/* ctdb vacuuming events Copyright (C) Ronnie Sahlberg 2009 Copyright (C) Michael Adam 2010-2013 Copyright (C) Stefan Metzmacher 2010-2011 This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, see . */ #include "replace.h" #include "system/network.h" #include "system/filesys.h" #include "system/time.h" #include #include #include "lib/tdb_wrap/tdb_wrap.h" #include "lib/util/dlinklist.h" #include "lib/util/debug.h" #include "lib/util/samba_util.h" #include "lib/util/sys_rw.h" #include "lib/util/util_process.h" #include "ctdb_private.h" #include "ctdb_client.h" #include "common/rb_tree.h" #include "common/common.h" #include "common/logging.h" #define TIMELIMIT() timeval_current_ofs(10, 0) enum vacuum_child_status { VACUUM_RUNNING, VACUUM_OK, VACUUM_ERROR, VACUUM_TIMEOUT}; struct ctdb_vacuum_child_context { struct ctdb_vacuum_child_context *next, *prev; struct ctdb_vacuum_handle *vacuum_handle; /* fd child writes status to */ int fd[2]; pid_t child_pid; enum vacuum_child_status status; struct timeval start_time; }; struct ctdb_vacuum_handle { struct ctdb_db_context *ctdb_db; struct ctdb_vacuum_child_context *child_ctx; uint32_t fast_path_count; }; /* a list of records to possibly delete */ struct vacuum_data { struct ctdb_context *ctdb; struct ctdb_db_context *ctdb_db; struct tdb_context *dest_db; trbt_tree_t *delete_list; struct ctdb_marshall_buffer **vacuum_fetch_list; struct timeval start; bool traverse_error; bool vacuum; struct { struct { uint32_t added_to_vacuum_fetch_list; uint32_t added_to_delete_list; uint32_t deleted; uint32_t skipped; uint32_t error; uint32_t total; } delete_queue; struct { uint32_t scheduled; uint32_t skipped; uint32_t error; uint32_t total; } db_traverse; struct { uint32_t total; uint32_t remote_error; uint32_t local_error; uint32_t deleted; uint32_t skipped; uint32_t left; } delete_list; struct { uint32_t vacuumed; uint32_t copied; } repack; } count; }; /* this structure contains the information for one record to be deleted */ struct delete_record_data { struct ctdb_context *ctdb; struct ctdb_db_context *ctdb_db; struct ctdb_ltdb_header hdr; TDB_DATA key; uint8_t keydata[1]; }; struct delete_records_list { struct ctdb_marshall_buffer *records; struct vacuum_data *vdata; }; static int insert_record_into_delete_queue(struct ctdb_db_context *ctdb_db, const struct ctdb_ltdb_header *hdr, TDB_DATA key); /** * Store key and header in a tree, indexed by the key hash. */ static int insert_delete_record_data_into_tree(struct ctdb_context *ctdb, struct ctdb_db_context *ctdb_db, trbt_tree_t *tree, const struct ctdb_ltdb_header *hdr, TDB_DATA key) { struct delete_record_data *dd; uint32_t hash; size_t len; len = offsetof(struct delete_record_data, keydata) + key.dsize; dd = (struct delete_record_data *)talloc_size(tree, len); if (dd == NULL) { DEBUG(DEBUG_ERR,(__location__ " Out of memory\n")); return -1; } talloc_set_name_const(dd, "struct delete_record_data"); dd->ctdb = ctdb; dd->ctdb_db = ctdb_db; dd->key.dsize = key.dsize; dd->key.dptr = dd->keydata; memcpy(dd->keydata, key.dptr, key.dsize); dd->hdr = *hdr; hash = ctdb_hash(&key); trbt_insert32(tree, hash, dd); return 0; } static int add_record_to_delete_list(struct vacuum_data *vdata, TDB_DATA key, struct ctdb_ltdb_header *hdr) { struct ctdb_context *ctdb = vdata->ctdb; struct ctdb_db_context *ctdb_db = vdata->ctdb_db; uint32_t hash; int ret; hash = ctdb_hash(&key); if (trbt_lookup32(vdata->delete_list, hash)) { DEBUG(DEBUG_INFO, (__location__ " Hash collision when vacuuming, skipping this record.\n")); return 0; } ret = insert_delete_record_data_into_tree(ctdb, ctdb_db, vdata->delete_list, hdr, key); if (ret != 0) { return -1; } vdata->count.delete_list.total++; return 0; } /** * Add a record to the list of records to be sent * to their lmaster with VACUUM_FETCH. */ static int add_record_to_vacuum_fetch_list(struct vacuum_data *vdata, TDB_DATA key) { struct ctdb_context *ctdb = vdata->ctdb; uint32_t lmaster; struct ctdb_marshall_buffer *vfl; lmaster = ctdb_lmaster(ctdb, &key); vfl = vdata->vacuum_fetch_list[lmaster]; vfl = ctdb_marshall_add(ctdb, vfl, vfl->db_id, ctdb->pnn, key, NULL, tdb_null); if (vfl == NULL) { DEBUG(DEBUG_ERR,(__location__ " Out of memory\n")); vdata->traverse_error = true; return -1; } vdata->vacuum_fetch_list[lmaster] = vfl; return 0; } static void ctdb_vacuum_event(struct tevent_context *ev, struct tevent_timer *te, struct timeval t, void *private_data); static int vacuum_record_parser(TDB_DATA key, TDB_DATA data, void *private_data) { struct ctdb_ltdb_header *header = (struct ctdb_ltdb_header *)private_data; if (data.dsize != sizeof(struct ctdb_ltdb_header)) { return -1; } *header = *(struct ctdb_ltdb_header *)data.dptr; return 0; } /* * traverse function for gathering the records that can be deleted */ static int vacuum_traverse(struct tdb_context *tdb, TDB_DATA key, TDB_DATA data, void *private_data) { struct vacuum_data *vdata = talloc_get_type(private_data, struct vacuum_data); struct ctdb_context *ctdb = vdata->ctdb; struct ctdb_db_context *ctdb_db = vdata->ctdb_db; uint32_t lmaster; struct ctdb_ltdb_header *hdr; int res = 0; vdata->count.db_traverse.total++; lmaster = ctdb_lmaster(ctdb, &key); if (lmaster >= ctdb->num_nodes) { vdata->count.db_traverse.error++; DEBUG(DEBUG_CRIT, (__location__ " lmaster[%u] >= ctdb->num_nodes[%u] for key" " with hash[%u]!