# Options to ctdbd. This is read by /etc/init.d/ctdb # you must specify the location of a shared lock file across all the # nodes. This must be on shared storage # there is no default # CTDB_RECOVERY_LOCK="/some/place/on/shared/storage" # when doing IP takeover you also may specify what network interface # to use by default for the public addresses. Otherwise you must # specify an interface on each line of the public addresses file # there is no default # CTDB_PUBLIC_INTERFACE=eth0 # Should ctdb do IP takeover? If it should, then specify a file # containing the list of public IP addresses that ctdb will manage # Note that these IPs must be different from those in $NODES above # there is no default. # The syntax is one line per public address of the form : # / # Example: 10.1.1.1/24 eth0 # # CTDB_PUBLIC_ADDRESSES=/etc/ctdb/public_addresses # Should CTDB present the cluster using a single public ip address to clients # and multiplex clients across all CONNECTED nodes ? # This is based on LVS # When this is enabled, the entire cluster will present one single ip address # which clients will connect to. # CTDB_LVS_PUBLIC_IP=10.1.1.1 # IPMUX : OBSOLETE use LVS instead # Should ctdb implement a single public ip address across the entire cluster # and multiplex incoming connections across the connected nodes # When using a single public ip you must also specify the public interface! # This makes all incoming traffic go through a single ctdb node which # will then forward the packets out acros the other nodes. This will # impact performance. # CTDB_SINGLE_PUBLIC_IP=10.1.1.1 # should ctdb manage starting/stopping the Samba service for you? # default is to not manage Samba # CTDB_MANAGES_SAMBA=yes # If there are very many shares it may not be feasible to check that all # of them are available during each monitoring interval. # In that case this check can be disabled # CTDB_SAMBA_SKIP_SHARE_CHECK=yes # CTDB_NFS_SKIP_SHARE_CHECK=yes # specify which ports we should check that there is a daemon listening to # by default we use testparm and look in smb.conf to figure out. # CTDB_SAMBA_CHECK_PORTS="445" # should ctdb manage starting/stopping Winbind service? # if left comented out then it will be autodetected based on smb.conf # CTDB_MANAGES_WINBIND=yes # should ctdb manage starting/stopping the VSFTPD service # CTDB_MANAGES_VSFTPD=yes # should ctdb manage starting/stopping the ISCSI service # CTDB_MANAGES_ISCSI=yes # should ctdb manage starting/stopping the NFS service # CTDB_MANAGES_NFS=yes # should ctdb manage starting/stopping the Apache web server httpd? # CTDB_MANAGES_HTTPD # The init style (redhat/suse/ubuntu...) is usually auto-detected. # The names of init scripts of services managed by CTDB are set # based on the detected init style. You can override the init style # auto-detection here to explicitly use a scheme. This might be # useful when you have installed a packages (for instance samba # packages) with a different init script layout. # There is no default. # CTDB_INIT_STYLE=redhat # The following are specific Samba init scripts / services that you # can override from auto-detection. # There are no defaults. # CTDB_SERVICE_SMB=smb # CTDB_SERVICE_NMB=nmb # CTDB_SERVICE_WINBIND=winbind # you may wish to raise the file descriptor limit for ctdb # use a ulimit command here. ctdb needs one file descriptor per # connected client (ie. one per connected client in Samba) # ulimit -n 10000 # the NODES file must be specified or ctdb won't start # it should contain a list of IPs that ctdb will use # it must be exactly the same on all cluster nodes # defaults to /etc/ctdb/nodes # CTDB_NODES=/etc/ctdb/nodes # the directory to put the local ctdb database files in # defaults to /var/ctdb # CTDB_DBDIR=/var/ctdb # the directory to put the local persistent ctdb database files in # defaults to /var/ctdb/persistent # CTDB_DBDIR_PERSISTENT=/var/ctdb/persistent # the directory where service specific event scripts are stored # defaults to /etc/ctdb/events.d # CTDB_EVENT_SCRIPT_DIR=/etc/ctdb/events.d # the location of the local ctdb socket # defaults to /tmp/ctdb.socket # CTDB_SOCKET=/tmp/ctdb.socket # what transport to use. Only tcp is currently supported # defaults to tcp # CTDB_TRANSPORT="tcp" # When set, this variable makes ctdb monitor the amount of free memory # in the system (the second number in the buffers/cache output from free -m). # If the amount of free memory drops below this treshold the node will become # unhealthy and ctdb and all managed services will be shutdown. # Once this occurs, the administrator needs to find the reason for the OOM # situation, rectify it and restart ctdb with "service ctdb start" # The unit is MByte # CTDB_MONITOR_FREE_MEMORY=100 # When set to yes, the CTDB node will start in DISABLED mode and not host # any public ip addresses. The administrator needs to explicitely enable # the node with "ctdb enable" # CTDB_START_AS_DISABLED="yes" # LMASTER and RECMASTER capabilities. # By default all nodes are capable of both being LMASTER for records and # also for taking the RECMASTER role and perform recovery. # These parameters can be used to disable these two roles on a node. # Note: If there are NO available nodes left in a cluster that can perform # the RECMASTER role, the cluster will not be able to recover from a failure # and will remain in RECOVERY mode until an RECMASTER capable node becomes # available. Same for LMASTER. # These parametersd are useful for scenarios where you have one "remote" node # in a cluster and you do not want the remote node to be fully participating # in the cluster and slow things down. # For that case, set both roles to "no" for the remote node on the remote site # but leave the roles default to "yes" on the primary nodes in the central # datacentre. # CTDB_CAPABILITY_RECMASTER=yes # CTDB_CAPABILITY_LMASTER=yes # NAT-GW configuration # Some services running on nthe CTDB node may need to originate traffic to # remote servers before the node is assigned any IP addresses, # This is problematic since before the node has public addresses the node might # not be able to route traffic to the public networks. # One solution is to have static public addresses assigned with routing # in addition to the public address interfaces, thus guaranteeing that # a node always can route traffic to the external network. # This is the most simple solution but it uses up a large number of # additional ip addresses. # # A more complex solution is NAT-GW. # In this mode we only need one additional ip address for the cluster from # the exsternal public network. # One of the nodes in the cluster is elected to be hosting this ip address # so it can reach the external services. This node is also configured # to use NAT MASQUERADING for all traffic from the internal private network # to the external network. This node is the NAT-GW node. # # All other nodes are set up with a default rote with a metric of 10 to point # to the nat-gw node. # # The effect of this is that only when a node does not have a public address # and thus no proper routes to the external world it will instead # route all packets through the nat-gw node. # # NATGW_PUBLIC_IP=10.0.0.227/24 # NATGW_PUBLIC_IFACE=eth0 # NATGW_DEFAULT_GATEWAY=10.0.0.1 # NATGW_PRIVATE_IFACE=eth1 # NATGW_PRIVATE_NETWORK=10.1.1.0/24 # where to log messages # the default is /var/log/log.ctdb # CTDB_LOGFILE=/var/log/log.ctdb # what debug level to run at. Higher means more verbose # the default is 2 CTDB_DEBUGLEVEL=2 # set any default tuning options for ctdb # use CTDB_SET_XXXX=value where XXXX is the name of the tuning # variable # for example # CTDB_SET_TRAVERSETIMEOUT=60 # you can get a list of variables using "ctdb listvars" # any other options you might want. Run ctdbd --help for a list # CTDB_OPTIONS=