IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
and print the time startistics was taken and for how long the statistics have been collected to the "ctdb statistics" output.
(This used to be ctdb commit 1bdfe0cd3370a335b960ce1ef97eade93b0cd2fa)
->recovery_mode was set to normal but database priorities leven2 or 3 was still set to frozen.
causing the recovery daemon to fail to detect that a recovery was needed to recover access to the database.
BZ63951
(This used to be ctdb commit 7411b2b577a16f85ad6913e1bfccce7ea260a613)
This patch improves the handling of the fetch_lock operation on non-persistent
databases that ctdb clients have to do very frequently.
The normal flow how this goes is the following:
1. Client does a local fetch_lock on the database
2. Client looks if the local node is dmaster.
If yes, everything is fine
If no, continue here
3. Client unlocks the local record
4. Client issues a "get me the record" call to ctdbd
5. ctdbd goes out and fetches the dmaster role
6. ctdbd tells the client to retry
7. Client starts over again
The problem is between step 6 and 7: Before the client has had the chance to
retry (i.e. catch the record with a fetch_locked), another node might have come
asking ctdbd to migrate away the record again. This is a real problem, I've
seen >20 loops of this kind in real workloads.
This patch does the following: Whenever ctdb receives a record as result of
step 5, it puts the key on a "holdback list". As long as a key is on this list,
a request to migrate away the dmaster is put on hold. It is the client's duty
to issue the "CTDB_CONTROL_GOTIT" control when it has successfully done step 2
after having asked ctdb to fetch the record. This will release the key from the
"holdback list" and re-issue all dmaster migration requests.
As a safeguard against malicious clients, once a second (default 1000msecs,
tunable "HoldbackCleanupInterval" in milliseconds) ctdbd goes over the list of
held back keys, deletes them and releases all held back migration requests.
(This used to be ctdb commit 5736e17c139c9a8049e235429aeae0c6c9d0e93d)
This is a simplified version of the trans2 commit control:
It just rolls out the marshall buffer to all active nodes.
It is the main ctdbd part of the re-implementation of the
persistent transactions. The client code is changed to
take a global lock to start a transactions and store into
the marshal buffer instead of writing to the local tdb
under a local transaction.
The old transaction implementation is going to be
removed in a later commit.
Michael
(This used to be ctdb commit f66428f9d2013080a414404c1ba6117888352fd6)
We also no longer return an error before scripts have been run; a special
zero-length data means we have never run the scripts.
"ctdb scriptstatus all" returns all event script results.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
(This used to be ctdb commit 9b90d671581e390e2892d3a68f3ca98d58bef4df)
The child no longer uses ctdb_ctrl_event_script_init or
ctdb_ctrl_event_script_finished, and the others are redundant: it
doesn't need to tell us it's starting a script when it only runs one.
We move start and stop calls to the parent, and eliminate the RPC
infrastructure altogether.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
(This used to be ctdb commit 391926a87a7af73840f10bb314c0a2f951a0854c)
This unifies code paths and simplifies things: we just hand -ENOEXEC to
ctdb_ctrl_event_script_stop().
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
(This used to be ctdb commit eadf5e44ef97d7703a7d3bce0e7ea0f21cb11f14)
This controls is only used by samba when samba wants to check if a subrecord held by a <node-id>:<smbd-pid> is still valid or if it can be reclaimed.
If the node is banned or stopped, we kill the smbd process and return that the process does not exist to the caller. This allows us to recover subrecords from stopped/banned nodes where smbd is hung waiting for the databases to thaw.
bz58185
(This used to be ctdb commit 157807af72ed4f7314afbc9c19756f9787b92c15)
Rather than doing strcmp everywhere, pass an explicit enum around. This
also subtly documents what options are available. The "options" arg
is now used for extra arguments only.