\n", (unsigned)lmaster, (unsigned)ctdb->num_nodes, (unsigned)ctdb_hash(&key))); return -1; } if (data.dsize != sizeof(struct ctdb_ltdb_header)) { /* it is not a deleted record */ vdata->count.db_traverse.skipped++; return 0; } hdr = (struct ctdb_ltdb_header *)data.dptr; if (hdr->dmaster != ctdb->pnn) { vdata->count.db_traverse.skipped++; return 0; } /* * Add the record to this process's delete_queue for processing * in the subsequent traverse in the fast vacuum run. */ res = insert_record_into_delete_queue(ctdb_db, hdr, key); if (res != 0) { vdata->count.db_traverse.error++; } else { vdata->count.db_traverse.scheduled++; } return 0; } /* * traverse the tree of records to delete and marshall them into * a blob */ static int delete_marshall_traverse(void *param, void *data) { struct delete_record_data *dd = talloc_get_type(data, struct delete_record_data); struct delete_records_list *recs = talloc_get_type(param, struct delete_records_list); struct ctdb_marshall_buffer *m; m = ctdb_marshall_add(recs, recs->records, recs->records->db_id, recs->records->db_id, dd->key, &dd->hdr, tdb_null); if (m == NULL) { DEBUG(DEBUG_ERR, (__location__ " failed to marshall record\n")); return -1; } recs->records = m; return 0; } /** * Variant of delete_marshall_traverse() that bumps the * RSN of each traversed record in the database. * * This is needed to ensure that when rolling out our * empty record copy before remote deletion, we as the * record's dmaster keep a higher RSN than the non-dmaster * nodes. This is needed to prevent old copies from * resurrection in recoveries. */ static int delete_marshall_traverse_first(void *param, void *data) { struct delete_record_data *dd = talloc_get_type(data, struct delete_record_data); struct delete_records_list *recs = talloc_get_type(param, struct delete_records_list); struct ctdb_db_context *ctdb_db = dd->ctdb_db; struct ctdb_context *ctdb = ctdb_db->ctdb; struct ctdb_ltdb_header header; uint32_t lmaster; uint32_t hash = ctdb_hash(&(dd->key)); int res; res = tdb_chainlock_nonblock(ctdb_db->ltdb->tdb, dd->key); if (res != 0) { recs->vdata->count.delete_list.skipped++; recs->vdata->count.delete_list.left--; talloc_free(dd); return 0; } /* * Verify that the record is still empty, its RSN has not * changed and that we are still its lmaster and dmaster. */ res = tdb_parse_record(ctdb_db->ltdb->tdb, dd->key, vacuum_record_parser, &header); if (res != 0) { goto skip; } if (header.flags & CTDB_REC_RO_FLAGS) { DEBUG(DEBUG_INFO, (__location__ ": record with hash [0x%08x] " "on database db[%s] has read-only flags. " "skipping.\n", hash, ctdb_db->db_name)); goto skip; } if (header.dmaster != ctdb->pnn) { DEBUG(DEBUG_INFO, (__location__ ": record with hash [0x%08x] " "on database db[%s] has been migrated away. " "skipping.\n", hash, ctdb_db->db_name)); goto skip; } if (header.rsn != dd->hdr.rsn) { DEBUG(DEBUG_INFO, (__location__ ": record with hash [0x%08x] " "on database db[%s] seems to have been " "migrated away and back again (with empty " "data). skipping.\n", hash, ctdb_db->db_name)); goto skip; } lmaster = ctdb_lmaster(ctdb_db->ctdb, &dd->key); if (lmaster != ctdb->pnn) { DEBUG(DEBUG_INFO, (__location__ ": not lmaster for record in " "delete list (key hash [0x%08x], db[%s]). " "Strange! skipping.\n", hash, ctdb_db->db_name)); goto skip; } /* * Increment the record's RSN to ensure the dmaster (i.e. the current * node) has the highest RSN of the record in the cluster. * This is to prevent old record copies from resurrecting in recoveries * if something should fail during the deletion process. * Note that ctdb_ltdb_store_server() increments the RSN if called * on the record's dmaster. */ res = ctdb_ltdb_store(ctdb_db, dd->key, &header, tdb_null); if (res != 0) { DEBUG(DEBUG_ERR, (__location__ ": Failed to store record with " "key hash [0x%08x] on database db[%s].\n", hash, ctdb_db->db_name)); goto skip; } tdb_chainunlock(ctdb_db->ltdb->tdb, dd->key); goto done; skip: tdb_chainunlock(ctdb_db->ltdb->tdb, dd->key); recs->vdata->count.delete_list.skipped++; recs->vdata->count.delete_list.left--; talloc_free(dd); dd = NULL; done: if (dd == NULL) { return 0; } return delete_marshall_traverse(param, data); } /** * traverse function for the traversal of the delete_queue, * the fast-path vacuuming list. * * - If the record has been migrated off the node * or has been revived (filled with data) on the node, * then skip the record. * * - If the current node is the record's lmaster and it is * a record that has never been migrated with data, then * delete the record from the local tdb. * * - If the current node is the record's lmaster and it has * been migrated with data, then schedule it for the normal * vacuuming procedure (i.e. add it to the delete_list). * * - If the current node is NOT the record's lmaster then * add it to the list of records that are to be sent to * the lmaster with the VACUUM_FETCH message. */ static int delete_queue_traverse(void *param, void *data) { struct delete_record_data *dd = talloc_get_type(data, struct delete_record_data); struct vacuum_data *vdata = talloc_get_type(param, struct vacuum_data); struct ctdb_db_context *ctdb_db = dd->ctdb_db; struct ctdb_context *ctdb = ctdb_db->ctdb; /* or dd->ctdb ??? */ int res; struct ctdb_ltdb_header header; uint32_t lmaster; uint32_t hash = ctdb_hash(&(dd->key)); vdata->count.delete_queue.total++; res = tdb_chainlock_nonblock(ctdb_db->ltdb->tdb, dd->key); if (res != 0) { vdata->count.delete_queue.error++; return 0; } res = tdb_parse_record(ctdb_db->ltdb->tdb, dd->key, vacuum_record_parser, &header); if (res != 0) { goto skipped; } if (header.dmaster != ctdb->pnn) { /* The record has been migrated off the node. Skip. */ goto skipped; } if (header.rsn != dd->hdr.rsn) { /* * The record has been migrated off the node and back again. * But not requeued for deletion. Skip it. */ goto skipped; } /* * We are dmaster, and the record has no data, and it has * not been migrated after it has been queued for deletion. * * At this stage, the record could still have been revived locally * and last been written with empty data. This can only be * fixed with the addition of an active or delete flag. (TODO) */ lmaster = ctdb_lmaster(ctdb_db->ctdb, &dd->key); if (lmaster != ctdb->pnn) { res = add_record_to_vacuum_fetch_list(vdata, dd->key); if (res != 0) { DEBUG(DEBUG_ERR, (__location__ " Error adding record to list " "of records to send to lmaster.