IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
when we are the recmaster and we update the local flags for all the
nodes, if one of the nodes fail to respond and give us his flags,
set that node as a "culprit"
as one of the first things to do in the monitor_cluster loop, check if
the current culprit has caused too many (20) failures and if so ban that
node.
this is for the situation where a remote node may still be CONNECTED but
it fails to respond to the getnodemap control causing the recovery
master to loop in monitor_cluster aborting the monitoring when the
node fails to respond but before anything will trigger a call to
do_recovery().
If one or more of the databases or nodes are frozen at this stage, this
would lead to smbd being blocked for potentially a longish time.
(This used to be ctdb commit 83b0261f2cb453195b86f547d360400103a8b795)
specific instance of ctdbd should bind to. This helps when running a
"virtual" cluster on a single machine where all instcances bind to
different alias interfaces.
If --node-ip is specified, then we will only try to bind to this ip
address only. Othervise we fall back to the original method trying the
ip addresses in /etc/ctdb/nodes one by one until we find one we can bind
to.
No variable in /etc/sysconfig/ctdb added since this parameter only makes
sense in a virtual test/debug cluster.
(This used to be ctdb commit d96cb02c2c24f9eabbc53d3d38e90dea49cff3e0)
recovery daemon and the ctdb daemon both agree on whether the node is
banned or not and if they disagree then reban the node again after
logging an error to the debug log
(This used to be ctdb commit 6cd6e534493066edd4bb2c6ae5be0e9a9d495aa0)
when these functions are called to ban or unban a node make sure we
update the CTDB_NODE_BANNED flag in rec->node_flags since this field and
flag are checked during the election process
(This used to be ctdb commit 740c632ae96a2d34327d1b575780aaf079d93f4f)
so it differs from what the local ctdb daemon on the recovery master
thinks it should be we should call for a re-election
(This used to be ctdb commit 21ad6039c31ef5cc0e40a35a41220f91943947cb)
flags differ between the local ctdb daemon and the remote node
we can force a flags update on all nodes and not just the local daemon
(This used to be ctdb commit a924eb89c966ecbae029ca137e06cffd40cc70fd)
flags
in update_local_flags()
(this is only called if we are or we belive we are the recmaster)
when we detect that the flags of a remote node is different from what
our local node thinks the flags should be for that remote node
we should send a node-flag-changed message to the local daemon so
that it updates the flags for that node.
(This used to be ctdb commit 36225e4e271f7a4065398253747fb20054f99a53)
of the startup event scripts after the point where recovery has
started and the node is in normal operation
This makes the 'startup' script just a special type of the 'monitor'
script which is called first
(This used to be ctdb commit 7424c30a5fd04aea0137c466b4318c3f185280d8)
shut down and restart the transport
othervise, if we use the tcp transport the tcp connection might try to
retransmit the queued data during the time the node is unavailable.
this together with the exponential backoff for tcp means that the tcp
connection quickly reaches the maximum backoff rto which is often 60 or
120 seconds. this would mean that it could take up to 60/120 seconds
before the tcp layer detects that the connection is dead and it has to
be reestablished.
(This used to be ctdb commit 0256db470879ce556b0f00070f7ebeaf37e529ab)
recovery mode back to NORMAL that we can not lock the reclock file
since at this stage it MUST be locked by the recovery daemon.
in order to avoid a non-blocking fnctl() lock from blocking and cause
"issues" we move the 'test that we can not lock reclock file' into a
child process.
(This used to be ctdb commit 3af994641ec2234e37da1fa1f693441586471a7e)
public addresses to nodes deterministic.
Activate it by adding CTDB_SET_DeterministicIPs=1 in /etc/sysconfig/ctdb
When this is set, the first entry in /etc/ctdb/public_addresses will
always be hosted by node 0, when that node is available, the second
entry by node1 and so on.
This tunable allows the allocation of addresses to become very
unbalanced and is only for debugging/testing use.
Beware, this feature requires that /etc/ctdb/public_addresses are
identical on all the nodes in the cluster.
(This used to be ctdb commit f0ca221f235731542090d8a6c86f2b7cd2ce2f96)
eventhough we dont want a blocking lock it does appear that the fcntl()
call can block for a while if gpfs is in the process of rebuilding
itself after a node arriving/leaving the cluster
(This used to be ctdb commit 6c0d206dea7116db71bccb4802a93dd7283249f6)
make sure we read and update the flags from all remote nodes before we
reach the first codepath that can call do_recovery()
since during do_recovery() we need to know what the flags are.
(This used to be ctdb commit e85f3806483ea420559d449e0e4d81bec996740f)
used in single public ip address mode.
when using this argument, --public-interface must also be used.
add a vnn structure to the ctdb context to describe the single public ip
address
update the killtcp control in the daemon that if a socketpair that is to
be killed does not match a normal public address it checks if the
destination address maches the single public ip address and if so uses
that vnn structure from the ctdb context
this allows killtcp to kill also connections to the single public ip
instead of only normal public addresses
(This used to be ctdb commit 5661ba17b91f62821dec1c76056c78b99752a90b)
shouldnt or we are not holding addresses wqe should)
we must first freeze the local node before we set the recovery mode
(This used to be ctdb commit a77a77e8b5180f6a4a1f3d7d4ff03811f3b71b56)
set the node initially unhealthy and let the status monitoring bring the node online.
This fixes a problem with winbindd, where it refused to start because secrets.tdb was not populated
but we could not populate ctdbd, because the net command would not run while ctdbd was still doing startup
and thus frozen
(This used to be ctdb commit 3a001b793dd76fb96addf1e2ccb74da326fbcfbc)
c to prevent it from being immediately freed (and our persistent store
state with it) if we need to wait asynchronously for other nodes before
we can reply back to the client
(This used to be ctdb commit fa5915280933e4d2e7d4d07199829c9c2b87a335)
nodes so that the db is created on them as well
when we send this broadcast we must use the correct control and not
assume all databases created are of the temporary kind
(This used to be ctdb commit 106f816d4a0814ca4418de051289d9fc62df7dd2)