Unfortunately, gcc complains on empty format strings, so we make
ctdb_event_script() take no varargs, and add ctdb_event_script_args(). We
leave ctdb_event_script_callback() taking varargs, which means callers
have to do "%s", "".
For the moment, we have CTDB_EVENT_UNKNOWN for handling forced scripts
from the ctdb tool.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
(This used to be ctdb commit 470822b329f9d3ca9bef518b56e9ce28d5fedda2)
Otherwise a node can lock itself out, e.g. when a commit control times out...
Michael
(This used to be ctdb commit cb432e30351d5e5a41e98da3c7b1c2a4d400a3a2)
This aske the daemon wheter a transaction is currently active on a
given DB on that node. More precisely this asks for the transaction_active
flag in the ctdb_db_context that is set in the CTDB_TRANS2_COMMIT
control and cleared in the CTDB_TRANS2_ERROR or CTDB_TRANS2_FINISHED controls.
This will be useful for fixing race conditions in the transaction code.
Michael
(This used to be ctdb commit 8d430ae6968dfe566614379436fc3c56003fcd88)
The way to use this is from a client to :
1, first create a message handle and bind it to a SRVID
A special prefix for the srvid space has been set aside for samba :
Only samba is allowed to use srvid's with the top 32 bits set like this.
The lower 32 bits are for samba to use internally.
2, register a "notification" using the new control :
CTDB_CONTROL_REGISTER_NOTIFY = 114,
This control takes as indata a structure like this :
struct ctdb_client_notify_register {
uint64_t srvid;
uint32_t len;
uint8_t notify_data[1];
};
srvid is the srvid used in the space set aside above.
len and notify_data is an arbitrary blob.
When notifications are later sent out to all clients, this is the payload of that notification message.
If a client has registered with control 114 and then disconnects from ctdbd, ctdbd will broadcast a message to that srvid to all nodes/listeners in the cluster.
A client can resister itself with as many different srvid's it want, but this is handled through a linked list from the client structure so it mainly designed for "few notifications per client".
3, a client that no longer wants to have a notification set up can deregister using control
CTDB_CONTROL_DEREGISTER_NOTIFY = 115,
which takes this as arguments :
struct ctdb_client_notify_deregister {
uint64_t srvid;
};
When a client deregisters, there will no longer be sent a message to all other clients when this client disconnects from ctdbd.
(This used to be ctdb commit f1b6ee4a55cdca60f93d992f0431d91bf301af2c)
database priorities will be used to control in which order databases are locked during recovery in.
(This used to be ctdb commit 67741c0ee01916d94cace8e9462ef02507e06078)
This event is called when a node is stopped and is used by eventscripts that need to do certain cleanup and removal of configuration or ip addresses or routing ...
Note that a STOPPED node is considered "inactive" and as such will not be running the "recovered" event when the rest of the cluster has recovered.
(This used to be ctdb commit 65e9309564611bf937ded3c74a79abff895d7c59)
Log this in "ctdb statistics".
Also add a varaible "RecLockLatencyMs" that will log an error everytime it takes longer than this to access the reclock file.
(This used to be ctdb commit 042377ed803bb8f7ca9d6ea1a387427b7b8ba45a)
When a client (such as smbstatus) is killed, it may have outstanding
traverse children on remote nodes. We need to catch the client
disconnect in ctdbd and send a control to all nodes telling them to
kill those outstanding traverse children.
(This used to be ctdb commit f2fb2df4619a14f7f6c11f9132ee7d793028042c)
this command shows which eventscripts were executed during the last monitoring cycle and the status from each eventscript.
If an eventscript timedout or returned an error we also
show the output from the eventscript.