\n")); vdata->count.delete_queue.error++; } else { vdata->count.delete_queue.added_to_vacuum_fetch_list++; } goto done; } /* use header->flags or dd->hdr.flags ?? */ if (dd->hdr.flags & CTDB_REC_FLAG_MIGRATED_WITH_DATA) { res = add_record_to_delete_list(vdata, dd->key, &dd->hdr); if (res != 0) { DEBUG(DEBUG_ERR, (__location__ " Error adding record to list " "of records for deletion on lmaster.\n")); vdata->count.delete_queue.error++; } else { vdata->count.delete_queue.added_to_delete_list++; } } else { res = tdb_delete(ctdb_db->ltdb->tdb, dd->key); if (res != 0) { DEBUG(DEBUG_ERR, (__location__ " Error deleting record with key " "hash [0x%08x] from local data base db[%s].\n", hash, ctdb_db->db_name)); vdata->count.delete_queue.error++; goto done; } DEBUG(DEBUG_DEBUG, (__location__ " Deleted record with key hash " "[0x%08x] from local data base db[%s].\n", hash, ctdb_db->db_name)); vdata->count.delete_queue.deleted++; } goto done; skipped: vdata->count.delete_queue.skipped++; done: tdb_chainunlock(ctdb_db->ltdb->tdb, dd->key); return 0; } /** * Delete the records that we are lmaster and dmaster for and * that could be deleted on all other nodes via the TRY_DELETE_RECORDS * control. */ static int delete_record_traverse(void *param, void *data) { struct delete_record_data *dd = talloc_get_type(data, struct delete_record_data); struct vacuum_data *vdata = talloc_get_type(param, struct vacuum_data); struct ctdb_db_context *ctdb_db = dd->ctdb_db; struct ctdb_context *ctdb = ctdb_db->ctdb; int res; struct ctdb_ltdb_header header; uint32_t lmaster; uint32_t hash = ctdb_hash(&(dd->key)); res = tdb_chainlock(ctdb_db->ltdb->tdb, dd->key); if (res != 0) { DEBUG(DEBUG_ERR, (__location__ " Error getting chainlock on record with " "key hash [0x%08x] on database db[%s].\n", hash, ctdb_db->db_name)); vdata->count.delete_list.local_error++; vdata->count.delete_list.left--; talloc_free(dd); return 0; } /* * Verify that the record is still empty, its RSN has not * changed and that we are still its lmaster and dmaster. */ res = tdb_parse_record(ctdb_db->ltdb->tdb, dd->key, vacuum_record_parser, &header); if (res != 0) { goto skip; } if (header.flags & CTDB_REC_RO_FLAGS) { DEBUG(DEBUG_INFO, (__location__ ": record with hash [0x%08x] " "on database db[%s] has read-only flags. " "skipping.\n", hash, ctdb_db->db_name)); goto skip; } if (header.dmaster != ctdb->pnn) { DEBUG(DEBUG_INFO, (__location__ ": record with hash [0x%08x] " "on database db[%s] has been migrated away. " "skipping.\n", hash, ctdb_db->db_name)); goto skip; } if (header.rsn != dd->hdr.rsn + 1) { /* * The record has been migrated off the node and back again. * But not requeued for deletion. Skip it. * (Note that the first marshall traverse has bumped the RSN * on disk.) */ DEBUG(DEBUG_INFO, (__location__ ": record with hash [0x%08x] " "on database db[%s] seems to have been " "migrated away and back again (with empty " "data). skipping.\n", hash, ctdb_db->db_name)); goto skip; } lmaster = ctdb_lmaster(ctdb_db->ctdb, &dd->key); if (lmaster != ctdb->pnn) { DEBUG(DEBUG_INFO, (__location__ ": not lmaster for record in " "delete list (key hash [0x%08x], db[%s]). " "Strange! skipping.\n", hash, ctdb_db->db_name)); goto skip; } res = tdb_delete(ctdb_db->ltdb->tdb, dd->key); if (res != 0) { DEBUG(DEBUG_ERR, (__location__ " Error deleting record with key hash " "[0x%08x] from local data base db[%s].\n", hash, ctdb_db->db_name)); vdata->count.delete_list.local_error++; goto done; } DEBUG(DEBUG_DEBUG, (__location__ " Deleted record with key hash [0x%08x] from " "local data base db[%s].\n", hash, ctdb_db->db_name)); vdata->count.delete_list.deleted++; goto done; skip: vdata->count.delete_list.skipped++; done: tdb_chainunlock(ctdb_db->ltdb->tdb, dd->key); talloc_free(dd); vdata->count.delete_list.left--; return 0; } /** * Traverse the delete_queue. * Records are either deleted directly or filled * into the delete list or the vacuum fetch lists * for further processing. */ static void ctdb_process_delete_queue(struct ctdb_db_context *ctdb_db, struct vacuum_data *vdata) { uint32_t sum; int ret; ret = trbt_traversearray32(ctdb_db->delete_queue, 1, delete_queue_traverse, vdata); if (ret != 0) { DEBUG(DEBUG_ERR, (__location__ " Error traversing " "the delete queue.\n")); } sum = vdata->count.delete_queue.deleted + vdata->count.delete_queue.skipped + vdata->count.delete_queue.error + vdata->count.delete_queue.added_to_delete_list + vdata->count.delete_queue.added_to_vacuum_fetch_list; if (vdata->count.delete_queue.total != sum) { DEBUG(DEBUG_ERR, (__location__ " Inconsistency in fast vacuum " "counts for db[%s]: total[%u] != sum[%u]\n", ctdb_db->db_name, (unsigned)vdata->count.delete_queue.total, (unsigned)sum)); } if (vdata->count.delete_queue.total > 0) { DEBUG(DEBUG_INFO, (__location__ " fast vacuuming delete_queue traverse statistics: " "db[%s] " "total[%u] " "del[%u] " "skp[%u] " "err[%u] " "adl[%u] " "avf[%u]\n", ctdb_db->db_name, (unsigned)vdata->count.delete_queue.total, (unsigned)vdata->count.delete_queue.deleted, (unsigned)vdata->count.delete_queue.skipped, (unsigned)vdata->count.delete_queue.error, (unsigned)vdata->count.delete_queue.added_to_delete_list, (unsigned)vdata->count.delete_queue.added_to_vacuum_fetch_list)); } return; } /** * read-only traverse of