/* * Unix SMB/CIFS implementation. * threadpool implementation based on pthreads * Copyright (C) Volker Lendecke 2009,2011 * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "replace.h" #include "system/select.h" #include "system/threads.h" #include "system/filesys.h" #include "pthreadpool_tevent.h" #include "pthreadpool.h" #include "lib/util/tevent_unix.h" #include "lib/util/dlinklist.h" #include "lib/util/attr.h" /* * We try to give some hints to helgrind/drd * * Note ANNOTATE_BENIGN_RACE_SIZED(address, size, describtion) * takes an memory address range that ignored by helgrind/drd * 'description' is just ignored... * * * Note that ANNOTATE_HAPPENS_*(unique_uintptr) * just takes a DWORD/(void *) as unique key * for the barrier. */ #ifdef HAVE_VALGRIND_HELGRIND_H #include #endif #ifndef ANNOTATE_BENIGN_RACE_SIZED #define ANNOTATE_BENIGN_RACE_SIZED(address, size, describtion) #endif #ifndef ANNOTATE_HAPPENS_BEFORE #define ANNOTATE_HAPPENS_BEFORE(unique_uintptr) #endif #ifndef ANNOTATE_HAPPENS_AFTER #define ANNOTATE_HAPPENS_AFTER(unique_uintptr) #endif #ifndef ANNOTATE_HAPPENS_BEFORE_FORGET_ALL #define ANNOTATE_HAPPENS_BEFORE_FORGET_ALL(unique_uintptr) #endif #define PTHREAD_TEVENT_JOB_THREAD_FENCE_INIT(__job) do { \ _UNUSED_ const struct pthreadpool_tevent_job *__j = __job; \ ANNOTATE_BENIGN_RACE_SIZED(&__j->needs_fence, \ sizeof(__j->needs_fence), \ "race by design, protected by fence"); \ } while(0); #ifdef WITH_PTHREADPOOL /* * configure checked we have pthread and atomic_thread_fence() available */ #define __PTHREAD_TEVENT_JOB_THREAD_FENCE(__order) do { \ atomic_thread_fence(__order); \ } while(0) #else /* * we're using lib/pthreadpool/pthreadpool_sync.c ... */ #define __PTHREAD_TEVENT_JOB_THREAD_FENCE(__order) do { } while(0) #ifndef HAVE___THREAD #define __thread #endif #endif #define PTHREAD_TEVENT_JOB_THREAD_FENCE(__job) do { \ _UNUSED_ const struct pthreadpool_tevent_job *__j = __job; \ ANNOTATE_HAPPENS_BEFORE(&__job->needs_fence); \ __PTHREAD_TEVENT_JOB_THREAD_FENCE(memory_order_seq_cst); \ ANNOTATE_HAPPENS_AFTER(&__job->needs_fence); \ } while(0); #define PTHREAD_TEVENT_JOB_THREAD_FENCE_FINI(__job) do { \ _UNUSED_ const struct pthreadpool_tevent_job *__j = __job; \ ANNOTATE_HAPPENS_BEFORE_FORGET_ALL(&__job->needs_fence); \ } while(0); struct pthreadpool_tevent_job_state; /* * We need one pthreadpool_tevent_glue object per unique combintaion of tevent * contexts and pthreadpool_tevent objects. Maintain a list of used tevent * contexts in a pthreadpool_tevent. */ struct pthreadpool_tevent_glue { struct pthreadpool_tevent_glue *prev, *next; struct pthreadpool_tevent *pool; /* back-pointer to owning object. */ /* Tuple we are keeping track of in this list. */ struct tevent_context *ev; struct tevent_threaded_context *tctx; /* recheck monitor fd event */ struct tevent_fd *fde; /* Pointer to link object owned by *ev. */ struct pthreadpool_tevent_glue_ev_link *ev_link; /* active jobs */ struct pthreadpool_tevent_job_state *states; }; /* * The pthreadpool_tevent_glue_ev_link and its destructor ensure we remove the * tevent context from our list of active event contexts if the event context * is destroyed. * This structure is talloc()'ed from the struct tevent_context *, and is a * back-pointer allowing the related struct pthreadpool_tevent_glue object * to be removed from the struct pthreadpool_tevent glue list if the owning * tevent_context is talloc_free()'ed. */ struct pthreadpool_tevent_glue_ev_link { struct pthreadpool_tevent_glue *glue; }; struct pthreadpool_tevent_wrapper { struct pthreadpool_tevent *main_tp; struct pthreadpool_tevent *wrap_tp; const struct pthreadpool_tevent_wrapper_ops *ops; void *private_state; bool force_per_thread_cwd; }; struct pthreadpool_tevent { struct