Example :
[root@rcn1 ctdb-git]# ./bin/ctdb scriptstatus
6 scripts were executed last monitoring cycle
00.ctdb Status:OK Duration:0.021 Mon Mar 23 19:04:32 2009
10.interface Status:OK Duration:0.048 Mon Mar 23 19:04:32 2009
20.multipathd Status:OK Duration:0.011 Mon Mar 23 19:04:33 2009
40.vsftpd Status:OK Duration:0.011 Mon Mar 23 19:04:33 2009
41.httpd Status:OK Duration:0.011 Mon Mar 23 19:04:33 2009
50.samba Status:ERROR Duration:0.057 Mon Mar 23 19:04:33 2009
OUTPUT:ERROR: Samba tcp port 445 is not responding
Add a new helper function "switch_from_server_to_client()" which both
the recovery daemon can use as well as in the child process we start for running the actual eventscripts.
Create several new controls, both for the eventscript child process to inform the master daemon of the current status of the scripts as well as for the ctdb tool to extract this information from the runninc daemon.
(This used to be ctdb commit c98f90ad61c9b1e679116fbed948ddca4111968d)
allow clients to register either ipv4 or ipv6 client connections to the tickles list
(This used to be ctdb commit d9b44d7c3255b0fd7359b9afeb613e6ff4c4eaac)
race between the ctdb tool and the recovery daemon both at once
trying to push flag changes across the cluster.
(This used to be ctdb commit a9a1156ea4e10483a4bf4265b8e9203f0af033aa)
older ipv4-only version of these controls.
We need this so that we are backwardcompatible with old versions of ctdb
and so that we can interoperate with a ipv4-only recmaster during a
rolling upgrade.
(This used to be ctdb commit 6b76c520f97127099bd9fbaa0fa7af1c61947fb7)
we currently only monitor that the dameons are running by kill(0, pid)
and verifying the the domain socket between them is ok.
this is not sufficient since we can have a situation where the recovery
daemon is hung.
this new code monitors that the recovery daemon is operating.
if the recovery hangs, we log this and shut down the main daemon
(This used to be ctdb commit cd69d292292eaab3aac0e9d9fc57cb621597c63c)
the difference between a initial commit attempt and a retry, which
allows us to get the persistent updates counter right for retries
(This used to be ctdb commit 7f29c50ccbc7789bfbc20bcb4b65758af9ebe6c5)
This file creates additional locking stress on the backend filesystem and we may not need it anyway.
(This used to be ctdb commit 84236e03e40bcf46fa634d106903277c149a734f)
This allows ctdb to automatically start a new full blown recovery
if a client has started updating the local tdb for a persistent database
but is kill -9ed before it has ensured the update is distributed clusterwide.
(This used to be ctdb commit 1ffccb3e0b3b5bd376c5302304029af393709518)
This is a hack to allow backtraces under valgrind to show what opcode
is getting uninitialised bytes
(This used to be ctdb commit 67bb12c8f0af5914efb44b76bc6ddbb11fc0fcdf)
If a transaction could be started, do safe transaction store when updating the record inside the daemon.
If the transaction could not be started (maybe another samba process has a lock on the database?) then just do a normal store instead (instead of blocking the ctdb daemon).
The client can "signal" ctdb that updates to this database should, if possible, be done using safe transactions by specifying the TDB_NOSYNC flag when attaching to the database.
The TDB flags are passed to ctdb in the "srvid" field of the control header when attaching using the CTDB_CONTROL_DB_ATTACH_PERSISTENT.
Currently, samba3.2 does not yet tell ctdbd to handle any persistent databases using safe transactions.
If samba3.2 wants a particular persistent database to be handled using
safe transactions inside the ctdbd daemon, it should pass
TDB_NOSYNC as the flags to the call to attach to a persistent database
in ctdbd_db_attach() it currently specifies 0 as the srvid
(This used to be ctdb commit 8d6ecf47318188448d934ab76e40da7e4cece67d)
If we shutdown the transport and CTDB later decides to send a command out
for queueing, the call to ctdb->methods->allocate_pkt() will SEGV.
This could trigger for example when we are in the process of shuttind down CTDBD and have already shutdown the transport but we are still waiting for the
"shutdown" eventscripts to finish.