the database, looking for records that * might be able to be vacuumed. * * This is not done each time but only every tunable * VacuumFastPathCount times. */ static void ctdb_vacuum_traverse_db(struct ctdb_db_context *ctdb_db, struct vacuum_data *vdata) { int ret; ret = tdb_traverse_read(ctdb_db->ltdb->tdb, vacuum_traverse, vdata); if (ret == -1 || vdata->traverse_error) { DEBUG(DEBUG_ERR, (__location__ " Traverse error in vacuuming " "'%s'\n", ctdb_db->db_name)); return; } if (vdata->count.db_traverse.total > 0) { DEBUG(DEBUG_INFO, (__location__ " full vacuuming db traverse statistics: " "db[%s] " "total[%u] " "skp[%u] " "err[%u] " "sched[%u]\n", ctdb_db->db_name, (unsigned)vdata->count.db_traverse.total, (unsigned)vdata->count.db_traverse.skipped, (unsigned)vdata->count.db_traverse.error, (unsigned)vdata->count.db_traverse.scheduled)); } return; } /** * Process the vacuum fetch lists: * For records for which we are not the lmaster, tell the lmaster to * fetch the record. */ static void ctdb_process_vacuum_fetch_lists(struct ctdb_db_context *ctdb_db, struct vacuum_data *vdata) { int i; struct ctdb_context *ctdb = ctdb_db->ctdb; for (i = 0; i < ctdb->num_nodes; i++) { TDB_DATA data; struct ctdb_marshall_buffer *vfl = vdata->vacuum_fetch_list[i]; if (ctdb->nodes[i]->pnn == ctdb->pnn) { continue; } if (vfl->count == 0) { continue; } DEBUG(DEBUG_INFO, ("Found %u records for lmaster %u in '%s'\n", vfl->count, ctdb->nodes[i]->pnn, ctdb_db->db_name)); data = ctdb_marshall_finish(vfl); if (ctdb_client_send_message(ctdb, ctdb->nodes[i]->pnn, CTDB_SRVID_VACUUM_FETCH, data) != 0) { DEBUG(DEBUG_ERR, (__location__ " Failed to send vacuum " "fetch message to %u\n", ctdb->nodes[i]->pnn)); } } return; } /** * Process the delete list: * * This is the last step of vacuuming that consistently deletes * those records that have been migrated with data and can hence * not be deleted when leaving a node. * * In this step, the lmaster does the final deletion of those empty * records that it is also dmaster for. It has ususally received * at least some of these records previously from the former dmasters * with the vacuum fetch message. * * This last step is implemented as a 3-phase process to protect from * races leading to data corruption: * * 1) Send the lmaster's copy to all other active nodes with the * RECEIVE_RECORDS control: The remote nodes store the lmaster's copy. * 2) Send the records that could successfully be stored remotely * in step #1 to all active nodes with the TRY_DELETE_RECORDS * control. The remote notes delete their local copy. * 3) The lmaster locally deletes its copies of all records that * could successfully be deleted remotely in step #2. */ static void ctdb_process_delete_list(struct ctdb_db_context *ctdb_db, struct vacuum_data *vdata) { int ret, i; struct ctdb_context *ctdb = ctdb_db->ctdb; struct delete_records_list *recs; TDB_DATA indata; struct ctdb_node_map_old *nodemap; uint32_t *active_nodes; int num_active_nodes; TALLOC_CTX *tmp_ctx; uint32_t sum; if (vdata->count.delete_list.total == 0) { return; } tmp_ctx = talloc_new(vdata); if (tmp_ctx == NULL) { DEBUG(DEBUG_ERR,(__location__ " Out of memory\n")); return; } vdata->count.delete_list.left = vdata->count.delete_list.total; /* * get the list of currently active nodes */ ret = ctdb_ctrl_getnodemap(ctdb, TIMELIMIT(), CTDB_CURRENT_NODE, tmp_ctx, &nodemap); if (ret != 0) { DEBUG(DEBUG_ERR,(__location__ " unable to get node map\n")); goto done; } active_nodes = list_of_active_nodes(ctdb, nodemap, nodemap, /* talloc context */ false /* include self */); /* yuck! ;-) */ num_active_nodes = talloc_get_size(active_nodes)/sizeof(*active_nodes); /* * Now delete the records all active nodes in a three-phase process: * 1) send all active remote nodes the current empty copy with this * node as DMASTER * 2) if all nodes could store the new copy, * tell all the active remote nodes to delete all their copy * 3) if all remote nodes deleted their record copy, delete it locally */ /* * Step 1: * Send currently empty record copy to all active nodes for storing. */ recs = talloc_zero(tmp_ctx, struct delete_records_list); if (recs == NULL) { DEBUG(DEBUG_ERR,(__location__ " Out of memory\n")); goto done; } recs->records = (struct ctdb_marshall_buffer *) talloc_zero_size(recs, offsetof(struct ctdb_marshall_buffer, data)); if (recs->records == NULL) { DEBUG(DEBUG_ERR,(__location__ " Out of memory\n")); goto done; } recs->records->db_id = ctdb_db->db_id; recs->vdata = vdata; /* * traverse the tree of all records we want to delete and * create a blob we can send to the other nodes. * * We call delete_marshall_traverse_first() to bump the * records' RSNs in the database, to ensure we (as dmaster) * keep the highest RSN of the records in the cluster. */ ret = trbt_traversearray32(vdata->delete_list, 1, delete_marshall_traverse_first, recs); if (ret != 0) { DEBUG(DEBUG_ERR, (__location__ " Error traversing the " "delete list for first marshalling.