pthreadpool_tevent *prev, *next; struct pthreadpool *pool; struct pthreadpool_tevent_glue *glue_list; struct pthreadpool_tevent_job *jobs; struct { /* * This is used on the main context */ struct pthreadpool_tevent *list; /* * This is used on the wrapper context */ struct pthreadpool_tevent_wrapper *ctx; } wrapper; }; struct pthreadpool_tevent_job_state { struct pthreadpool_tevent_job_state *prev, *next; struct pthreadpool_tevent_glue *glue; struct tevent_context *ev; struct tevent_req *req; struct pthreadpool_tevent_job *job; }; struct pthreadpool_tevent_job { struct pthreadpool_tevent_job *prev, *next; struct pthreadpool_tevent *pool; struct pthreadpool_tevent_wrapper *wrapper; struct pthreadpool_tevent_job_state *state; struct tevent_immediate *im; void (*fn)(void *private_data); void *private_data; /* * Coordination between threads * * There're only one side writing each element * either the main process or the job thread. * * The coordination is done by a full memory * barrier using atomic_thread_fence(memory_order_seq_cst) * wrapped in PTHREAD_TEVENT_JOB_THREAD_FENCE() */ struct { /* * 'maycancel' * set when tevent_req_cancel() is called. * (only written by main thread!) */ bool maycancel; /* * 'orphaned' * set when talloc_free is called on the job request, * tevent_context or pthreadpool_tevent. * (only written by main thread!) */ bool orphaned; /* * 'started' * set when the job is picked up by a worker thread * (only written by job thread!) */ bool started; /* * 'wrapper' * set before calling the wrapper before_job() or * after_job() hooks. * unset again check the hook finished. * (only written by job thread!) */ bool wrapper; /* * 'executed' * set once the job function returned. * (only written by job thread!) */ bool executed; /* * 'finished' * set when pthreadpool_tevent_job_signal() is entered * (only written by job thread!) */ bool finished; /* * 'dropped' * set when pthreadpool_tevent_job_signal() leaves with * orphaned already set. * (only written by job thread!) */ bool dropped; /* * 'signaled' * set when pthreadpool_tevent_job_signal() leaves normal * and the immediate event was scheduled. * (only written by job thread!) */ bool signaled; /* * 'exit_thread' * maybe set during pthreadpool_tevent_job_fn() * if some wrapper related code generated an error * and the environment isn't safe anymore. * * In such a case pthreadpool_tevent_job_signal() * will pick this up and therminate the current * worker thread by returning -1. */ bool exit_thread; /* only written/read by job thread! */ } needs_fence; bool per_thread_cwd; }; static int pthreadpool_tevent_destructor(struct pthreadpool_tevent *pool); static void pthreadpool_tevent_job_orphan(struct pthreadpool_tevent_job *job); static struct pthreadpool_tevent_job *orphaned_jobs; void pthreadpool_tevent_cleanup_orphaned_jobs(void) { struct pthreadpool_tevent_job *job = NULL; struct pthreadpool_tevent_job *njob = NULL; for (job = orphaned_jobs; job != NULL; job = njob) { njob = job->next; /* * The job destructor keeps the job alive * (and in the list) or removes it from the list. */ TALLOC_FREE(job); } } static int pthreadpool_tevent_job_signal(int jobid, void (*job_fn)(void *private_data), void *job_private_data, void *private_data); int pthreadpool_tevent_init(TALLOC_CTX *mem_ctx, unsigned max_threads, struct pthreadpool_tevent **presult) { struct pthreadpool_tevent *pool; int ret; pthreadpool_tevent_cleanup_orphaned_jobs(); pool = talloc_zero(mem_ctx, struct pthreadpool_tevent); if (pool == NULL) { return ENOMEM; } ret = pthreadpool_init(max_threads, &pool->pool, pthreadpool_tevent_job_signal, pool); if (ret != 0) { TALLOC_FREE(pool); return ret; } talloc_set_destructor(pool, pthreadpool_tevent_destructor); *presult = pool; return 