/* ctdb vacuuming events Copyright (C) Ronnie Sahlberg 2009 This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, see . */ #include "includes.h" #include "lib/events/events.h" #include "lib/tdb/include/tdb.h" #include "system/network.h" #include "system/filesys.h" #include "system/dir.h" #include "../include/ctdb_private.h" #include "db_wrap.h" #include "lib/util/dlinklist.h" #include "lib/events/events.h" #include "../include/ctdb_private.h" #include "../common/rb_tree.h" #define TIMELIMIT() timeval_current_ofs(10, 0) #define TUNINGDBNAME "vactune.tdb" enum vacuum_child_status { VACUUM_RUNNING, VACUUM_OK, VACUUM_ERROR, VACUUM_TIMEOUT}; struct ctdb_vacuum_child_context { struct ctdb_vacuum_handle *vacuum_handle; int fd[2]; pid_t child_pid; enum vacuum_child_status status; struct timeval start_time; }; struct ctdb_vacuum_handle { struct ctdb_db_context *ctdb_db; struct ctdb_vacuum_child_context *child_ctx; }; /* a list of records to possibly delete */ struct vacuum_data { uint32_t vacuum_limit; uint32_t repack_limit; struct ctdb_context *ctdb; struct ctdb_db_context *ctdb_db; struct tdb_context *dest_db; trbt_tree_t *delete_tree; uint32_t delete_count; struct ctdb_marshall_buffer **list; struct timeval start; bool traverse_error; bool vacuum; uint32_t total; uint32_t vacuumed; uint32_t copied; }; /* tuning information stored for every db */ struct vacuum_tuning_data { uint32_t last_num_repack; uint32_t last_num_empty; uint32_t last_interval; uint32_t new_interval; struct timeval last_start; double last_duration; }; /* this structure contains the information for one record to be deleted */ struct delete_record_data { struct ctdb_context *ctdb; struct ctdb_db_context *ctdb_db; struct ctdb_ltdb_header hdr; TDB_DATA key; }; struct delete_records_list { struct ctdb_marshall_buffer *records; }; static void ctdb_vacuum_event(struct event_context *ev, struct timed_event *te, struct timeval t, void *private_data); /* * traverse function for gathering the records that can be deleted */ static int vacuum_traverse(struct tdb_context *tdb, TDB_DATA key, TDB_DATA data, void *private) { struct vacuum_data *vdata = talloc_get_type(private, struct vacuum_data); struct ctdb_context *ctdb = vdata->ctdb; struct ctdb_db_context *ctdb_db = vdata->ctdb_db; uint32_t lmaster; struct ctdb_ltdb_header *hdr; struct ctdb_rec_data *rec; size_t old_size; lmaster = ctdb_lmaster(ctdb, &key); if (lmaster >= ctdb->vnn_map->size) { return 0; } if (data.dsize != sizeof(struct ctdb_ltdb_header)) { /* its not a deleted record */ return 0; } hdr = (struct ctdb_ltdb_header *)data.dptr; if (hdr->dmaster != ctdb->pnn) { return 0; } /* is this a records we could possibly delete? I.e. if the record is empty and also we are both lmaster and dmaster for the record we should be able to delete it */ if (lmaster == ctdb->pnn) { uint32_t hash; hash = ctdb_hash(&key); if (trbt_lookup32(vdata->delete_tree, hash)) { DEBUG(DEBUG_INFO, (__location__ " Hash collission when vacuuming, skipping this record.