/* Unix SMB/CIFS implementation. security descriptor utility functions Copyright (C) Andrew Tridgell 2004 This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include "replace.h" #include "libcli/security/security.h" #include "librpc/ndr/libndr.h" /* return a blank security descriptor (no owners, dacl or sacl) */ struct security_descriptor *security_descriptor_initialise(TALLOC_CTX *mem_ctx) { struct security_descriptor *sd; sd = talloc(mem_ctx, struct security_descriptor); if (!sd) { return NULL; } *sd = (struct security_descriptor){ .revision = SD_REVISION, /* * we mark as self relative, even though it isn't * while it remains a pointer in memory because this * simplifies the ndr code later. All SDs that we * store/emit are in fact SELF_RELATIVE */ .type = SEC_DESC_SELF_RELATIVE, }; return sd; } struct security_acl *security_acl_dup(TALLOC_CTX *mem_ctx, const struct security_acl *oacl) { struct security_acl *nacl; if (oacl == NULL) { return NULL; } if (oacl->aces == NULL && oacl->num_aces > 0) { return NULL; } nacl = talloc (mem_ctx, struct security_acl); if (nacl == NULL) { return NULL; } *nacl = (struct security_acl) { .revision = oacl->revision, .size = oacl->size, .num_aces = oacl->num_aces, }; if (nacl->num_aces == 0) { return nacl; } nacl->aces = (struct security_ace *)talloc_memdup (nacl, oacl->aces, sizeof(struct security_ace) * oacl->num_aces); if (nacl->aces == NULL) { goto failed; } return nacl; failed: talloc_free (nacl); return NULL; } struct security_acl *security_acl_concatenate(TALLOC_CTX *mem_ctx, const struct security_acl *acl1, const struct security_acl *acl2) { struct security_acl *nacl; uint32_t i; if (!acl1 && !acl2) return NULL; if (!acl1){ nacl = security_acl_dup(mem_ctx, acl2); return nacl; } if (!acl2){ nacl = security_acl_dup(mem_ctx, acl1); return nacl; } nacl = talloc (mem_ctx, struct security_acl); if (nacl == NULL) { return NULL; } nacl->revision = acl1->revision; nacl->size = acl1->size + acl2->size; nacl->num_aces = acl1->num_aces + acl2->num_aces; if (nacl->num_aces == 0) return nacl; nacl->aces = (struct security_ace *)talloc_array (mem_ctx, struct security_ace, acl1->num_aces+acl2->num_aces); if ((nacl->aces == NULL) && (nacl->num_aces > 0)) { goto failed; } for (i = 0; i < acl1->num_aces; i++) nacl->aces[i] = acl1->aces[i]; for (i = 0; i < acl2->num_aces; i++) nacl->aces[i + acl1->num_aces] = acl2->aces[i]; return nacl; failed: talloc_free (nacl); return NULL; } /* talloc and copy a security descriptor */ struct security_descriptor *security_descriptor_copy(TALLOC_CTX *mem_ctx, const struct security_descriptor *osd) { struct security_descriptor *nsd; nsd = talloc_zero(mem_ctx, struct security_descriptor); if (!nsd) { return NULL; } if (osd->owner_sid) { nsd->owner_sid = dom_sid_dup(nsd, osd->owner_sid); if (nsd->owner_sid == NULL) { goto failed; } } if (osd->group_sid) { nsd->group_sid = dom_sid_dup(nsd, osd->group_sid); if (nsd->group_sid == NULL) { goto failed; } } if (osd->sacl) { nsd->sacl = security_acl_dup(nsd, osd->sacl); if (nsd->sacl == NULL) { goto failed; } } if (osd->dacl) { nsd->dacl = security_acl_dup(nsd, osd->dacl); if (nsd->dacl == NULL) { goto failed; } } nsd->revision = osd->revision; nsd->type = osd->type; return nsd; failed: talloc_free(nsd); return NULL; } NTSTATUS security_descriptor_for_client(TALLOC_CTX *mem_ctx, const struct security_descriptor *ssd, uint32_t sec_info, uint32_t access_granted, struct security_descriptor **_csd) { struct security_descriptor *csd = NULL; uint32_t access_required = 0; *_csd = NULL; if (sec_info & (SECINFO_OWNER|SECINFO_GROUP)) { access_required |= SEC_STD_READ_CONTROL; } if (sec_info & SECINFO_DACL) { access_required |= SEC_STD_READ_CONTROL; } if (sec_info & SECINFO_SACL) { access_required |= SEC_FLAG_SYSTEM_SECURITY; } if (access_required & (~access_granted)) { return NT_STATUS_ACCESS_DENIED; } /* * make a copy... */ csd = security_descriptor_copy(mem_ctx, ssd); if (csd == NULL) { return NT_STATUS_NO_MEMORY; } /* * ... and remove everything not wanted */ if (!