0; } static struct pthreadpool_tevent *pthreadpool_tevent_unwrap( struct pthreadpool_tevent *pool) { struct pthreadpool_tevent_wrapper *wrapper = pool->wrapper.ctx; if (wrapper != NULL) { return wrapper->main_tp; } return pool; } size_t pthreadpool_tevent_max_threads(struct pthreadpool_tevent *pool) { pool = pthreadpool_tevent_unwrap(pool); if (pool->pool == NULL) { return 0; } return pthreadpool_max_threads(pool->pool); } size_t pthreadpool_tevent_queued_jobs(struct pthreadpool_tevent *pool) { pool = pthreadpool_tevent_unwrap(pool); if (pool->pool == NULL) { return 0; } return pthreadpool_queued_jobs(pool->pool); } bool pthreadpool_tevent_per_thread_cwd(struct pthreadpool_tevent *pool) { struct pthreadpool_tevent_wrapper *wrapper = pool->wrapper.ctx; if (wrapper != NULL && wrapper->force_per_thread_cwd) { return true; } pool = pthreadpool_tevent_unwrap(pool); if (pool->pool == NULL) { return false; } return pthreadpool_per_thread_cwd(pool->pool); } static int pthreadpool_tevent_destructor(struct pthreadpool_tevent *pool) { struct pthreadpool_tevent_job *job = NULL; struct pthreadpool_tevent_job *njob = NULL; struct pthreadpool_tevent *wrap_tp = NULL; struct pthreadpool_tevent *nwrap_tp = NULL; struct pthreadpool_tevent_glue *glue = NULL; int ret; if (pool->wrapper.ctx != NULL) { struct pthreadpool_tevent_wrapper *wrapper = pool->wrapper.ctx; pool->wrapper.ctx = NULL; pool = wrapper->main_tp; DLIST_REMOVE(pool->wrapper.list, wrapper->wrap_tp); for (job = pool->jobs; job != NULL; job = njob) { njob = job->next; if (job->wrapper != wrapper) { continue; } /* * This removes the job from the list * * Note that it waits in case * the wrapper hooks are currently * executing on the job. */ pthreadpool_tevent_job_orphan(job); } /* * At this point we're sure that no job * still references the pthreadpool_tevent_wrapper * structure, so we can free it. */ TALLOC_FREE(wrapper); pthreadpool_tevent_cleanup_orphaned_jobs(); return 0; } if (pool->pool == NULL) { /* * A dangling wrapper without main_tp. */ return 0; } ret = pthreadpool_stop(pool->pool); if (ret != 0) { return ret; } /* * orphan all jobs (including wrapper jobs) */ for (job = pool->jobs; job != NULL; job = njob) { njob = job->next; /* * The job this removes it from the list * * Note that it waits in case * the wrapper hooks are currently * executing on the job (thread). */ pthreadpool_tevent_job_orphan(job); } /* * cleanup all existing wrappers, remember we just orphaned * all jobs (including the once of the wrappers). * * So we just mark as broken, so that * pthreadpool_tevent_job_send() won't accept new jobs. */ for (wrap_tp = pool->wrapper.list; wrap_tp != NULL; wrap_tp = nwrap_tp) { nwrap_tp = wrap_tp->next; /* * Just mark them as broken, so that we can't * get more jobs. */ TALLOC_FREE(wrap_tp->wrapper.ctx); DLIST_REMOVE(pool->wrapper.list, wrap_tp); } /* * Delete all the registered * tevent_context/tevent_threaded_context * pairs. */ for (glue = pool->glue_list; glue != NULL; glue = pool->glue_list) { /* The glue destructor removes it from the list */ TALLOC_FREE(glue); } pool->glue_list = NULL; ret = pthreadpool_destroy(pool->pool); if (ret != 0) { return ret; } pool->pool = NULL; pthreadpool_tevent_cleanup_orphaned_jobs(); return 0; } struct pthreadpool_tevent *_pthreadpool_tevent_wrapper_create( struct pthreadpool_tevent *main_tp, TALLOC_CTX *mem_ctx, const struct pthreadpool_tevent_wrapper_ops *ops, void *pstate, size_t psize, const char *type, const char *location) { void **ppstate = (void **)pstate; struct pthreadpool_tevent *wrap_tp = NULL; struct pthreadpool_tevent_wrapper *wrapper = NULL; pthreadpool_tevent_cleanup_orphaned_jobs(); if (main_tp->wrapper.ctx != NULL) { /* * stacking of wrappers is not supported */ errno = EINVAL; return NULL; } if (main_tp->pool == NULL) { /* * The pool is no longer valid, * most likely it was a wrapper context * where the main pool was destroyed. */ errno = EINVAL; return NULL; } wrap_tp = talloc_zero(mem_ctx, struct pthreadpool_tevent); if (wrap_tp == NULL) { return NULL; } wrapper = talloc_zero(wrap_tp, struct pthreadpool_tevent_wrapper); if (wrapper == NULL) { TALLOC_FREE(wrap_tp); return NULL; } wrapper->main_tp = main_tp; wrapper->wrap_tp = wrap_tp; wrapper->ops = ops; wrapper->private_state = talloc_zero_size(wrapper, psize); if (wrapper->private_state == NULL) { TALLOC_FREE(wrap_tp); return NULL; } talloc_set_name_const(wrapper->private_state, type); wrap_tp->wrapper.ctx = wrapper; DLIST_ADD_END(main_tp->wrapper.list, wrap_tp); talloc_set_destructor(wrap_tp, pthreadpool_tevent_destructor); *ppstate = wrapper->private_state; return wrap_tp; } void pthreadpool_tevent_force_per_thread_cwd(struct pthreadpool_tevent *pool, const void *private_state) { struct pthreadpool_tevent_wrapper *wrapper = pool->wrapper.ctx; if (wrapper == NULL) { abort(); } if (wrapper->private_state != private_state) { abort(); } wrapper->force_per_thread_cwd = true; } static int pthreadpool_tevent_glue_destructor( struct pthreadpool_tevent_glue *glue) { struct pthreadpool_tevent_job_state *state = NULL; struct pthreadpool_tevent_job_state *nstate = NULL; TALLOC_FREE(glue->fde); for (state = glue->states; state != NULL; state = nstate) { nstate = state->next; /* The job this removes it from the list */ pthreadpool_tevent_job_orphan(state->job); } if (glue->pool->glue_list != NULL) { DLIST_REMOVE(glue->pool->glue_list, glue); } /* Ensure the ev_link destructor knows we're gone */ glue->ev_link->glue = NULL; TALLOC_FREE(glue->ev_link); TALLOC_FREE(glue->tctx); return 0; } /* * Destructor called either explicitly from * pthreadpool_tevent_glue_destructor(), or indirectly * when owning tevent_context is destroyed. * * When called from pthreadpool_tevent_glue_destructor() * ev_link->glue is already NULL, so this does nothing. * * When called from talloc_free() of the owning * tevent_context we must ensure we also remove the * linked glue object from the list inside * struct pthreadpool_tevent. */ static int pthreadpool_tevent_glue_link_destructor( struct pthreadpool_tevent_glue_ev_link *ev_link) { TALLOC_FREE(ev_link->glue); return 0; } static void pthreadpool_tevent_glue_monitor(struct tevent_context *ev, struct tevent_fd *fde, uint16_t flags, void *private_data) { struct pthreadpool_tevent_glue *glue = talloc_get_type_abort(private_data, struct pthreadpool_tevent_glue); struct pthreadpool_tevent_job *job = NULL; struct pthreadpool_tevent_job *njob = NULL; int ret = -1; ret = pthreadpool_restart_check_monitor_drain(glue->pool->pool); if (ret != 0) { TALLOC_FREE(glue->fde); } ret = pthreadpool_restart_check(glue->pool->pool); if (ret == 0) { /* * success... */ goto done; } /* * There's a problem and the pool * has not a single thread available * for pending jobs, so we can only * stop the jobs and return an error. * This is similar to a failure from * pthreadpool_add_job(). */ for (job = glue->pool->jobs; job != NULL; job = njob) { njob = job->next; tevent_req_defer_callback(job->state->req, job->state->ev); tevent_req_error(job->state->req, ret); } done: if (glue->states == NULL) { /* * If the glue doesn't have any pending jobs * we remove the glue. * * In order to remove the fd event. */ TALLOC_FREE(glue); } } static int pthreadpool_tevent_register_ev( struct pthreadpool_tevent *pool, struct pthreadpool_tevent_job_state *state) { struct tevent_context *ev = state->ev; struct pthreadpool_tevent_glue *glue = NULL; struct pthreadpool_tevent_glue_ev_link *ev_link = NULL; int monitor_fd = -1; /* * See if this