\n")); goto done; } indata = ctdb_marshall_finish(recs->records); for (i = 0; i < num_active_nodes; i++) { struct ctdb_marshall_buffer *records; struct ctdb_rec_data_old *rec; int32_t res; TDB_DATA outdata; ret = ctdb_control(ctdb, active_nodes[i], 0, CTDB_CONTROL_RECEIVE_RECORDS, 0, indata, recs, &outdata, &res, NULL, NULL); if (ret != 0 || res != 0) { DEBUG(DEBUG_ERR, ("Error storing record copies on " "node %u: ret[%d] res[%d]\n", active_nodes[i], ret, res)); goto done; } /* * outdata contains the list of records coming back * from the node: These are the records that the * remote node could not store. We remove these from * the list to process further. */ records = (struct ctdb_marshall_buffer *)outdata.dptr; rec = (struct ctdb_rec_data_old *)&records->data[0]; while (records->count-- > 1) { TDB_DATA reckey, recdata; struct ctdb_ltdb_header *rechdr; struct delete_record_data *dd; reckey.dptr = &rec->data[0]; reckey.dsize = rec->keylen; recdata.dptr = &rec->data[reckey.dsize]; recdata.dsize = rec->datalen; if (recdata.dsize < sizeof(struct ctdb_ltdb_header)) { DEBUG(DEBUG_CRIT,(__location__ " bad ltdb record\n")); goto done; } rechdr = (struct ctdb_ltdb_header *)recdata.dptr; recdata.dptr += sizeof(*rechdr); recdata.dsize -= sizeof(*rechdr); dd = (struct delete_record_data *)trbt_lookup32( vdata->delete_list, ctdb_hash(&reckey)); if (dd != NULL) { /* * The other node could not store the record * copy and it is the first node that failed. * So we should remove it from the tree and * update statistics. */ talloc_free(dd); vdata->count.delete_list.remote_error++; vdata->count.delete_list.left--; } else { DEBUG(DEBUG_ERR, (__location__ " Failed to " "find record with hash 0x%08x coming " "back from RECEIVE_RECORDS " "control in delete list.\n", ctdb_hash(&reckey))); vdata->count.delete_list.local_error++; vdata->count.delete_list.left--; } rec = (struct ctdb_rec_data_old *)(rec->length + (uint8_t *)rec); } } if (vdata->count.delete_list.left == 0) { goto success; } /* * Step 2: * Send the remaining records to all active nodes for deletion. * * The lmaster's (i.e. our) copies of these records have been stored * successfully on the other nodes. */ /* * Create a marshall blob from the remaining list of records to delete. */ talloc_free(recs->records); recs->records = (struct ctdb_marshall_buffer *) talloc_zero_size(recs, offsetof(struct ctdb_marshall_buffer, data)); if (recs->records == NULL) { DEBUG(DEBUG_ERR,(__location__ " Out of memory\n")); goto done; } recs->records->db_id = ctdb_db->db_id; ret = trbt_traversearray32(vdata->delete_list, 1, delete_marshall_traverse, recs); if (ret != 0) { DEBUG(DEBUG_ERR, (__location__ " Error traversing the " "delete list for second marshalling.\n")); goto done; } indata = ctdb_marshall_finish(recs->records); for (i = 0; i < num_active_nodes; i++) { struct ctdb_marshall_buffer *records; struct ctdb_rec_data_old *rec; int32_t res; TDB_DATA outdata; ret = ctdb_control(ctdb, active_nodes[i], 0, CTDB_CONTROL_TRY_DELETE_RECORDS, 0, indata, recs, &outdata, &res, NULL, NULL); if (ret != 0 || res != 0) { DEBUG(DEBUG_ERR, ("Failed to delete records on " "node %u: ret[%d] res[%d]\n", active_nodes[i], ret, res)); goto done; } /* * outdata contains the list of records coming back * from the node: These are the records that the * remote node could not delete. We remove these from * the list to delete locally. */ records = (struct ctdb_marshall_buffer *)outdata.dptr; rec = (struct ctdb_rec_data_old *)&records->data[0]; while (records->count-- > 1) { TDB_DATA reckey, recdata; struct ctdb_ltdb_header *rechdr; struct delete_record_data *dd; reckey.dptr = &rec->data[0]; reckey.dsize = rec->keylen; recdata.dptr = &rec->data[reckey.dsize]; recdata.dsize = rec->datalen; if (recdata.dsize < sizeof(struct ctdb_ltdb_header)) { DEBUG(DEBUG_CRIT,(__location__ " bad ltdb record\n")); goto done; } rechdr = (struct ctdb_ltdb_header *)recdata.dptr; recdata.dptr += sizeof(*rechdr); recdata.dsize -= sizeof(*rechdr); dd = (struct delete_record_data *)trbt_lookup32( vdata->delete_list, ctdb_hash(&reckey)); if (dd != NULL) { /* * The other node could not delete the * record and it is the first node that * failed. So we should remove it from * the tree and update statistics. */ talloc_free(dd); vdata->count.delete_list.remote_error++; vdata->count.delete_list.left--; } else { DEBUG(DEBUG_ERR, (__location__ " Failed to " "find record with hash 0x%08x coming " "back from TRY_DELETE_RECORDS " "control in delete list.\n", ctdb_hash(&reckey))); vdata->count.delete_list.local_error++; vdata->count.delete_list.left--; } rec = (struct ctdb_rec_data_old *)(rec->length + (uint8_t *)rec); } } if (vdata->count.delete_list.left == 0) { goto success; } /* * Step 3: * Delete the remaining records locally. * * These records have successfully been deleted on all * active remote nodes. */ ret = trbt_traversearray32(vdata->delete_list, 1, delete_record_traverse, vdata); if (ret != 0) { DEBUG(DEBUG_ERR, (__location__ " Error traversing the " "delete list for deletion.\n")); } success: if (vdata->count.delete_list.left != 0) { DEBUG(DEBUG_ERR, (__location__ " Vaccum db[%s] error: " "there are %u records left for deletion after " "processing delete list\n", ctdb_db->db_name, (unsigned)vdata->count.delete_list.left)); } sum = vdata->count.delete_list.deleted + vdata->count.delete_list.skipped + vdata->count.delete_list.remote_error + vdata->count.delete_list.local_error + vdata->count.delete_list.left; if (vdata->count.delete_list.total != sum) { DEBUG(DEBUG_ERR, (__location__ " Inconsistency in vacuum " "delete list counts for db[%s]: total[%u] != sum[%u]\n", ctdb_db->db_name, (unsigned)vdata->count.delete_list.total, (unsigned)sum)); } if (vdata->count.delete_list.total > 0) { DEBUG(DEBUG_INFO, (__location__ " vacuum delete list statistics: " "db[%s] " "total[%u] " "del[%u] " "skip[%u] " "rem.err[%u] " "loc.err[%u] " "left[%u]\n", ctdb_db->db_name, (unsigned)vdata->count.delete_list.total, (unsigned)vdata->count.delete_list.deleted, (unsigned)vdata->count.delete_list.skipped, (unsigned)vdata->count.delete_list.remote_error, (unsigned)vdata->count.delete_list.local_error, (unsigned)vdata->count.delete_list.left)); } done: talloc_free(tmp_ctx); return; } /** * initialize the vacuum_data */ static struct vacuum_data *ctdb_vacuum_init_vacuum_data( struct ctdb_db_context *ctdb_db, TALLOC_CTX *mem_ctx) { int i; struct