mirror of
https://github.com/samba-team/samba.git
synced 2025-01-07 17:18:11 +03:00
CVE-2023-0614 tests/krb5: Add test for confidential attributes timing differences
BUG: https://bugzilla.samba.org/show_bug.cgi?id=15270 Signed-off-by: Joseph Sutton <josephsutton@catalyst.net.nz> Reviewed-by: Andrew Bartlett <abartlet@samba.org>
This commit is contained in:
parent
a45fc44c39
commit
efd1cfab96
1
selftest/knownfail.d/confidential-attr-timing
Normal file
1
selftest/knownfail.d/confidential-attr-timing
Normal file
@ -0,0 +1 @@
|
||||
^samba4.ldap.confidential_attr.python\(ad_dc_slowtests\).__main__.ConfidentialAttrTestDirsync.test_timing_attack\(ad_dc_slowtests\)
|
@ -25,6 +25,9 @@ sys.path.insert(0, "bin/python")
|
||||
|
||||
import samba
|
||||
import os
|
||||
import random
|
||||
import statistics
|
||||
import time
|
||||
from samba.tests.subunitrun import SubunitOptions, TestProgram
|
||||
import samba.getopt as options
|
||||
from ldb import SCOPE_BASE, SCOPE_SUBTREE
|
||||
@ -1022,4 +1025,163 @@ class ConfidentialAttrTestDirsync(ConfidentialAttrCommon):
|
||||
self.assert_conf_attr_searches(has_rights_to=0)
|
||||
self.assert_negative_searches(has_rights_to=0, dc_mode=dc_mode)
|
||||
|
||||
def test_timing_attack(self):
|
||||
# Create the machine account.
|
||||
mach_name = f'conf_timing_{random.randint(0, 0xffff)}'
|
||||
mach_dn = Dn(self.ldb_admin, f'CN={mach_name},{self.ou}')
|
||||
details = {
|
||||
'dn': mach_dn,
|
||||
'objectclass': 'computer',
|
||||
'sAMAccountName': f'{mach_name}$',
|
||||
}
|
||||
self.ldb_admin.add(details)
|
||||
|
||||
# Get the machine account's GUID.
|
||||
res = self.ldb_admin.search(mach_dn,
|
||||
attrs=['objectGUID'],
|
||||
scope=SCOPE_BASE)
|
||||
mach_guid = res[0].get('objectGUID', idx=0)
|
||||
|
||||
# Now we can create an msFVE-RecoveryInformation object that is a child
|
||||
# of the machine account object.
|
||||
recovery_dn = Dn(self.ldb_admin, str(mach_dn))
|
||||
recovery_dn.add_child('CN=recovery_info')
|
||||
|
||||
secret_pw = 'Secret007'
|
||||
not_secret_pw = 'Secret008'
|
||||
|
||||
secret_pw_utf8 = secret_pw.encode('utf-8')
|
||||
|
||||
# The crucial attribute, msFVE-RecoveryPassword, is a confidential
|
||||
# attribute.
|
||||
conf_attr = 'msFVE-RecoveryPassword'
|
||||
|
||||
m = Message(recovery_dn)
|
||||
m['objectClass'] = 'msFVE-RecoveryInformation'
|
||||
m['msFVE-RecoveryGuid'] = mach_guid
|
||||
m[conf_attr] = secret_pw
|
||||
self.ldb_admin.add(m)
|
||||
|
||||
attrs = [conf_attr]
|
||||
|
||||
# Search for the confidential attribute as administrator, ensuring it
|
||||
# is visible.
|
||||
res = self.ldb_admin.search(recovery_dn,
|
||||
attrs=attrs,
|
||||
scope=SCOPE_BASE)
|
||||
self.assertEqual(1, len(res))
|
||||
pw = res[0].get(conf_attr, idx=0)
|
||||
self.assertEqual(secret_pw_utf8, pw)
|
||||
|
||||
# Repeat the search with an expression matching on the confidential
|
||||
# attribute. This should also work.
|
||||
res = self.ldb_admin.search(
|
||||
recovery_dn,
|
||||
attrs=attrs,
|
||||
expression=f'({conf_attr}={secret_pw})',
|
||||
scope=SCOPE_BASE)
|
||||
self.assertEqual(1, len(res))
|
||||
pw = res[0].get(conf_attr, idx=0)
|
||||
self.assertEqual(secret_pw_utf8, pw)
|
||||
|
||||
# Search for the attribute as an unprivileged user. It should not be
|
||||
# visible.
|
||||
user_res = self.ldb_user.search(recovery_dn,
|
||||
attrs=attrs,
|
||||
scope=SCOPE_BASE)
|
||||
pw = user_res[0].get(conf_attr, idx=0)
