test(test_lzxpress_plain_chaos_graph_round_trip),
cmocka_unit_test(test_lzxpress_plain_sparse_random_graph_round_trip),
cmocka_unit_test(test_lzxpress_plain_long_random_graph_round_trip),
cmocka_unit_test(test_lzxpress_plain_random_noise_round_trip),
cmocka_unit_test(test_lzxpress),
cmocka_unit_test(test_msft_data1),
cmocka_unit_test(test_msft_data2),