ctdb_context *ctdb = ctdb_db->ctdb; struct vacuum_data *vdata; vdata = talloc_zero(mem_ctx, struct vacuum_data); if (vdata == NULL) { DEBUG(DEBUG_ERR,(__location__ " Out of memory\n")); return NULL; } vdata->ctdb = ctdb_db->ctdb; vdata->ctdb_db = ctdb_db; vdata->delete_list = trbt_create(vdata, 0); if (vdata->delete_list == NULL) { DEBUG(DEBUG_ERR,(__location__ " Out of memory\n")); goto fail; } vdata->start = timeval_current(); vdata->count.delete_queue.added_to_delete_list = 0; vdata->count.delete_queue.added_to_vacuum_fetch_list = 0; vdata->count.delete_queue.deleted = 0; vdata->count.delete_queue.skipped = 0; vdata->count.delete_queue.error = 0; vdata->count.delete_queue.total = 0; vdata->count.db_traverse.scheduled = 0; vdata->count.db_traverse.skipped = 0; vdata->count.db_traverse.error = 0; vdata->count.db_traverse.total = 0; vdata->count.delete_list.total = 0; vdata->count.delete_list.left = 0; vdata->count.delete_list.remote_error = 0; vdata->count.delete_list.local_error = 0; vdata->count.delete_list.skipped = 0; vdata->count.delete_list.deleted = 0; /* the list needs to be of length num_nodes */ vdata->vacuum_fetch_list = talloc_zero_array(vdata, struct ctdb_marshall_buffer *, ctdb->num_nodes); if (vdata->vacuum_fetch_list == NULL) { DEBUG(DEBUG_ERR,(__location__ " Out of memory\n")); goto fail; } for (i = 0; i < ctdb->num_nodes; i++) { vdata->vacuum_fetch_list[i] = (struct ctdb_marshall_buffer *) talloc_zero_size(vdata->vacuum_fetch_list, offsetof(struct ctdb_marshall_buffer, data)); if (vdata->vacuum_fetch_list[i] == NULL) { DEBUG(DEBUG_ERR,(__location__ " Out of memory\n")); talloc_free(vdata); return NULL; } vdata->vacuum_fetch_list[i]->db_id = ctdb_db->db_id; } return vdata; fail: talloc_free(vdata); return NULL; } /** * Vacuum a DB: * - Always do the fast vacuuming run, which traverses * the in-memory delete queue: these records have been * scheduled for deletion. * - Only if explicitly requested, the database is traversed * in order to use the traditional heuristics on empty records * to trigger deletion. * This is done only every VacuumFastPathCount'th vacuuming run. * * The traverse runs fill two lists: * * - The delete_list: * This is the list of empty records the current * node is lmaster and dmaster for. These records are later * deleted first on other nodes and then locally. * * The fast vacuuming run has a short cut for those records * that have never been migrated with data: these records * are immediately deleted locally, since they have left * no trace on other nodes. * * - The vacuum_fetch lists * (one for each other lmaster node): * The records in this list are sent for deletion to * their lmaster in a bulk VACUUM_FETCH message. * * The lmaster then migrates all these records to itelf * so that they can be vacuumed there. * * This executes in the child context. */ static int ctdb_vacuum_db(struct ctdb_db_context *ctdb_db, bool full_vacuum_run) { struct ctdb_context *ctdb = ctdb_db->ctdb; int ret, pnn; struct vacuum_data *vdata; TALLOC_CTX *tmp_ctx; DEBUG(DEBUG_INFO, (__location__ " Entering %s vacuum run for db " "%s db_id[0x%08x]\n", full_vacuum_run ? "full" : "fast", ctdb_db->db_name, ctdb_db->db_id)); ret = ctdb_ctrl_getvnnmap(ctdb, TIMELIMIT(), CTDB_CURRENT_NODE, ctdb, &ctdb->vnn_map); if (ret != 0) { DEBUG(DEBUG_ERR, ("Unable to get vnnmap from local node\n")); return ret; } pnn = ctdb_ctrl_getpnn(ctdb, TIMELIMIT(), CTDB_CURRENT_NODE); if (pnn == -1) { DEBUG(DEBUG_ERR, ("Unable to get pnn from local node\n")); return -1; } ctdb->pnn = pnn; tmp_ctx = talloc_new(ctdb_db); if (tmp_ctx == NULL) { DEBUG(DEBUG_ERR, ("Out of memory!\n")); return -1; } vdata = ctdb_vacuum_init_vacuum_data(ctdb_db, tmp_ctx); if (vdata == NULL) { talloc_free(tmp_ctx); return -1; } if (full_vacuum_run) { ctdb_vacuum_traverse_db(ctdb_db, vdata); } ctdb_process_delete_queue(ctdb_db, vdata); ctdb_process_vacuum_fetch_lists(ctdb_db, vdata); ctdb_process_delete_list(ctdb_db, vdata); talloc_free(tmp_ctx); /* this ensures we run our event queue */ ctdb_ctrl_getpnn(ctdb, TIMELIMIT(), CTDB_CURRENT_NODE); return 0; } /* * repack and vaccum a db * called from the child context */ static int ctdb_vacuum_and_repack_db(struct ctdb_db_context *ctdb_db, bool full_vacuum_run) { uint32_t repack_limit = ctdb_db->ctdb->tunable.repack_limit; const char *name = ctdb_db->db_name; int freelist_size = 0; int ret; if (ctdb_vacuum_db(ctdb_db, full_vacuum_run) != 0) { DEBUG(DEBUG_ERR,(__location__ " Failed to vacuum '%s'\n", name)); } freelist_size = tdb_freelist_size(ctdb_db->ltdb->tdb); if (freelist_size == -1) { DEBUG(DEBUG_ERR,(__location__ " Failed to get freelist size for '%s'\n", name)); return -1; } /* * decide if a repack is necessary */ if ((repack_limit == 0 || (uint32_t)freelist_size < repack_limit)) { return 0; } DEBUG(DEBUG_INFO, ("Repacking %s with %u freelist entries\n", name, freelist_size)); ret = tdb_repack(ctdb_db->ltdb->tdb); if (ret != 0) { DEBUG(DEBUG_ERR,(__location__ " Failed to repack '%s'\n", name)); return -1; } return 0; } static uint32_t get_vacuum_interval(struct ctdb_db_context *ctdb_db) { uint32_t interval = ctdb_db->ctdb->tunable.vacuum_interval; return interval; } static int vacuum_child_destructor(struct ctdb_vacuum_child_context *child_ctx) { double l = timeval_elapsed(&child_ctx->start_time); struct ctdb_db_context *ctdb_db = child_ctx->vacuum_handle->ctdb_db; struct ctdb_context *ctdb = ctdb_db->ctdb; CTDB_UPDATE_DB_LATENCY(ctdb_db, "vacuum", vacuum.latency, l); DEBUG(DEBUG_INFO,("Vacuuming took %.3f seconds for database %s\n", l, ctdb_db->db_name)); if (child_ctx->child_pid != -1) { ctdb_kill(ctdb, child_ctx->child_pid, SIGKILL); } else { /* Bump the number of successful