If the event scripts now take much much longer to execute for some reason, this
race condition becomes much more probable.
Decorate all dereferencing of ctdb->methods-> with a check that ctdb->menthods is non-NULL
(This used to be ctdb commit c4c2c53918da6fb566d6e9cbd6b02e61ae2921e7)
This allows us to use the async framework also for controls that return
outdata.
Add a "capabilities" field to the ctdb_node structure. This field is
only initialized and kept valid inside the recovery daemon context and not
inside the main ctdb daemon.
change the GET_CAPABILITIES control to return the capabilities in outdata instead of in the res return variable.
When performing a recovery inside the recovery daemon, read the capabilities from all connected nodes and update the ctdb->nodes list of nodes.
when building the new vnnmap after the database rebuild in recovery, do not include any nodes which lack the LMASTER capability in the new vnnmap.
Unless there are no available connected node that sports the LMASTER capability in which case we let the local node (recmaster) take on the lmaster role temporarily (i.e. become a member of the vnnmap list)
(This used to be ctdb commit 0f1883c69c689b28b0c04148774840b2c4081df6)
Define two capabilities :
can be recmaster
can be lmaster
Default both capabilities to YES
Update the ctdb tool to read capabilities off a node
(This used to be ctdb commit 50f1255ea9ed15bb8fa11cf838b29afa77e857fd)
remove the transaction stuff and push so that the git tree will work
This reverts commit 539bbdd9b0d0346b42e66ef2fcfb16f39bbe098b.
(This used to be ctdb commit 876d3aca18c27c2239116c8feb6582b3a68c6571)
thus allowing the client to pass through the TDB_NOSYNC flag
- ensure that tdb_store() operations on persistent databases that don't
have TDB_NOSYNC set happen inside a transaction wrapper, thus making
them crash safe
(This used to be ctdb commit 49330f97c78ca0669615297ac3d8498651831214)
and a ctdb command to pull the talloc memory map from a recovery daemon
ctdb rddumpmemory
(This used to be ctdb commit d23950be7406cf288f48b660c0f57a9b8d7bdd05)
The controls only modify the runtime setting of which public addresses a node
can server and does not modify /etc/ctdb/public_addresses.
To make the change permanent you also need to edit /etc/ctdb/public_addresses
manually.
After ip addresses have been added/deleted you need to invoke a recovery
for the ip addresses to be redistributed.
(This used to be ctdb commit f8294d103fdd8a720d0b0c337d3973c7fdf76b5c)
Add back the controls to enable/disable monitoring we used to have for debugging but removed a while ago
(This used to be ctdb commit 8477f6a079e2beb8c09c19702733c4e17f5032fe)
Vacumming used to delete one record at a time on all nodes, that was
m*n behaviour and would require a huge storm of ctdb->ctdb controls and just wouldnt scale at all.
The new vacuming process collects all records to be deleted locally and then only sends 1 control to the other nodes. This control contains a list of all records to be deleted.
(This used to be ctdb commit 9e625ece19a91f362c9539fa73b6b2108f0d9c53)
add a new control that causes the node to drop the current nodes list
and reread it from the nodes file.
During this operation, the node will also drop the tcp layer and restart it.
When we drop the tcp layer, by talloc_free()ing the ctcp structure
add a destructor to ctcp so that we also can clean up and remove the references in the ctdb structure to the transport layer
add two new commands for the ctdb tool.
one to list all nodes in the nodesfile and the second a command to trigger a node to drop the transport and reinitialize it with the nde nodes file
(This used to be ctdb commit 4bc20ac73e9fa94ffd43cccb6eeb438eeff9963c)
memory tree to stdout. This is much more useful than putting it in the log, and also fixes
a bug where the pipe would overflow internally and cause ctdbd to lockup
(This used to be ctdb commit e236979e2162d9bd7a495086342168a696cf76c5)
nodes into two separate files.
