/* * Copyright (C) Matthieu Suiche 2008 * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * 3. Neither the name of the author nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ #include "replace.h" #include "lzxpress.h" #include "../lib/util/byteorder.h" #define __CHECK_BYTES(__size, __index, __needed) do { \ if (unlikely(__index >= __size)) { \ return -1; \ } else { \ uint32_t __avail = __size - __index; \ if (unlikely(__needed > __avail)) { \ return -1; \ } \ } \ } while(0) #define CHECK_INPUT_BYTES(__needed) \ __CHECK_BYTES(uncompressed_size, uncompressed_pos, __needed) #define CHECK_OUTPUT_BYTES(__needed) \ __CHECK_BYTES(max_compressed_size, compressed_pos, __needed) ssize_t lzxpress_compress(const uint8_t *uncompressed, uint32_t uncompressed_size, uint8_t *compressed, uint32_t max_compressed_size) { uint32_t uncompressed_pos, compressed_pos, byte_left; uint32_t max_offset, best_offset; int32_t offset; uint32_t max_len, len, best_len, match_len; const uint8_t *str1, *str2; uint32_t indic; uint8_t *indic_pos; uint32_t indic_bit, nibble_index; uint16_t metadata; if (!uncompressed_size) { return 0; } uncompressed_pos = 0; indic = 0; *(uint32_t *)compressed = 0; compressed_pos = sizeof(uint32_t); indic_pos = &compressed[0]; byte_left = uncompressed_size; indic_bit = 0; nibble_index = 0; if (uncompressed_pos > XPRESS_BLOCK_SIZE) return 0; while ((uncompressed_pos < uncompressed_size) && (compressed_pos < max_compressed_size)) { bool found = false; max_offset = uncompressed_pos; str1 = &uncompressed[uncompressed_pos]; best_len = 2; best_offset = 0; max_offset = MIN(0x1FFF, max_offset); /* search for the longest match in the window for the lookahead buffer */ for (offset = 1; (uint32_t)offset <= max_offset; offset++) { str2 = &str1[-offset]; /* maximum len we can encode into metadata */ max_len = MIN(0x1FFF, byte_left); for (len = 0; (len < max_len) && (str1[len] == str2[len]); len++); /* * We check if len is better than the value found before, including the * sequence of identical bytes */ if (len > best_len) { found = true; best_len = len; best_offset = offset; } } if (!found) { CHECK_INPUT_BYTES(sizeof(uint8_t)); CHECK_OUTPUT_BYTES(sizeof(uint8_t)); compressed[compressed_pos++] = uncompressed[uncompressed_pos++]; byte_left--; indic <<= 1; indic_bit += 1; if (indic_bit == 32) { PUSH_LE_U32(indic_pos, 0, indic); indic_bit = 0; CHECK_OUTPUT_BYTES(sizeof(uint32_t)); indic_pos = &compressed[compressed_pos]; compressed_pos += sizeof(uint32_t); } } else { match_len = best_len; CHECK_OUTPUT_BYTES(sizeof(uint16_t)); match_len -= 3; best_offset -= 1; /* Classical meta-data */ CHECK_OUTPUT_BYTES(sizeof(uint16_t)); metadata = (uint16_t)((best_offset << 3) | MIN(match_len, 7)); PUSH_LE_U16(compressed, compressed_pos, metadata); compressed_pos += sizeof(uint16_t); if (match_len >= 7) { match_len -= 7; if (!nibble_index) { nibble_index = compressed_pos; CHECK_OUTPUT_BYTES(sizeof(uint8_t)); compressed[nibble_index] = MIN(match_len, 15); compressed_pos += sizeof(uint8_t); } else { __CHECK_BYTES(max_compressed_size, nibble_index, sizeof(uint8_t)); compressed[nibble_index] |= MIN(match_len, 15) << 4; nibble_index = 0; } if (match_len >= 15) { match_len -= 15; CHECK_OUTPUT_BYTES(sizeof(uint8_t)); compressed[compressed_pos] = MIN(match_len, 