fast-path runs. */ child_ctx->vacuum_handle->fast_path_count++; } DLIST_REMOVE(ctdb->vacuumers, child_ctx); tevent_add_timer(ctdb->ev, child_ctx->vacuum_handle, timeval_current_ofs(get_vacuum_interval(ctdb_db), 0), ctdb_vacuum_event, child_ctx->vacuum_handle); return 0; } /* * this event is generated when a vacuum child process times out */ static void vacuum_child_timeout(struct tevent_context *ev, struct tevent_timer *te, struct timeval t, void *private_data) { struct ctdb_vacuum_child_context *child_ctx = talloc_get_type(private_data, struct ctdb_vacuum_child_context); DEBUG(DEBUG_ERR,("Vacuuming child process timed out for db %s\n", child_ctx->vacuum_handle->ctdb_db->db_name)); child_ctx->status = VACUUM_TIMEOUT; talloc_free(child_ctx); } /* * this event is generated when a vacuum child process has completed */ static void vacuum_child_handler(struct tevent_context *ev, struct tevent_fd *fde, uint16_t flags, void *private_data) { struct ctdb_vacuum_child_context *child_ctx = talloc_get_type(private_data, struct ctdb_vacuum_child_context); char c = 0; int ret; DEBUG(DEBUG_INFO,("Vacuuming child process %d finished for db %s\n", child_ctx->child_pid, child_ctx->vacuum_handle->ctdb_db->db_name)); child_ctx->child_pid = -1; ret = sys_read(child_ctx->fd[0], &c, 1); if (ret != 1 || c != 0) { child_ctx->status = VACUUM_ERROR; DEBUG(DEBUG_ERR, ("A vacuum child process failed with an error for database %s. ret=%d c=%d\n", child_ctx->vacuum_handle->ctdb_db->db_name, ret, c)); } else { child_ctx->status = VACUUM_OK; } talloc_free(child_ctx); } /* * this event is called every time we need to start a new vacuum process */ static void ctdb_vacuum_event(struct tevent_context *ev, struct tevent_timer *te, struct timeval t, void *private_data) { struct ctdb_vacuum_handle *vacuum_handle = talloc_get_type(private_data, struct ctdb_vacuum_handle); struct ctdb_db_context *ctdb_db = vacuum_handle->ctdb_db; struct ctdb_context *ctdb = ctdb_db->ctdb; struct ctdb_vacuum_child_context *child_ctx; struct tevent_fd *fde; int ret; /* we don't vacuum if we are in recovery mode, or db frozen */ if (ctdb->recovery_mode == CTDB_RECOVERY_ACTIVE || ctdb_db_frozen(ctdb_db)) { DEBUG(DEBUG_INFO, ("Not vacuuming %s (%s)\n", ctdb_db->db_name, ctdb->recovery_mode == CTDB_RECOVERY_ACTIVE ? "in recovery" : "frozen")); tevent_add_timer(ctdb->ev, vacuum_handle, timeval_current_ofs(get_vacuum_interval(ctdb_db), 0), ctdb_vacuum_event, vacuum_handle); return; } /* Do not allow multiple vacuuming child processes to be active at the * same time. If there is vacuuming child process active, delay * new vacuuming event to stagger vacuuming events. */ if (ctdb->vacuumers != NULL) { tevent_add_timer(ctdb->ev, vacuum_handle, timeval_current_ofs(0, 500*1000), ctdb_vacuum_event, vacuum_handle); return; } child_ctx = talloc(vacuum_handle, struct ctdb_vacuum_child_context); if (child_ctx == NULL) { DEBUG(DEBUG_CRIT, (__location__ " Failed to allocate child context for vacuuming of %s\n", ctdb_db->db_name)); ctdb_fatal(ctdb, "Out of memory when crating vacuum child context. Shutting down\n"); } ret = pipe(child_ctx->fd); if (ret != 0) { talloc_free(child_ctx); DEBUG(DEBUG_ERR, ("Failed to create pipe for vacuum child process.\n")); tevent_add_timer(ctdb->ev, vacuum_handle, timeval_current_ofs(get_vacuum_interval(ctdb_db), 0), ctdb_vacuum_event, vacuum_handle); return; } if (vacuum_handle->fast_path_count > ctdb->tunable.vacuum_fast_path_count) { vacuum_handle->fast_path_count = 0; } child_ctx->child_pid = ctdb_fork(ctdb); if (child_ctx->child_pid == (pid_t)-1) { close(child_ctx->fd[0]); close(child_ctx->fd[1]); talloc_free(child_ctx); DEBUG(DEBUG_ERR, ("Failed to fork vacuum child process.\n")); tevent_add_timer(ctdb->ev, vacuum_handle, timeval_current_ofs(get_vacuum_interval(ctdb_db), 0), ctdb_vacuum_event, vacuum_handle); return; } if (child_ctx->child_pid == 0) { char cc = 0; bool full_vacuum_run = false; close(child_ctx->fd[0]); DEBUG(DEBUG_INFO,("Vacuuming child process %d for db %s started\n", getpid(), ctdb_db->db_name)); prctl_set_comment("ctdb_vacuum"); if (switch_from_server_to_client(ctdb) != 0) { DEBUG(DEBUG_CRIT, (__location__ "ERROR: failed to switch vacuum daemon into client mode. Shutting down.\n")); _exit(1); } if ((ctdb->tunable.vacuum_fast_path_count > 0) && (vacuum_handle->fast_path_count == 0)) { full_vacuum_run = true; } cc = ctdb_vacuum_and_repack_db(ctdb_db, full_vacuum_run); sys_write(child_ctx->fd[1], &cc, 1); _exit(0); } set_close_on_exec(child_ctx->fd[0]); close(child_ctx->fd[1]); child_ctx->status = VACUUM_RUNNING; child_ctx->start_time = timeval_current(); DLIST_ADD(ctdb->vacuumers, child_ctx); talloc_set_destructor(child_ctx, vacuum_child_destructor); /* * Clear the fastpath vacuuming list in the parent. */ talloc_free(ctdb_db->delete_queue); ctdb_db->delete_queue = trbt_create(ctdb_db, 0); if (ctdb_db->delete_queue == NULL) { /* fatal here? ... */ ctdb_fatal(ctdb, "Out of memory when re-creating vacuum tree " "in parent context. Shutting down\n"); } tevent_add_timer(ctdb->ev, child_ctx, timeval_current_ofs(ctdb->tunable.vacuum_max_run_time, 0), vacuum_child_timeout, child_ctx); DEBUG(DEBUG_DEBUG, (__location__ " Created PIPE FD:%d to child vacuum process\n", child_ctx->fd[0])); fde = tevent_add_fd(ctdb->ev, child_ctx, child_ctx->fd[0], TEVENT_FD_READ, vacuum_child_handler, child_ctx); tevent_fd_set_auto_close(fde); vacuum_handle->child_ctx = child_ctx; child_ctx->vacuum_handle = vacuum_handle; } void ctdb_stop_vacuuming(struct ctdb_context *ctdb) { /* Simply free them all. */ while (ctdb->vacuumers) { DEBUG(DEBUG_INFO, ("Aborting vacuuming for %s (%i)\n", ctdb->vacuumers->vacuum_handle->ctdb_db->db_name, (int)ctdb->vacuumers->child_pid)); /* vacuum_child_destructor