move the monitoring of keepalives for detecting connected/disconnected
remote nodes into ctdb_keepalive.c
(This used to be ctdb commit 23a57b20c314d5f11a433cf251eb9d9de743849a)
ctdb vacuum : vacuums all the databases, deleting any zero length
ctdb records
ctdb repack : repacks all the databases, resulting in a perfectly
packed database with no freelist entries
(This used to be ctdb commit 3532119c84ab3247051ed6ba21ba3243ae2f6bf4)
monitoring should always be enabled
(though a node may want to temporarily disable running the "monitor"
event scripts but can do so internally without the need for this
control)
(This used to be ctdb commit e3a33618026823e6af845fd8513cddb08e6b5584)
control, instead call ctdb_start/stop_monitoring()
ctdb_stop_monitoring() dont allocate a new monitoring context, leave it
NULL. Also set the monitoring_mode in this function so that
ctdb_stop/start_monitoring() and ->monitoring_mode are kept in sync.
Add a debug message to log that we have stopped monitoring.
ctdb_start_monitoring() check whether monitoring is already active and
make the function idempotent.
Create the monitoring context when monitoring is started.
Update ->monitoring_mode once the monitoring has been started.
Add a debug message to log that we have started monitoring.
When we temporarily stop monitoring while running an event script,
restart monitoring after the event script wrapper returns instead of in
the event script callback.
Let monitoring_mode start out as DISABLED and let it be enabled once we call ctdb_start_monitoring.
dont check for MONITORING_DISABLED in check_fore_dead_nodes(). If
monitoring is disabled, this event handler will not be called.
(This used to be ctdb commit 3a93ae8bdcffb1adbd6243844f3058fc742f76aa)
multiple public addresses spread across multiple interfaces on each
node.
this is a massive patch since we have previously made the assumtion that
we only have one public address per node.
get rid of the public_interface argument. the public addresses file
now explicitely lists which interface the address belongs to
(This used to be ctdb commit 462ebbc791e906a6b874c862defea43235597ca8)
controls to register/unregister/check a server id.
a server id consists of TYPE:VNN:ID where type is specific to the
application. VNN is the node where the serverid was registered and ID
might be a node unique identifier such as a pid or similar.
Clients can register a server id for themself at the local ctdb daemon.
When a client dissappears or when the domain socket connection for the
client drops then any and all server ids registered across that domain
socket will also be automatically removed from the store.
clients can register as many server_ids as they want at the same time
but each TYPE:VNN:ID must be globally unique.
Clients have the option of explicitely unregister a server id by using
the UNREGISTER control.
Registration and unregistration can only be done by clients to the local
daemon. clients can not register their server id to a remote node.
clients can check if a server id does exist on any ctdb node in the
network by using the check control
(This used to be ctdb commit d44798feec26147c5cc05922cb2186f0ef0307be)
from the administrator, log this as 'Received SHUTDOWN command. Stopping
CTDB daemon.' so that the administrator will know when looking at the
log 'why' the ctdb service was terminated.
Previously the only thing logged was 'shutting down' which is not
detailed enough.
(This used to be ctdb commit 5b818c1b72b6594a8d6e45e1865026e3ce33ae63)
there is an array for each node/public address that contains tcp tickles
we send a TCP_ADD as a broadcast to all nodes when a client is added
if tcp tickles are removed, they are only removed immediately from the
local node.
once every 20 seconds a node will push/broadcast out the tickle list for
all public addresses it manages. this will remove any deleted tickles
from the remote nodes
(This used to be ctdb commit e3c432a915222e1392d91835bc7a73a96ab61ac9)
ip/node
once we have started sending all tickles for a specific ip delete the
entire array so that the tickles dont remain forever in the ctdb
server
add a control to send the full list of every tickle that is registered
for a particular public ip/node
(This used to be ctdb commit d0eee33e44d3f8e26debbec21d41e2cbdbb520e6)