(sec_info & SECINFO_OWNER)) { TALLOC_FREE(csd->owner_sid); csd->type &= ~SEC_DESC_OWNER_DEFAULTED; } if (!(sec_info & SECINFO_GROUP)) { TALLOC_FREE(csd->group_sid); csd->type &= ~SEC_DESC_GROUP_DEFAULTED; } if (!(sec_info & SECINFO_DACL)) { TALLOC_FREE(csd->dacl); csd->type &= ~( SEC_DESC_DACL_PRESENT | SEC_DESC_DACL_DEFAULTED| SEC_DESC_DACL_AUTO_INHERIT_REQ | SEC_DESC_DACL_AUTO_INHERITED | SEC_DESC_DACL_PROTECTED | SEC_DESC_DACL_TRUSTED); } if (!(sec_info & SECINFO_SACL)) { TALLOC_FREE(csd->sacl); csd->type &= ~( SEC_DESC_SACL_PRESENT | SEC_DESC_SACL_DEFAULTED | SEC_DESC_SACL_AUTO_INHERIT_REQ | SEC_DESC_SACL_AUTO_INHERITED | SEC_DESC_SACL_PROTECTED | SEC_DESC_SERVER_SECURITY); } *_csd = csd; return NT_STATUS_OK; } /* add an ACE to an ACL of a security_descriptor */ static NTSTATUS security_descriptor_acl_add(struct security_descriptor *sd, bool add_to_sacl, const struct security_ace *ace, ssize_t _idx) { struct security_acl *acl = NULL; ssize_t idx; if (add_to_sacl) { acl = sd->sacl; } else { acl = sd->dacl; } if (acl == NULL) { acl = talloc(sd, struct security_acl); if (acl == NULL) { return NT_STATUS_NO_MEMORY; } acl->revision = SECURITY_ACL_REVISION_NT4; acl->size = 0; acl->num_aces = 0; acl->aces = NULL; } if (_idx < 0) { idx = (acl->num_aces + 1) + _idx; } else { idx = _idx; } if (idx < 0) { return NT_STATUS_ARRAY_BOUNDS_EXCEEDED; } else if (idx > acl->num_aces) { return NT_STATUS_ARRAY_BOUNDS_EXCEEDED; } acl->aces = talloc_realloc(acl, acl->aces, struct security_ace, acl->num_aces+1); if (acl->aces == NULL) { return NT_STATUS_NO_MEMORY; } ARRAY_INSERT_ELEMENT(acl->aces, acl->num_aces, *ace, idx); acl->num_aces++; if (sec_ace_object(acl->aces[idx].type)) { acl->revision = SECURITY_ACL_REVISION_ADS; } if (add_to_sacl) { sd->sacl = acl; sd->type |= SEC_DESC_SACL_PRESENT; } else { sd->dacl = acl; sd->type |= SEC_DESC_DACL_PRESENT; } return NT_STATUS_OK; } /* add an ACE to the SACL of a security_descriptor */ NTSTATUS security_descriptor_sacl_add(struct security_descriptor *sd, const struct security_ace *ace) { return security_descriptor_acl_add(sd, true, ace, -1); } /* insert an ACE at a given index to the SACL of a security_descriptor idx can be negative, which means it's related to the new size from the end, so -1 means the ace is appended at the end. */ NTSTATUS security_descriptor_sacl_insert(struct security_descriptor *sd, const struct security_ace *ace, ssize_t idx) { return security_descriptor_acl_add(sd, true, ace, idx); } /* add an ACE to the DACL of a security_descriptor */ NTSTATUS security_descriptor_dacl_add(struct security_descriptor *sd, const struct security_ace *ace) { return security_descriptor_acl_add(sd, false, ace, -1); } /* insert an ACE at a given index to the DACL of a security_descriptor idx can be negative, which means it's related to the new size from the end, so -1 means the ace is appended at the end. */ NTSTATUS security_descriptor_dacl_insert(struct security_descriptor *sd, const struct security_ace *ace, ssize_t idx) { return security_descriptor_acl_add(sd, false, ace, idx); } /* delete the ACE corresponding to the given trustee in an ACL of a security_descriptor */ static NTSTATUS security_descriptor_acl_del(struct security_descriptor *sd, bool sacl_del, const struct dom_sid *trustee) { uint32_t i; bool found = false; struct security_acl *acl = NULL; if (sacl_del) { acl = sd->sacl; } else { acl = sd->dacl; } if (acl == NULL) { return NT_STATUS_OBJECT_NAME_NOT_FOUND; } /* there can be multiple ace's for one trustee */ i = 0; while (i<acl->num_aces) { if (dom_sid_equal(trustee, &acl->aces[i].trustee)) { ARRAY_DEL_ELEMENT(acl->aces, i, acl->num_aces); acl->num_aces--; if (acl->num_aces == 0) { acl->aces = NULL; } found = true; } else { i += 1; } } if (!found) { return NT_STATUS_OBJECT_NAME_NOT_FOUND; } acl->revision = SECURITY_ACL_REVISION_NT4; for (i=0;i<acl->num_aces;i++) { if (sec_ace_object(acl->aces[i].type)) { acl->revision = SECURITY_ACL_REVISION_ADS; break; } } return NT_STATUS_OK; } /* delete the ACE corresponding to the given trustee in the DACL of a security_descriptor */ NTSTATUS security_descriptor_dacl_del(struct security_descriptor *sd, const struct dom_sid *trustee) { return security_descriptor_acl_del(sd, false, trustee); } /* delete the ACE corresponding to the given trustee in the SACL of a security_descriptor */ NTSTATUS security_descriptor_sacl_del(struct security_descriptor *sd, const struct dom_sid *trustee) { return security_descriptor_acl_del(sd, true, trustee); } /* delete the given ACE in the SACL or DACL of a security_descriptor */ static NTSTATUS security_descriptor_acl_del_ace(struct security_descriptor *sd, bool sacl_del, const struct security_ace *ace) { uint32_t i; bool found = false; struct security_acl *acl = NULL; if (sacl_del) { acl = sd->sacl; } else { acl = sd->dacl; } if (acl == NULL) { return NT_STATUS_OBJECT_NAME_NOT_FOUND; } for (i=0;i<acl->num_aces;i++) { if (security_ace_equal(ace, &acl->aces[i])) { ARRAY_DEL_ELEMENT(acl->aces, i, acl->num_aces); acl->num_aces--; if (acl->num_aces == 0) { acl->aces = NULL; } found = true; i--; } } if (!found) { return NT_STATUS_OBJECT_NAME_NOT_FOUND; } acl->revision = SECURITY_ACL_REVISION_NT4; for (i=0;i<acl->num_aces;i++) { if (sec_ace_object(acl->aces[i].type)) { acl->revision = SECURITY_ACL_REVISION_ADS; break; } } return NT_STATUS_OK; } NTSTATUS security_descriptor_dacl_del_ace(struct security_descriptor *sd, const struct security_ace *ace) { return security_descriptor_acl_del_ace(sd, false, ace); } NTSTATUS security_descriptor_sacl_del_ace(struct security_descriptor *sd, const struct security_ace *ace) { return security_descriptor_acl_del_ace(sd, true, ace); } static bool security_ace_object_equal(const struct security_ace_object *object1, const struct security_ace_object *object2) { if (object1 == object2) { return true; } if ((object1 == NULL) || (object2 == NULL)) { return false; } if (object1->flags != object2->flags) { return false; } if (object1->flags & SEC_ACE_OBJECT_TYPE_PRESENT && !GUID_equal(&object1->type.type, &object2->type.type)) { return false; } if (object1->flags & SEC_ACE_INHERITED_OBJECT_TYPE_PRESENT && !GUID_equal(&object1->inherited_type.inherited_type, &object2->inherited_type.inherited_type)) { return false; } return true; } static bool security_ace_claim_equal(const struct CLAIM_SECURITY_ATTRIBUTE_RELATIVE_V1 *claim1, const struct CLAIM_SECURITY_ATTRIBUTE_RELATIVE_V1 *claim2) { uint32_t i; if (claim1 == claim2) { return true; } if (claim1 == NULL || claim2 == NULL) { return false; } if (claim1->name != NULL && claim2->name != NULL) { if (strcasecmp_m(claim1->name, claim2->name) != 0) { return false; } } else if (claim1->name != NULL || claim2->name != NULL) { return false; } if (claim1->value_type != claim2->value_type) { return false; } if (claim1->flags != claim2->flags) { return false; } if (claim1->value_count != claim2->value_count) { return false; } for (i = 0; i < claim1->value_count; ++i) { const union claim_values *values1 = claim1->values; const union claim_values *values2 = claim2->values; switch (claim1->value_type) { case CLAIM_SECURITY_ATTRIBUTE_TYPE_INT64: if (values1[i].int_value != NULL && values2[i].int_value != NULL) { if (*values1[i].int_value != *values2[i].int_value) { return false; } } else if (values1[i].int_value != NULL || values2[i].int_value != NULL) { return false; } break; case CLAIM_SECURITY_ATTRIBUTE_TYPE_UINT64: case CLAIM_SECURITY_ATTRIBUTE_TYPE_BOOLEAN: if (values1[i].uint_value != NULL && values2[i].uint_value != NULL) { if (*values1[i].uint_value != *values2[i].uint_value) { return false; } } else if (values1[i].uint_value != NULL || values2[i].uint_value != NULL) { return false; } break; case CLAIM_SECURITY_ATTRIBUTE_TYPE_STRING: if (values1[i].string_value != NULL && values2[i].string_value != NULL) { if (strcasecmp_m(values1[i].string_value, values2[i].string_value) != 0) { return false; } } else if (values1[i].string_value != NULL || values2[i].string_value != NULL) { return false; } break; case CLAIM_SECURITY_ATTRIBUTE_TYPE_SID: if (values1[i].sid_value != NULL && values2[i].sid_value != NULL) { if (data_blob_cmp(values1[i].sid_value, values2[i].sid_value) != 0) { return false; } } else if (values1[i].sid_value != NULL || values2[i].sid_value != NULL) { return false; } break; case CLAIM_SECURITY_ATTRIBUTE_TYPE_OCTET_STRING: if (values1[i].octet_value != NULL && values2[i].octet_value != NULL) { if (data_blob_cmp(values1[i].octet_value, values2[i].octet_value) != 0) { return false; } } else if (values1[i].octet_value != NULL || values2[i].octet_value != NULL) { return false; } break; default: break; } } return true; } /* compare two security ace structures */ bool security_ace_equal(const struct security_ace *ace1, const struct security_ace *ace2) { if (ace1 == ace2) { return true; } if ((ace1 == NULL) || (ace2 == NULL)) { return false; } if (ace1->type != ace2->type) { return false; } if (ace1->flags != ace2->flags) { return false; } if (ace1->access_mask != ace2->access_mask) { return false; } if (sec_ace_object(ace1->type) && !security_ace_object_equal(&ace1->object.object, &ace2->object.object)) { return false; } if (!dom_sid_equal(&ace1->trustee, &ace2->trustee)) { return false; } if (sec_ace_callback(ace1->type)) { if (data_blob_cmp(&ace1->coda.conditions, &ace2->coda.conditions) != 0) { return false; } } else if (sec_ace_resource(ace1->type)) { if (!security_ace_claim_equal(&ace1->coda.claim, &ace2->coda.claim)) { return false; } } else { /* * Don’t require ace1->coda.ignored to match ace2->coda.ignored. */ } return true; } /* compare two security acl structures */ bool security_acl_equal(const struct security_acl *acl1, const struct security_acl *acl2) { uint32_t i; if (acl1 == acl2) return true; if (!acl1 || !acl2) return false; if (acl1->revision != acl2->revision) return false; if (acl1->num_aces != acl2->num_aces) return false; for (i=0;i<acl1->num_aces;i++) { if (!security_ace_equal(&acl1->aces[i], &acl2->aces[i])) return false; } return true; } /* compare two security descriptors. */ bool security_descriptor_equal(const struct security_descriptor *sd1, const struct security_descriptor *sd2) { if (sd1 == sd2) return true; if (!sd1 || !sd2) return false; if (sd1->revision != sd2->revision) return false; if (sd1->type != sd2->type) return false; if (!dom_sid_equal(sd1->owner_sid, sd2->owner_sid)) return false; if (!dom_sid_equal(sd1->group_sid, sd2->group_sid)) return false; if (!security_acl_equal(sd1->sacl, sd2->sacl)) return false; if (!security_acl_equal(sd1->dacl, sd2->dacl)) return false; return true; } /* compare two security descriptors, but allow certain (missing) parts to be masked out of the comparison */ bool security_descriptor_mask_equal(const struct security_descriptor *sd1, const struct security_descriptor *sd2, uint32_t mask) { if (sd1 == sd2) return true; if (!sd1 || !sd2) return false; if (sd1->revision != sd2->revision) return false; if ((sd1->type & mask) != (sd2->type & mask)) return false; if (!dom_sid_equal(sd1->owner_sid, sd2->owner_sid)) return false; if (!dom_sid_equal(sd1->group_sid, sd2->group_sid)) return false; if ((mask & SEC_DESC_DACL_PRESENT) && !security_acl_equal(sd1->dacl, sd2->dacl)) return false; if ((mask & SEC_DESC_SACL_PRESENT) && !security_acl_equal(sd1->sacl, sd2->sacl)) return false; return true; } static struct security_descriptor *security_descriptor_appendv(struct security_descriptor *sd, bool add_ace_to_sacl, va_list ap) { const char *sidstr; while ((sidstr = va_arg(ap, const char *))) { struct dom_sid *sid; struct security_ace *ace = talloc_zero(sd, struct security_ace); NTSTATUS status; if (ace == NULL) { talloc_free(sd); return NULL; } ace->type = va_arg(ap, unsigned int); ace->access_mask = va_arg(ap, unsigned int); ace->flags = va_arg(ap, unsigned int); sid = dom_sid_parse_talloc(ace, sidstr); if (sid == NULL) { talloc_free(sd); return NULL; } ace->trustee = *sid; if (add_ace_to_sacl) { status = security_descriptor_sacl_add(sd, ace); } else { status = security_descriptor_dacl_add(sd, ace); } /* TODO: check: would talloc_free(ace) here be correct? */ if (!NT_STATUS_IS_OK(status)) { talloc_free(sd); return NULL; } } return sd; } static struct security_descriptor *security_descriptor_createv(TALLOC_CTX *mem_ctx, uint16_t sd_type, const char *owner_sid, const char *group_sid, bool add_ace_to_sacl, va_list ap) { struct security_descriptor *sd; sd = security_descriptor_initialise(mem_ctx); if (sd == NULL) { return NULL; } sd->type |= sd_type; if (owner_sid) { sd->owner_sid = dom_sid_parse_talloc(sd, owner_sid); if (sd->owner_sid == NULL) { talloc_free(sd); return NULL; } } if (group_sid) { sd->group_sid = dom_sid_parse_talloc(sd, group_sid); if (sd->group_sid == NULL) { talloc_free(sd); return NULL; } } return security_descriptor_appendv(sd, add_ace_to_sacl, ap); } /* create a security descriptor using string SIDs. This is used by the torture code to allow the easy creation of complex ACLs This is a varargs function. The list of DACL ACEs ends with a NULL sid. Each ACE contains a set of 4 parameters: SID, ACCESS_TYPE, MASK, FLAGS a typical call would be: sd = security_descriptor_dacl_create(mem_ctx, sd_type_flags, mysid, mygroup, SID_NT_AUTHENTICATED_USERS, SEC_ACE_TYPE_ACCESS_ALLOWED, SEC_FILE_ALL, SEC_ACE_FLAG_OBJECT_INHERIT, NULL); that would create a sd with one DACL ACE */ struct security_descriptor *security_descriptor_dacl_create(TALLOC_CTX *mem_ctx, uint16_t sd_type, const char *owner_sid, const char *group_sid, ...) { struct security_descriptor *sd = NULL; va_list ap; va_start(ap, group_sid); sd = security_descriptor_createv(mem_ctx, sd_type, owner_sid, group_sid, false, ap); va_end(ap); return sd; } struct security_descriptor *security_descriptor_sacl_create(TALLOC_CTX *mem_ctx, uint16_t sd_type, const char *owner_sid, const char *group_sid, ...) { struct security_descriptor *sd = NULL; va_list ap; va_start(ap, group_sid); sd = security_descriptor_createv(mem_ctx, sd_type, owner_sid, group_sid, true, ap); va_end(ap); return sd; } struct security_ace *security_ace_create(TALLOC_CTX *mem_ctx, const char *sid_str, enum security_ace_type type, uint32_t access_mask, uint8_t flags) { struct security_ace *ace; bool ok; ace = talloc_zero(mem_ctx, struct security_ace); if (ace == NULL) { return NULL; } ok = dom_sid_parse(sid_str, &ace->trustee); if (!ok) { talloc_free(ace); return NULL; } ace->type = type; ace->access_mask = access_mask; ace->flags = flags; return ace; } /******************************************************************* Check for MS NFS ACEs in a sd *******************************************************************/ bool security_descriptor_with_ms_nfs(const struct security_descriptor *psd) { uint32_t i; if (psd->dacl == NULL) { return false; } for (i = 0; i < psd->dacl->num_aces; i++) { if (dom_sid_compare_domain( &global_sid_Unix_NFS, &psd->dacl->aces[i].trustee) == 0) { return true; } } return false; }