\n")); } else { struct delete_record_data *dd; /* store key and header indexed by the key hash */ dd = talloc_zero(vdata->delete_tree, struct delete_record_data); if (dd == NULL) { DEBUG(DEBUG_ERR,(__location__ " Out of memory\n")); return -1; } dd->ctdb = ctdb; dd->ctdb_db = ctdb_db; dd->key.dsize = key.dsize; dd->key.dptr = talloc_memdup(dd, key.dptr, key.dsize); if (dd->key.dptr == NULL) { DEBUG(DEBUG_ERR,(__location__ " Out of memory\n")); return -1; } dd->hdr = *hdr; trbt_insert32(vdata->delete_tree, hash, dd); vdata->delete_count++; } } /* add the record to the blob ready to send to the nodes */ rec = ctdb_marshall_record(vdata->list[lmaster], ctdb->pnn, key, NULL, tdb_null); if (rec == NULL) { DEBUG(DEBUG_ERR,(__location__ " Out of memory\n")); vdata->traverse_error = true; return -1; } old_size = talloc_get_size(vdata->list[lmaster]); vdata->list[lmaster] = talloc_realloc_size(NULL, vdata->list[lmaster], old_size + rec->length); if (vdata->list[lmaster] == NULL) { DEBUG(DEBUG_ERR,(__location__ " Failed to expand\n")); vdata->traverse_error = true; return -1; } vdata->list[lmaster]->count++; memcpy(old_size+(uint8_t *)vdata->list[lmaster], rec, rec->length); talloc_free(rec); vdata->total++; return 0; } /* * traverse the tree of records to delete and marshall them into * a blob */ static void delete_traverse(void *param, void *data) { struct delete_record_data *dd = talloc_get_type(data, struct delete_record_data); struct delete_records_list *recs = talloc_get_type(param, struct delete_records_list); struct ctdb_rec_data *rec; size_t old_size; rec = ctdb_marshall_record(dd, recs->records->db_id, dd->key, &dd->hdr, tdb_null); if (rec == NULL) { DEBUG(DEBUG_ERR, (__location__ " failed to marshall record\n")); return; } old_size = talloc_get_size(recs->records); recs->records = talloc_realloc_size(NULL, recs->records, old_size + rec->length); if (recs->records == NULL) { DEBUG(DEBUG_ERR,(__location__ " Failed to expand\n")); return; } recs->records->count++; memcpy(old_size+(uint8_t *)(recs->records), rec, rec->length); } /* * read-only traverse the database in order to find * records that can be deleted and try to delete these * records on the other nodes * this executes in the child context */ static int ctdb_vacuum_db(struct ctdb_db_context *ctdb_db, struct vacuum_data *vdata) { struct ctdb_context *ctdb = ctdb_db->ctdb; const char *name = ctdb_db->db_name; int ret, i, pnn; ret = ctdb_ctrl_getvnnmap(ctdb, TIMELIMIT(), CTDB_CURRENT_NODE, ctdb, &ctdb->vnn_map); if (ret != 0) { DEBUG(DEBUG_ERR, ("Unable to get vnnmap from local node\n")); return ret; } pnn = ctdb_ctrl_getpnn(ctdb, TIMELIMIT(), CTDB_CURRENT_NODE); if (pnn == -1) { DEBUG(DEBUG_ERR, ("Unable to get pnn from local node\n")); return -1; } ctdb->pnn = pnn; /* the list needs to be of length num_nodes */ vdata->list = talloc_array(vdata, struct ctdb_marshall_buffer *, ctdb->vnn_map->size); if (vdata->list == NULL) { DEBUG(DEBUG_ERR,(__location__ " Out of memory\n")); return -1; } for (i = 0; i < ctdb->vnn_map->size; i++) { vdata->list[i] = (struct ctdb_marshall_buffer *) talloc_zero_size(vdata->list, offsetof(struct ctdb_marshall_buffer, data)); if (vdata->list[i] == NULL) { DEBUG(DEBUG_ERR,(__location__ " Out of memory\n")); return -1; } vdata->list[i]->db_id = ctdb_db->db_id; } /* read-only traverse, looking for records that might be able to be vacuumed */ if (tdb_traverse_read(ctdb_db->ltdb->tdb, vacuum_traverse, vdata) == -1 || vdata->traverse_error) { DEBUG(DEBUG_ERR,(__location__ " Traverse error in vacuuming '%s'\n", name)); return -1; } for ( i = 0; i < ctdb->vnn_map->size; i++) { if (vdata->list[i]->count == 0) { continue; } /* for records where we are not the lmaster, tell the lmaster to fetch the record */ if (ctdb->vnn_map->map[i] != ctdb->pnn) { TDB_DATA data; DEBUG(DEBUG_NOTICE,("Found %u records for lmaster %u in '%s'\n", vdata->list[i]->count, i, name)); data.dsize = talloc_get_size(vdata->list[i]); data.dptr = (void *)vdata->list[i]; if (ctdb_send_message(ctdb, ctdb->vnn_map->map[i], CTDB_SRVID_VACUUM_FETCH, data) != 0) { DEBUG(DEBUG_ERR,(__location__ " Failed to send vacuum fetch message to %u\n", ctdb->vnn_map->map[i])); return -1; } continue; } } /* Process all records we can delete (if any) */ if (vdata->delete_count > 0) { struct delete_records_list *recs; TDB_DATA indata, outdata; int32_t res; recs = talloc_zero(vdata, struct delete_records_list); if (recs == NULL) { DEBUG(DEBUG_ERR,(__location__ " Out of memory\n")); return -1; } recs->records = (struct ctdb_marshall_buffer *) talloc_zero_size(vdata, offsetof(struct ctdb_marshall_buffer, data)); if (recs->records == NULL) { DEBUG(DEBUG_ERR,(__location__ " Out of memory\n")); return -1; } recs->records->db_id = ctdb_db->db_id; /* * traverse the tree of all records we want to delete and * create a blob we can send to the other nodes. */ trbt_traversearray32(vdata->delete_tree, 1, delete_traverse, recs); indata.dsize = talloc_get_size(recs->records); indata.dptr = (void *)recs->records; /* * now tell all the other nodes to delete all these records * (if possible) */ for (i = 0; i < ctdb->vnn_map->size; i++) { struct ctdb_marshall_buffer *records; struct ctdb_rec_data *rec; if (ctdb->vnn_map->map[i] == ctdb->pnn) { /* we dont delete the records on the local node just yet */ continue; } ret = ctdb_control(ctdb, ctdb->vnn_map->map[i], 0, CTDB_CONTROL_TRY_DELETE_RECORDS, 0, indata, recs, &outdata, &res, NULL, NULL); if (ret != 0 || res != 0) { DEBUG(DEBUG_ERR,("Failed to delete records on node %u\n", ctdb->vnn_map->map[i])); return -1; } /* * outdata countains the list of records coming back * from the node which the node could not delete */ records = (struct ctdb_marshall_buffer *)outdata.dptr; rec = (struct ctdb_rec_data *)&records->data[0]; while (records->count-- > 1) { TDB_DATA reckey, recdata; struct ctdb_ltdb_header *rechdr; reckey.dptr = &rec->data[0]; reckey.dsize = rec->keylen; recdata.dptr = &rec->data[reckey.dsize]; recdata.dsize = rec->datalen; if (recdata.dsize < sizeof(struct ctdb_ltdb_header)) { DEBUG(DEBUG_CRIT,(__location__ " bad ltdb record\n")); return -1; } rechdr = (struct ctdb_ltdb_header *)recdata.dptr; recdata.dptr += sizeof(*rechdr); recdata.dsize -= sizeof(*rechdr); /* * that other node couldnt delete the record * so we should delete it and thereby remove it from the tree */ talloc_free(trbt_lookup32(vdata->delete_tree, ctdb_hash(&reckey))); rec = (struct ctdb_rec_data *)(rec->length + (uint8_t *)rec); } } /* * The only records remaining in the tree would be those * records where all other nodes could successfully * delete them, so we can safely delete them on the * lmaster as well. Deletion implictely happens while * we repack the database. The repack algorithm revisits * the tree in order to find the records that don't need * to be copied / repacked. */ } /* this ensures we run our event queue */ ctdb_ctrl_getpnn(ctdb, TIMELIMIT(), CTDB_CURRENT_NODE); return 0; } /* * traverse function for repacking */ static int repack_traverse(struct tdb_context *tdb, TDB_DATA key, TDB_DATA data, void *private) { struct vacuum_data *vdata = (struct vacuum_data *)private; if (vdata->vacuum) { uint32_t hash = ctdb_hash(&key); struct delete_record_data *kd; /* * check if we can ignore this record because it's in the delete_tree */ kd = (struct delete_record_data *)trbt_lookup32(vdata->delete_tree, hash); /* * there might be hash collisions so we have to compare the keys here to be sure */ if (kd && kd->key.dsize == key.dsize && memcmp(kd->key.dptr, key.dptr, key.dsize) == 0) { vdata->vacuumed++; return 0; } } if (tdb_store(vdata->dest_db, key, data, TDB_INSERT) != 0) { vdata->traverse_error = true; return -1; } vdata->copied++; return 0; } /* * repack a tdb */ static int ctdb_repack_tdb(struct tdb_context *tdb, TALLOC_CTX *mem_ctx, struct vacuum_data *vdata) { struct tdb_context *tmp_db; if (tdb_transaction_start(tdb) != 0) { DEBUG(DEBUG_ERR,(__location__ " Failed to start transaction\n")); return -1; } tmp_db = tdb_open("tmpdb", tdb_hash_size(tdb), TDB_INTERNAL, O_RDWR|O_CREAT, 0); if (tmp_db == NULL) { DEBUG(DEBUG_ERR,(__location__ " Failed to create tmp_db\n")); tdb_transaction_cancel(tdb); return -1; } vdata->traverse_error = false; vdata->dest_db = tmp_db; vdata->vacuum = true; vdata->vacuumed = 0; vdata->copied = 0; /* * repack and vacuum on-the-fly by not writing the records that are * no longer needed */ if (tdb_traverse_read(tdb, repack_traverse, vdata) == -1) { DEBUG(DEBUG_ERR,(__location__ " Failed to traverse copying out\n")); tdb_transaction_cancel(tdb); tdb_close(tmp_db); return -1; } DEBUG(DEBUG_NOTICE,(__location__ " %u records vacuumed\n", vdata->vacuumed)); if (vdata->traverse_error) { DEBUG(DEBUG_ERR,(__location__ " Error during traversal\n")); tdb_transaction_cancel(tdb); tdb_close(tmp_db); return -1; } if (tdb_wipe_all(tdb) != 0) { DEBUG(DEBUG_ERR,(__location__ " Failed to wipe database\n")); tdb_transaction_cancel(tdb); tdb_close(tmp_db); return -1; } vdata->traverse_error = false; vdata->dest_db = tdb; vdata->vacuum = false; vdata->copied = 0; if (tdb_traverse_read(tmp_db, repack_traverse, vdata) == -1) { DEBUG(DEBUG_ERR,(__location__ " Failed to traverse copying back\n")); tdb_transaction_cancel(tdb); tdb_close(tmp_db); return -1; } if (vdata->traverse_error) { DEBUG(DEBUG_ERR,(__location__ " Error during second traversal\n")); tdb_transaction_cancel(tdb); tdb_close(tmp_db); return -1; } tdb_close(tmp_db); if (tdb_transaction_commit(tdb) != 0) { DEBUG(DEBUG_ERR,(__location__ " Failed to commit\n")); return -1; } DEBUG(DEBUG_NOTICE,(__location__ " %u records copied\n", vdata->copied)); return 0; } static int update_tuning_db(struct ctdb_db_context *ctdb_db, struct vacuum_data *vdata, uint32_t freelist) { TALLOC_CTX *tmp_ctx = talloc_new(NULL); TDB_CONTEXT *tune_tdb; TDB_DATA key, value; struct vacuum_tuning_data tdata; struct vacuum_tuning_data *tptr; char *vac_dbname; vac_dbname = talloc_asprintf(tmp_ctx, "%s/%s.%u", ctdb_db->ctdb->db_directory, TUNINGDBNAME, ctdb_db->ctdb->pnn); if (vac_dbname == NULL) { DEBUG(DEBUG_CRIT,(__location__ " Out of memory error while allocating '%s'\n", vac_dbname)); talloc_free(tmp_ctx); return -1; } tune_tdb = tdb_open(vac_dbname, 0, 0, O_RDWR|O_CREAT, 0644); if (tune_tdb == NULL) { DEBUG(DEBUG_ERR,(__location__ " Failed to create/open %s\n", TUNINGDBNAME)); talloc_free(tmp_ctx); return -1; } if (tdb_transaction_start(tune_tdb) != 0) { DEBUG(DEBUG_ERR,(__location__ " Failed to start transaction\n")); tdb_close(tune_tdb); return -1; } key.dptr = discard_const(ctdb_db->db_name); key.dsize = strlen(ctdb_db->db_name); value = tdb_fetch(tune_tdb, key); if (value.dptr != NULL && value.dsize == sizeof(struct vacuum_tuning_data)) { tptr = (struct vacuum_tuning_data *)value.dptr; tdata = *tptr; /* * re-calc new vacuum interval: * in case no limit was reached we continously increase the interval * until vacuum_max_interval is reached * in case a limit was reached we divide the current interval by 2 * unless vacuum_min_interval is reached */ if (freelist < vdata->repack_limit && vdata->delete_count < vdata->vacuum_limit) { if (tdata.last_interval < ctdb_db->ctdb->tunable.vacuum_max_interval) { tdata.new_interval = tdata.last_interval * 110 / 100; DEBUG(DEBUG_NOTICE,("Increasing vacuum interval %u -> %u for %s\n", tdata.last_interval, tdata.new_interval, ctdb_db->db_name)); } } else { tdata.new_interval = tdata.last_interval / 2; if (tdata.new_interval < ctdb_db->ctdb->tunable.vacuum_min_interval || tdata.new_interval > ctdb_db->ctdb->tunable.vacuum_max_interval) { tdata.new_interval = ctdb_db->ctdb->tunable.vacuum_min_interval; } DEBUG(DEBUG_ERR,("Decreasing vacuum interval %u -> %u for %s\n", tdata.last_interval, tdata.new_interval, ctdb_db->db_name)); } tdata.last_interval = tdata.new_interval; } else { DEBUG(DEBUG_ERR,(__location__ " Cannot find tunedb record for %s. Using default interval\n", ctdb_db->db_name)); tdata.last_num_repack = freelist; tdata.last_num_empty = vdata->delete_count; tdata.last_interval = ctdb_db->ctdb->tunable.vacuum_default_interval; } if (value.dptr != NULL) { free(value.dptr); } tdata.last_start = vdata->start; tdata.last_duration = timeval_elapsed(&vdata->start); value.dptr = (unsigned char *)&tdata; value.dsize = sizeof(tdata); if (tdb_store(tune_tdb, key, value, 0) != 0) { DEBUG(DEBUG_ERR,(__location__ " Unable to store tundb record for %s\n", ctdb_db->db_name)); tdb_transaction_cancel(tune_tdb); tdb_close(tune_tdb); talloc_free(tmp_ctx); return -1; } tdb_transaction_commit(tune_tdb); tdb_close(tune_tdb); talloc_free(tmp_ctx); return 0; } /* * repack and vaccum a db * called from the child context */ static int ctdb_repack_db(struct ctdb_db_context *ctdb_db, TALLOC_CTX *mem_ctx) { uint32_t repack_limit = ctdb_db->ctdb->tunable.repack_limit; uint32_t vacuum_limit = ctdb_db->ctdb->tunable.vacuum_limit; const char *name = ctdb_db->db_name; int size; struct vacuum_data *vdata; size = tdb_freelist_size(ctdb_db->ltdb->tdb); if (size == -1) { DEBUG(DEBUG_ERR,(__location__ " Failed to get freelist size for '%s'\n", name)); return -1; } vdata = talloc_zero(mem_ctx, struct vacuum_data); if (vdata == NULL) { DEBUG(DEBUG_ERR,(__location__ " Out of memory\n")); return -1; } vdata->ctdb = ctdb_db->ctdb; vdata->vacuum_limit = vacuum_limit; vdata->repack_limit = repack_limit; vdata->delete_tree = trbt_create(vdata, 0); if (vdata->delete_tree == NULL) { DEBUG(DEBUG_ERR,(__location__ " Out of memory\n")); talloc_free(vdata); return -1; } vdata->start = timeval_current(); /* * gather all records that can be deleted in vdata */ if (ctdb_vacuum_db(ctdb_db, vdata) != 0) { DEBUG(DEBUG_ERR,(__location__ " Failed to vacuum '%s'\n", name)); } /* * decide if a repack is necessary */ if (size < repack_limit && vdata->delete_count < vacuum_limit) { talloc_free(vdata); update_tuning_db(ctdb_db, vdata, size); return 0; } DEBUG(DEBUG_NOTICE,("Repacking %s with %u freelist entries and %u records to delete\n", name, size, vdata->delete_count)); /* * repack and implicitely get rid of the records we can delete */ if (ctdb_repack_tdb(ctdb_db->ltdb->tdb, mem_ctx, vdata) != 0) { DEBUG(DEBUG_ERR,(__location__ " Failed to repack '%s'\n", name)); update_tuning_db(ctdb_db, vdata, size); talloc_free(vdata); return -1; } update_tuning_db(ctdb_db, vdata, size); talloc_free(vdata); return 0; } static int get_vacuum_interval(struct ctdb_db_context *ctdb_db) { TALLOC_CTX *tmp_ctx = talloc_new(NULL); TDB_CONTEXT *tdb; TDB_DATA key, value; char *vac_dbname; uint interval = ctdb_db->ctdb->tunable.vacuum_default_interval; struct ctdb_context *ctdb = ctdb_db->ctdb; vac_dbname = talloc_asprintf(tmp_ctx, "%s/%s.%u", ctdb->db_directory, TUNINGDBNAME, ctdb->pnn); if (vac_dbname == NULL) { DEBUG(DEBUG_CRIT,(__location__ " Out of memory error while allocating '%s'\n", vac_dbname)); talloc_free(tmp_ctx); return interval; } tdb = tdb_open(vac_dbname, 0, 0, O_RDWR|O_CREAT, 0644); if (!tdb) { DEBUG(DEBUG_ERR,("Unable to open/create database %s using default interval\n", vac_dbname)); talloc_free(tmp_ctx); return interval; } key.dptr = discard_const(ctdb_db->db_name); key.dsize = strlen(ctdb_db->db_name); value = tdb_fetch(tdb, key); if (value.dptr != NULL) { if (value.dsize == sizeof(struct vacuum_tuning_data)) { struct vacuum_tuning_data *tptr = (struct vacuum_tuning_data *)value.dptr; interval = tptr->new_interval; if (interval < ctdb->tunable.vacuum_min_interval) { interval = ctdb->tunable.vacuum_min_interval; } if (interval > ctdb->tunable.vacuum_max_interval) { interval = ctdb->tunable.vacuum_max_interval; } } free(value.dptr); } tdb_close(tdb); talloc_free(tmp_ctx); return interval; } static int vacuum_child_destructor(struct ctdb_vacuum_child_context *child_ctx) { double l = timeval_elapsed(&child_ctx->start_time); struct ctdb_db_context *ctdb_db = child_ctx->vacuum_handle->ctdb_db; struct ctdb_context *ctdb = ctdb_db->ctdb; DEBUG(DEBUG_ERR,("Vacuuming took %.3f seconds for database %s\n", l, ctdb_db->db_name)); if (child_ctx->child_pid != -1) { kill(child_ctx->child_pid, SIGKILL); } event_add_timed(ctdb->ev, child_ctx->vacuum_handle, timeval_current_ofs(get_vacuum_interval(ctdb_db), 0), ctdb_vacuum_event, child_ctx->vacuum_handle); return 0; } /* * this event is generated when a vacuum child process times out */ static void vacuum_child_timeout(struct event_context *ev, struct timed_event *te, struct timeval t, void *private_data) { struct ctdb_vacuum_child_context *child_ctx = talloc_get_type(private_data, struct ctdb_vacuum_child_context); DEBUG(DEBUG_ERR,("Vacuuming child process timed out for db %s\n", child_ctx->vacuum_handle->ctdb_db->db_name)); child_ctx->status = VACUUM_TIMEOUT; talloc_free(child_ctx); } /* * this event is generated when a vacuum child process has completed */ static void vacuum_child_handler(struct event_context *ev, struct fd_event *fde, uint16_t flags, void *private_data) { struct ctdb_vacuum_child_context *child_ctx = talloc_get_type(private_data, struct ctdb_vacuum_child_context); char c = 0; int ret; DEBUG(DEBUG_NOTICE,("Vacuuming child process %d finished for db %s\n", child_ctx->child_pid, child_ctx->vacuum_handle->ctdb_db->db_name)); child_ctx->child_pid = -1; ret = read(child_ctx->fd[0], &c, 1); if (ret != 1 || c != 0) { child_ctx->status = VACUUM_ERROR; DEBUG(DEBUG_ERR, ("A vacuum child process