|
||||
# The attribute should be None.
|
||||
self.assertIsNone(pw)
|
||||
|
||||
# We use LDAP_MATCHING_RULE_TRANSITIVE_EVAL to create a search
|
||||
# expression that takes a long time to execute, by setting off another
|
||||
# search each time it is evaluated. It makes no difference that the
|
||||
# object on which we're searching has no 'member' attribute.
|
||||
dummy_dn = 'cn=user,cn=users,dc=samba,dc=example,dc=com'
|
||||
slow_subexpr = f'(member:1.2.840.113556.1.4.1941:={dummy_dn})'
|
||||
slow_expr = f'(|{slow_subexpr * 100})'
|
||||
|
||||
# The full search expression. It comprises a match on the confidential
|
||||
# attribute joined by an AND to our slow search expression, The AND
|
||||
# operator is short-circuiting, so if our first subexpression fails to
|
||||
# match, we'll bail out of the search early. Otherwise, we'll evaluate
|
||||
# the slow part; as its subexpressions are joined by ORs, and will all
|
||||
# fail to match, every one of them will need to be evaluated. By
|
||||
# measuring how long the search takes, we'll be able to infer whether
|
||||
# the confidential attribute matched or not.
|
||||
|
||||
# This is bad if we are not an administrator, and are able to use this
|
||||
# to determine the values of confidential attributes. Therefore we need
|
||||
# to ensure we can't observe any difference in timing.
|
||||
correct_expr = f'(&({conf_attr}={secret_pw}){slow_expr})'
|
||||
wrong_expr = f'(&({conf_attr}={not_secret_pw}){slow_expr})'
|
||||
|
||||
def standard_uncertainty_bounds(times):
|
||||
mean = statistics.mean(times)
|
||||
stdev = statistics.stdev(times, mean)
|
||||
|
||||
return (mean - stdev, mean + stdev)
|
||||
|
||||
# Perform a number of searches with both correct and incorrect
|
||||
# expressions, and return the uncertainty bounds for each.
|
||||
def time_searches(samdb):
|
||||
warmup_samples = 3
|
||||
samples = 10
|
||||
matching_times = []
|
||||
non_matching_times = []
|
||||
|
||||
for _ in range(warmup_samples):
|
||||
samdb.search(recovery_dn,
|
||||
attrs=attrs,
|
||||
expression=correct_expr,
|
||||
scope=SCOPE_BASE)
|
||||
|
||||
for _ in range(samples):
|
||||
# Measure the time taken for a search, for both a matching and
|
||||
# a non-matching search expression.
|
||||
|
||||
prev = time.time()
|
||||
samdb.search(recovery_dn,
|
||||
attrs=attrs,
|
||||
expression=correct_expr,
|
||||
scope=SCOPE_BASE)
|
||||
now = time.time()
|
||||
matching_times.append(now - prev)
|
||||
|
||||
prev = time.time()
|
||||
samdb.search(recovery_dn,
|
||||
attrs=attrs,
|
||||
expression=wrong_expr,
|
||||
scope=SCOPE_BASE)
|
||||
now = time.time()
|
||||
non_matching_times.append(now - prev)
|
||||
|
||||
matching = standard_uncertainty_bounds(matching_times)
|
||||
non_matching = standard_uncertainty_bounds(non_matching_times)
|
||||
return matching, non_matching
|
||||
|
||||
def assertRangesDistinct(a, b):
|
||||
a0, a1 = a
|
||||
b0, b1 = b
|
||||
self.assertLess(min(a1, b1), max(a0, b0))
|
||||
|
||||
def assertRangesOverlap(a, b):
|
||||
a0, a1 = a
|
||||
b0, b1 = b
|
||||
self.assertGreaterEqual(min(a1, b1), max(a0, b0))
|
||||
|
||||
# For an administrator, the uncertainty bounds for matching and
|
||||
# non-matching searches should be distinct. This shows that the two
|
||||
# cases are distinguishable, and therefore that confidential attributes
|
||||
# are visible.
|
||||
admin_matching, admin_non_matching = time_searches(self.ldb_admin)
|
||||
assertRangesDistinct(admin_matching, admin_non_matching)
|
||||
|
||||
# The user cannot view the confidential attribute, so the uncertainty
|
||||
# bounds for matching and non-matching searches must overlap. The two
|
||||
# cases must be indistinguishable.
|
||||
user_matching, user_non_matching = time_searches(self.ldb_user)
|
||||
assertRangesOverlap(user_matching, user_non_matching)
|
||||
|
||||
|
||||
TestProgram(module=__name__, opts=subunitopts)
|
||||
|
Loading…
Reference in New Issue
Block a user