tevent_context was already registered by * searching the glue object list. If so we have nothing * to do here - we already have a tevent_context/tevent_threaded_context * pair. */ for (glue = pool->glue_list; glue != NULL; glue = glue->next) { if (glue->ev == state->ev) { state->glue = glue; DLIST_ADD_END(glue->states, state); return 0; } } /* * Event context not yet registered - create a new glue * object containing a tevent_context/tevent_threaded_context * pair and put it on the list to remember this registration. * We also need a link object to ensure the event context * can't go away without us knowing about it. */ glue = talloc_zero(pool, struct pthreadpool_tevent_glue); if (glue == NULL) { return ENOMEM; } *glue = (struct pthreadpool_tevent_glue) { .pool = pool, .ev = ev, }; talloc_set_destructor(glue, pthreadpool_tevent_glue_destructor); monitor_fd = pthreadpool_restart_check_monitor_fd(pool->pool); if (monitor_fd == -1 && errno != ENOSYS) { int saved_errno = errno; TALLOC_FREE(glue); return saved_errno; } if (monitor_fd != -1) { glue->fde = tevent_add_fd(ev, glue, monitor_fd, TEVENT_FD_READ, pthreadpool_tevent_glue_monitor, glue); if (glue->fde == NULL) { close(monitor_fd); TALLOC_FREE(glue); return ENOMEM; } tevent_fd_set_auto_close(glue->fde); monitor_fd = -1; } /* * Now allocate the link object to the event context. Note this * is allocated OFF THE EVENT CONTEXT ITSELF, so if the event * context is freed we are able to cleanup the glue object * in the link object destructor. */ ev_link = talloc_zero(ev, struct pthreadpool_tevent_glue_ev_link); if (ev_link == NULL) { TALLOC_FREE(glue); return ENOMEM; } ev_link->glue = glue; talloc_set_destructor(ev_link, pthreadpool_tevent_glue_link_destructor); glue->ev_link = ev_link; #ifdef HAVE_PTHREAD glue->tctx = tevent_threaded_context_create(glue, ev); if (glue->tctx == NULL) { TALLOC_FREE(ev_link); TALLOC_FREE(glue); return ENOMEM; } #endif state->glue = glue; DLIST_ADD_END(glue->states, state); DLIST_ADD(pool->glue_list, glue); return 0; } static void pthreadpool_tevent_job_fn(void *private_data); static void pthreadpool_tevent_job_done(struct tevent_context *ctx, struct tevent_immediate *im, void *private_data); static bool pthreadpool_tevent_job_cancel(struct tevent_req *req); static int pthreadpool_tevent_job_destructor(struct pthreadpool_tevent_job *job) { /* * We should never be called with needs_fence.orphaned == false. * Only pthreadpool_tevent_job_orphan() will call TALLOC_FREE(job) * after detaching from the request state, glue and pool list. */ if (!job->needs_fence.orphaned) { abort(); } /* * If the job is not finished (job->im still there) * and it's still attached to the pool, * we try to cancel it (before it was starts) */ if (job->im != NULL && job->pool != NULL) { size_t num; num = pthreadpool_cancel_job(job->pool->pool, 0, pthreadpool_tevent_job_fn, job); if (num != 0) { /* * It was not too late to cancel the request. * * We can remove job->im, as it will never be used. */ TALLOC_FREE(job->im); } } PTHREAD_TEVENT_JOB_THREAD_FENCE(job); if (job->needs_fence.dropped) { /* * The signal function saw job->needs_fence.orphaned * before it started the signaling via the immediate * event. So we'll never geht triggered and can * remove job->im and let the whole job go... */ TALLOC_FREE(job->im); } /* * TODO?: We could further improve this by adjusting * tevent_threaded_schedule_immediate_destructor() * and allow TALLOC_FREE() during its time * in the main_ev->scheduled_immediates list. * * PTHREAD_TEVENT_JOB_THREAD_FENCE(job); * if (state->needs_fence.signaled) { * * * * The signal function is completed * * in future we may be allowed * * to call TALLOC_FREE(job->im). * * * TALLOC_FREE(job->im); * } */ /* * pthreadpool_tevent_job_orphan() already