kills it, removes from list */ talloc_free(ctdb->vacuumers); } } /* this function initializes the vacuuming context for a database * starts the vacuuming events */ int ctdb_vacuum_init(struct ctdb_db_context *ctdb_db) { if (ctdb_db->persistent != 0) { DEBUG(DEBUG_ERR,("Vacuuming is disabled for persistent database %s\n", ctdb_db->db_name)); return 0; } ctdb_db->vacuum_handle = talloc(ctdb_db, struct ctdb_vacuum_handle); CTDB_NO_MEMORY(ctdb_db->ctdb, ctdb_db->vacuum_handle); ctdb_db->vacuum_handle->ctdb_db = ctdb_db; ctdb_db->vacuum_handle->fast_path_count = 0; tevent_add_timer(ctdb_db->ctdb->ev, ctdb_db->vacuum_handle, timeval_current_ofs(get_vacuum_interval(ctdb_db), 0), ctdb_vacuum_event, ctdb_db->vacuum_handle); return 0; } static void remove_record_from_delete_queue(struct ctdb_db_context *ctdb_db, const struct ctdb_ltdb_header *hdr, const TDB_DATA key) { struct delete_record_data *kd; uint32_t hash; hash = (uint32_t)ctdb_hash(&key); DEBUG(DEBUG_DEBUG, (__location__ " remove_record_from_delete_queue: " "db[%s] " "db_id[0x%08x] " "key_hash[0x%08x] " "lmaster[%u] " "migrated_with_data[%s]\n", ctdb_db->db_name, ctdb_db->db_id, hash, ctdb_lmaster(ctdb_db->ctdb, &key), hdr->flags & CTDB_REC_FLAG_MIGRATED_WITH_DATA ? "yes" : "no")); kd = (struct delete_record_data *)trbt_lookup32(ctdb_db->delete_queue, hash); if (kd == NULL) { DEBUG(DEBUG_DEBUG, (__location__ " remove_record_from_delete_queue: " "record not in queue (hash[0x%08x])\n.", hash)); return; } if ((kd->key.dsize != key.dsize) || (memcmp(kd->key.dptr, key.dptr, key.dsize) != 0)) { DEBUG(DEBUG_DEBUG, (__location__ " remove_record_from_delete_queue: " "hash collision for key with hash[0x%08x] " "in db[%s] - skipping\n", hash, ctdb_db->db_name)); return; } DEBUG(DEBUG_DEBUG, (__location__ " remove_record_from_delete_queue: " "removing key with hash[0x%08x]\n", hash)); talloc_free(kd); return; } /** * Insert a record into the ctdb_db context's delete queue, * handling hash collisions. */ static int insert_record_into_delete_queue(struct ctdb_db_context *ctdb_db, const struct ctdb_ltdb_header *hdr, TDB_DATA key) { struct delete_record_data *kd; uint32_t hash; int ret; hash = (uint32_t)ctdb_hash(&key); DEBUG(DEBUG_DEBUG, (__location__ " schedule for deletion: db[%s] " "db_id[0x%08x] " "key_hash[0x%08x] " "lmaster[%u] " "migrated_with_data[%s]\n", ctdb_db->db_name, ctdb_db->db_id, hash, ctdb_lmaster(ctdb_db->ctdb, &key), hdr->flags & CTDB_REC_FLAG_MIGRATED_WITH_DATA ? "yes" : "no")); kd = (struct delete_record_data *)trbt_lookup32(ctdb_db->delete_queue, hash); if (kd != NULL) { if ((kd->key.dsize != key.dsize) || (memcmp(kd->key.dptr, key.dptr, key.dsize) != 0)) { DEBUG(DEBUG_INFO, (__location__ " schedule for deletion: " "hash collision for key hash [0x%08x]. " "Skipping the record.\n", hash)); return 0; } else { DEBUG(DEBUG_DEBUG, (__location__ " schedule for deletion: " "updating entry for key with hash [0x%08x].\n", hash)); } } ret = insert_delete_record_data_into_tree(ctdb_db->ctdb, ctdb_db, ctdb_db->delete_queue, hdr, key); if (ret != 0) { DEBUG(DEBUG_INFO, (__location__ " schedule for deletion: error " "inserting key with hash [0x%08x] into delete queue\n", hash)); return -1; } return 0; } /** * Schedule a record for deletetion. * Called from the parent context. */ int32_t ctdb_control_schedule_for_deletion(struct ctdb_context *ctdb, TDB_DATA indata) { struct ctdb_control_schedule_for_deletion *dd; struct ctdb_db_context *ctdb_db; int ret; TDB_DATA key; dd = (struct ctdb_control_schedule_for_deletion *)indata.dptr; ctdb_db = find_ctdb_db(ctdb, dd->db_id); if (ctdb_db == NULL) { DEBUG(DEBUG_ERR, (__location__ " Unknown db id 0x%08x\n", dd->db_id)); return -1; } key.dsize = dd->keylen; key.dptr = dd->key; ret = insert_record_into_delete_queue(ctdb_db, &dd->hdr, key); return ret; } int32_t ctdb_local_schedule_for_deletion(struct ctdb_db_context *ctdb_db, const struct ctdb_ltdb_header *hdr, TDB_DATA key) { int ret; struct ctdb_control_schedule_for_deletion *dd; TDB_DATA indata; int32_t status; if (ctdb_db->ctdb->ctdbd_pid == getpid()) { /* main daemon - directly queue */ ret = insert_record_into_delete_queue(ctdb_db, hdr, key); return ret; } /* if we don't have a connection to the daemon we can not send a control. For example sometimes from update_record control child process. */ if (!ctdb_db->ctdb->can_send_controls) { return -1; } /* child process: send the main daemon a control */ indata.dsize = offsetof(struct ctdb_control_schedule_for_deletion, key) + key.dsize; indata.dptr = talloc_zero_array(ctdb_db, uint8_t, indata.dsize); if (indata.dptr == NULL) { DEBUG(DEBUG_ERR, (__location__ " out of memory\n")); return -1; } dd = (struct ctdb_control_schedule_for_deletion *)(void *)indata.dptr; dd->db_id = ctdb_db->db_id; dd->hdr = *hdr; dd->keylen = key.dsize; memcpy(dd->key, key.dptr, key.dsize); ret = ctdb_control(ctdb_db->ctdb, CTDB_CURRENT_NODE, ctdb_db->db_id, CTDB_CONTROL_SCHEDULE_FOR_DELETION, CTDB_CTRL_FLAG_NOREPLY, /* flags */ indata, NULL, /* mem_ctx */ NULL, /* outdata */ &status, NULL, /* timeout : NULL == wait forever */ NULL); /* error message */ talloc_free(indata.dptr); if (ret != 0 || status != 0) { DEBUG(DEBUG_ERR, (__location__ " Error sending " "SCHEDULE_FOR_DELETION " "control.\n")); if (status != 0) { ret = -1; } } return ret; } void ctdb_local_remove_from_delete_queue(struct ctdb_db_context *ctdb_db, const struct ctdb_ltdb_header *hdr, const TDB_DATA key) { if (ctdb_db->ctdb->ctdbd_pid != getpid()) { /* * Only remove the record from the delete queue if called * in the main daemon. */ return; } remove_record_from_delete_queue(ctdb_db, hdr, key); return; }