failed with an error for database %s. ret=%d c=%d\n", child_ctx->vacuum_handle->ctdb_db->db_name, ret, c)); } else { child_ctx->status = VACUUM_OK; } talloc_free(child_ctx); } /* * this event is called every time we need to start a new vacuum process */ static void ctdb_vacuum_event(struct event_context *ev, struct timed_event *te, struct timeval t, void *private_data) { struct ctdb_vacuum_handle *vacuum_handle = talloc_get_type(private_data, struct ctdb_vacuum_handle); struct ctdb_db_context *ctdb_db = vacuum_handle->ctdb_db; struct ctdb_context *ctdb = ctdb_db->ctdb; struct ctdb_vacuum_child_context *child_ctx; int ret; /* we dont vacuum if we are in recovery mode */ if (ctdb->recovery_mode == CTDB_RECOVERY_ACTIVE) { event_add_timed(ctdb->ev, vacuum_handle, timeval_current_ofs(ctdb->tunable.vacuum_default_interval, 0), ctdb_vacuum_event, vacuum_handle); return; } child_ctx = talloc(vacuum_handle, struct ctdb_vacuum_child_context); if (child_ctx == NULL) { DEBUG(DEBUG_CRIT, (__location__ " Failed to allocate child context for vacuuming of %s\n", ctdb_db->db_name)); ctdb_fatal(ctdb, "Out of memory when crating vacuum child context. Shutting down\n"); } ret = pipe(child_ctx->fd); if (ret != 0) { talloc_free(child_ctx); DEBUG(DEBUG_ERR, ("Failed to create pipe for vacuum child process.\n")); event_add_timed(ctdb->ev, vacuum_handle, timeval_current_ofs(ctdb->tunable.vacuum_default_interval, 0), ctdb_vacuum_event, vacuum_handle); return; } child_ctx->child_pid = fork(); if (child_ctx->child_pid == (pid_t)-1) { close(child_ctx->fd[0]); close(child_ctx->fd[1]); talloc_free(child_ctx); DEBUG(DEBUG_ERR, ("Failed to fork vacuum child process.\n")); event_add_timed(ctdb->ev, vacuum_handle, timeval_current_ofs(ctdb->tunable.vacuum_default_interval, 0), ctdb_vacuum_event, vacuum_handle); return; } if (child_ctx->child_pid == 0) { char cc = 0; close(child_ctx->fd[0]); DEBUG(DEBUG_NOTICE,("Vacuuming child process %d for db %s started\n", getpid(), ctdb_db->db_name)); if (switch_from_server_to_client(ctdb) != 0) { DEBUG(DEBUG_CRIT, (__location__ "ERROR: failed to switch vacuum daemon into client mode. Shutting down.\n")); _exit(1); } /* * repack the db */ cc = ctdb_repack_db(ctdb_db, child_ctx); write(child_ctx->fd[1], &cc, 1); _exit(0); } set_close_on_exec(child_ctx->fd[0]); close(child_ctx->fd[1]); child_ctx->status = VACUUM_RUNNING; child_ctx->start_time = timeval_current(); talloc_set_destructor(child_ctx, vacuum_child_destructor); event_add_timed(ctdb->ev, child_ctx, timeval_current_ofs(ctdb->tunable.vacuum_max_run_time, 0), vacuum_child_timeout, child_ctx); DEBUG(DEBUG_NOTICE, (__location__ " Created PIPE FD:%d to child vacuum process\n", child_ctx->fd[0])); event_add_fd(ctdb->ev, child_ctx, child_ctx->fd[0], EVENT_FD_READ|EVENT_FD_AUTOCLOSE, vacuum_child_handler, child_ctx); vacuum_handle->child_ctx = child_ctx; child_ctx->vacuum_handle = vacuum_handle; } /* this function initializes the vacuuming context for a database * starts the vacuuming events */ int ctdb_vacuum_init(struct ctdb_db_context *ctdb_db) { ctdb_db->vacuum_handle = talloc(ctdb_db, struct ctdb_vacuum_handle); CTDB_NO_MEMORY(ctdb_db->ctdb, ctdb_db->vacuum_handle); ctdb_db->vacuum_handle->ctdb_db = ctdb_db; event_add_timed(ctdb_db->ctdb->ev, ctdb_db->vacuum_handle, timeval_current_ofs(get_vacuum_interval(ctdb_db), 0), ctdb_vacuum_event, ctdb_db->vacuum_handle); return 0; }