removed * it from pool->jobs. And we don't need try * pthreadpool_cancel_job() again. */ job->pool = NULL; if (job->im != NULL) { /* * state->im still there means, we need to wait for the * immediate event to be triggered or just leak the memory. * * Move it to the orphaned list, if it's not already there. */ return -1; } /* * Finally remove from the orphaned_jobs list * and let talloc destroy us. */ DLIST_REMOVE(orphaned_jobs, job); PTHREAD_TEVENT_JOB_THREAD_FENCE_FINI(job); return 0; } static void pthreadpool_tevent_job_orphan(struct pthreadpool_tevent_job *job) { job->needs_fence.orphaned = true; PTHREAD_TEVENT_JOB_THREAD_FENCE(job); /* * We're the only function that sets * job->state = NULL; */ if (job->state == NULL) { abort(); } /* * Once we marked the request as 'orphaned' * we spin/loop if 'wrapper' is marked as active. * * We need to wait until the wrapper hook finished * before we can set job->wrapper = NULL. * * This is some kind of spinlock, but with * 1 millisecond sleeps in between, in order * to give the thread more cpu time to finish. */ PTHREAD_TEVENT_JOB_THREAD_FENCE(job); while (job->needs_fence.wrapper) { (void)poll(NULL, 0, 1); PTHREAD_TEVENT_JOB_THREAD_FENCE(job); } job->wrapper = NULL; /* * Once we marked the request as 'orphaned' * we spin/loop if it's already marked * as 'finished' (which means that * pthreadpool_tevent_job_signal() was entered. * If it saw 'orphaned' it will exit after setting * 'dropped', otherwise it dereferences * job->state->glue->{tctx,ev} until it exited * after setting 'signaled'. * * We need to close this potential gab before * we can set job->state = NULL. * * This is some kind of spinlock, but with * 1 millisecond sleeps in between, in order * to give the thread more cpu time to finish. */ PTHREAD_TEVENT_JOB_THREAD_FENCE(job); while (job->needs_fence.finished) { if (job->needs_fence.dropped) { break; } if (job->needs_fence.signaled) { break; } (void)poll(NULL, 0, 1); PTHREAD_TEVENT_JOB_THREAD_FENCE(job); } /* * Once the gab is closed, we can remove * the glue link. */ DLIST_REMOVE(job->state->glue->states, job->state); job->state->glue = NULL; /* * We need to reparent to a long term context. * And detach from the request state. * Maybe the destructor will keep the memory * and leak it for now. */ (void)talloc_reparent(job->state, NULL, job); job->state->job = NULL; job->state = NULL; /* * job->pool will only be set to NULL * in the first destructur run. */ if (job->pool == NULL) { abort(); } /* * Dettach it from the pool. * * The job might still be running, * so we keep job->pool. * The destructor will set it to NULL * after trying pthreadpool_cancel_job() */ DLIST_REMOVE(job->pool->jobs, job); /* * Add it to the list of orphaned jobs, * which may be cleaned up later. * * The destructor removes it from the list * when possible or it denies the free * and keep it in the list. */ DLIST_ADD_END(orphaned_jobs, job); TALLOC_FREE(job); } static void pthreadpool_tevent_job_cleanup(struct tevent_req *req, enum tevent_req_state req_state) { struct pthreadpool_tevent_job_state *state = tevent_req_data(req, struct pthreadpool_tevent_job_state); if (state->job == NULL) { /* * The job request is not scheduled in the pool * yet or anymore. */ if (state->glue != NULL) { DLIST_REMOVE(state->glue->states, state); state->glue = NULL; } return; } /* * We need to reparent to a long term context. * Maybe the destructor will keep the memory * and leak it for now. */ pthreadpool_tevent_job_orphan(state->job); state->job = NULL; /* not needed but looks better */ return; } struct tevent_req *pthreadpool_tevent_job_send( TALLOC_CTX *mem_ctx, struct tevent_context *ev, struct pthreadpool_tevent *pool, void (*fn)(void *private_data), void *private_data) { struct tevent_req *req = NULL; struct pthreadpool_tevent_job_state *state = NULL; struct pthreadpool_tevent_job *job = NULL; int ret; struct pthreadpool_tevent *caller_pool = pool; struct pthreadpool_tevent_wrapper *wrapper = pool->wrapper.ctx; pthreadpool_tevent_cleanup_orphaned_jobs(); if (wrapper != NULL) { pool = wrapper->main_tp; } req = tevent_req_create(mem_ctx, &state, struct pthreadpool_tevent_job_state); if (req == NULL) { return NULL; } state->ev = ev; state->req = req; tevent_req_set_cleanup_fn(req, pthreadpool_tevent_job_cleanup); if (pool == NULL) { tevent_req_error(req, EINVAL); return tevent_req_post(req, ev); } if (pool->pool == NULL) { tevent_req_error(req, EINVAL); return tevent_req_post(req, ev); } ret = pthreadpool_tevent_register_ev(pool, state); if (tevent_req_error(req, ret)) { return tevent_req_post(req, ev); } job = talloc_zero(state, struct pthreadpool_tevent_job); if (tevent_req_nomem(job, req)) { return tevent_req_post(req, ev); } job->pool = pool; job->wrapper = wrapper; job->fn = fn; job->private_data = private_data; job->im = tevent_create_immediate(state->job); if (tevent_req_nomem(job->im, req)) { return tevent_req_post(req, ev); } PTHREAD_TEVENT_JOB_THREAD_FENCE_INIT(job); job->per_thread_cwd = pthreadpool_tevent_per_thread_cwd(caller_pool); talloc_set_destructor(job, pthreadpool_tevent_job_destructor); DLIST_ADD_END(job->pool->jobs, job); job->state = state; state->job = job; ret = pthreadpool_add_job(job->pool->pool, 0, pthreadpool_tevent_job_fn, job); if (tevent_req_error(req, ret)) { return tevent_req_post(req, ev); } tevent_req_set_cancel_fn(req, pthreadpool_tevent_job_cancel); return req; } static __thread struct pthreadpool_tevent_job *current_job; bool pthreadpool_tevent_current_job_canceled(void) { if (current_job == NULL) { /* * Should only be called from within * the job function. */ abort(); return false; } PTHREAD_TEVENT_JOB_THREAD_FENCE(current_job); return current_job->needs_fence.maycancel; } bool pthreadpool_tevent_current_job_orphaned(void) { if (current_job == NULL) { /* * Should only be called from within * the job function. */ abort(); return false; } PTHREAD_TEVENT_JOB_THREAD_FENCE(current_job); return current_job->needs_fence.orphaned; } bool pthreadpool_tevent_current_job_continue(void) { if (current_job == NULL) { /* * Should only be called from within * the job function. */ abort(); return false; } PTHREAD_TEVENT_JOB_THREAD_FENCE(current_job); if (current_job->needs_fence.maycancel) { return false; } PTHREAD_TEVENT_JOB_THREAD_FENCE(current_job); if (current_job->needs_fence.orphaned) { return false; } return true; } bool pthreadpool_tevent_current_job_per_thread_cwd(void) { if (current_job == NULL) { /* * Should only be called from within * the job function. */ abort(); return false; } return current_job->per_thread_cwd; } static void pthreadpool_tevent_job_fn(void *private_data) { struct pthreadpool_tevent_job *job = talloc_get_type_abort(private_data, struct pthreadpool_tevent_job); struct pthreadpool_tevent_wrapper *wrapper = NULL; current_job = job; job->needs_fence.started = true; PTHREAD_TEVENT_JOB_THREAD_FENCE(job); if (job->needs_fence.orphaned) { current_job = NULL; return; } wrapper = job->wrapper; if (wrapper != NULL) { bool ok; job->needs_fence.wrapper = true; PTHREAD_TEVENT_JOB_THREAD_FENCE(job); if (job->needs_fence.orphaned) { job->needs_fence.wrapper = false; PTHREAD_TEVENT_JOB_THREAD_FENCE(job); current_job = NULL; return; } ok = wrapper->ops->before_job(wrapper->wrap_tp, wrapper->private_state, wrapper->main_tp, __location__); job->needs_fence.wrapper = false; PTHREAD_TEVENT_JOB_THREAD_FENCE(job); if (!ok) { job->needs_fence.exit_thread = true; PTHREAD_TEVENT_JOB_THREAD_FENCE(job); current_job = NULL; return; } } job->fn(job->private_data); job->needs_fence.executed = true; PTHREAD_TEVENT_JOB_THREAD_FENCE(job); if (wrapper != NULL) { bool ok; job->needs_fence.wrapper = true; PTHREAD_TEVENT_JOB_THREAD_FENCE(job); if (job->needs_fence.orphaned) { job->needs_fence.wrapper = false; job->needs_fence.exit_thread = true; PTHREAD_TEVENT_JOB_THREAD_FENCE(job); current_job = NULL; return; } ok = wrapper->ops->after_job(wrapper->wrap_tp, wrapper->private_state, wrapper->main_tp, __location__); job->needs_fence.wrapper = false; PTHREAD_TEVENT_JOB_THREAD_FENCE(job); if (!ok) { job->needs_fence.exit_thread = true; PTHREAD_TEVENT_JOB_THREAD_FENCE(job); current_job = NULL; return; } } current_job = NULL; } static int pthreadpool_tevent_job_signal(int jobid, void (*job_fn)(void *private_data), void *job_private_data, void *private_data) { struct pthreadpool_tevent_job *job = talloc_get_type_abort(job_private_data, struct pthreadpool_tevent_job); job->needs_fence.finished = true; PTHREAD_TEVENT_JOB_THREAD_FENCE(job); if (job->needs_fence.orphaned) { /* Request already gone */ job->needs_fence.dropped = true; PTHREAD_TEVENT_JOB_THREAD_FENCE(job); if (job->needs_fence.exit_thread) { /* * A problem with the wrapper the current job/worker * thread needs to terminate. * * The pthreadpool_tevent is already gone. */ return -1; } return 0; } /* * state and state->glue are valid, * see the job->needs_fence.finished * "spinlock" loop in * pthreadpool_tevent_job_orphan() */ if (job->state->glue->tctx != NULL) { /* with HAVE_PTHREAD */ tevent_threaded_schedule_immediate(job->state->glue->tctx, job->im, pthreadpool_tevent_job_done, job); } else { /* without HAVE_PTHREAD */ tevent_schedule_immediate(job->im, job->state->glue->ev, pthreadpool_tevent_job_done, job); } job->needs_fence.signaled = true; PTHREAD_TEVENT_JOB_THREAD_FENCE(job); if (job->needs_fence.exit_thread) { /* * A problem with the wrapper the current job/worker * thread needs to terminate. * * The pthreadpool_tevent is already gone. */ return -1; } return 0; } static void pthreadpool_tevent_job_done(struct tevent_context *ctx, struct tevent_immediate *im, void *private_data) { struct pthreadpool_tevent_job *job = talloc_get_type_abort(private_data, struct pthreadpool_tevent_job); struct pthreadpool_tevent_job_state *state = job->state; TALLOC_FREE(job->im); if (state == NULL) { /* Request already gone */ TALLOC_FREE(job); return; } /* * pthreadpool_tevent_job_cleanup() * (called by tevent_req_done() or * tevent_req_error()) will destroy the job. */ if (job->needs_fence.executed) { tevent_req_done(state->req); return; } tevent_req_error(state->req, ENOEXEC); return; } static bool pthreadpool_tevent_job_cancel(struct tevent_req *req) { struct pthreadpool_tevent_job_state *state = tevent_req_data(req, struct pthreadpool_tevent_job_state); struct pthreadpool_tevent_job *job = state->job; size_t num; if (job == NULL) { return false; } job->needs_fence.maycancel = true; PTHREAD_TEVENT_JOB_THREAD_FENCE(job); if (job->needs_fence.started) { /* * It was too late to cancel the request. * * The job still has the chance to look * at pthreadpool_tevent_current_job_canceled() * or pthreadpool_tevent_current_job_continue() */ return false; } num = pthreadpool_cancel_job(job->pool->pool, 0, pthreadpool_tevent_job_fn, job); if (num == 0) { /* * It was too late to cancel the request. */ return false; } /* * It was not too late to cancel the request. * * We can remove job->im, as it will never be used. */ TALLOC_FREE(job->im); /* * pthreadpool_tevent_job_cleanup() * will destroy the job. */ tevent_req_defer_callback(req, state->ev); tevent_req_error(req, ECANCELED); return true; } int pthreadpool_tevent_job_recv(struct tevent_req *req) { return tevent_req_simple_recv_unix(req); }