255); compressed_pos += sizeof(uint8_t); if (match_len >= 255) { /* Additional match_len */ match_len += 7 + 15; if (match_len < (1 << 16)) { CHECK_OUTPUT_BYTES(sizeof(uint16_t)); compressed[compressed_pos] = match_len & 0xFF; compressed[compressed_pos + 1] = (match_len >> 8); compressed_pos += sizeof(uint16_t); } else { CHECK_OUTPUT_BYTES(sizeof(uint16_t) + sizeof(uint32_t)); compressed[compressed_pos] = 0; compressed[compressed_pos + 1] = 0; compressed_pos += sizeof(uint16_t); compressed[compressed_pos] = match_len & 0xFF; compressed[compressed_pos + 1] = (match_len >> 8) & 0xFF; compressed[compressed_pos + 2] = (match_len >> 16) & 0xFF; compressed[compressed_pos + 3] = (match_len >> 24) & 0xFF; compressed_pos += sizeof(uint32_t); } } } } indic = (indic << 1) | 1; indic_bit += 1; if (indic_bit == 32) { PUSH_LE_U32(indic_pos, 0, indic); indic_bit = 0; indic_pos = &compressed[compressed_pos]; compressed_pos += sizeof(uint32_t); } uncompressed_pos += best_len; byte_left -= best_len; } } indic <<= 32 - indic_bit; indic |= (1 << (32 - indic_bit)) - 1; PUSH_LE_U32(indic_pos, 0, indic); return compressed_pos; } ssize_t lzxpress_decompress(const uint8_t *input, uint32_t input_size, uint8_t *output, uint32_t max_output_size) { uint32_t output_index, input_index; uint32_t indicator, indicator_bit; uint32_t length; uint32_t offset; uint32_t nibble_index; uint32_t i; output_index = 0; input_index = 0; indicator = 0; indicator_bit = 0; length = 0; offset = 0; nibble_index = 0; #undef CHECK_INPUT_BYTES #define CHECK_INPUT_BYTES(__needed) \ __CHECK_BYTES(input_size, input_index, __needed) #undef CHECK_OUTPUT_BYTES #define CHECK_OUTPUT_BYTES(__needed) \ __CHECK_BYTES(max_output_size, output_index, __needed) do { if (indicator_bit == 0) { CHECK_INPUT_BYTES(sizeof(uint32_t)); indicator = PULL_LE_U32(input, input_index); input_index += sizeof(uint32_t); indicator_bit = 32; } indicator_bit--; /* * check whether the bit specified by indicator_bit is set or not * set in indicator. For example, if indicator_bit has value 4 * check whether the 4th bit of the value in indicator is set */ if (((indicator >> indicator_bit) & 1) == 0) { CHECK_INPUT_BYTES(sizeof(uint8_t)); CHECK_OUTPUT_BYTES(sizeof(uint8_t)); output[output_index] = input[input_index]; input_index += sizeof(uint8_t); output_index += sizeof(uint8_t); } else { CHECK_INPUT_BYTES(sizeof(uint16_t)); length = PULL_LE_U16(input, input_index); input_index += sizeof(uint16_t); offset = (length / 8) + 1; length = length % 8; if (length == 7) { if (nibble_index == 0) { CHECK_INPUT_BYTES(sizeof(uint8_t)); nibble_index = input_index; length = input[input_index] % 16; input_index += sizeof(uint8_t); } else { length = input[nibble_index] / 16; nibble_index = 0; } if (length == 15) { CHECK_INPUT_BYTES(sizeof(uint8_t)); length = input[input_index]; input_index += sizeof(uint8_t); if (length == 255) { CHECK_INPUT_BYTES(sizeof(uint16_t)); length = PULL_LE_U16(input, input_index); input_index += sizeof(uint16_t); if (length == 0) { CHECK_INPUT_BYTES(sizeof(uint32_t)); length = PULL_LE_U32(input, input_index); input_index += sizeof(uint32_t); } if (length < (15 + 7)) { return -1; } length -= (15 + 7); } length += 15; } length += 7; } length += 3; if (length == 0) { return -1; } for (i = 0; i < length; i++) { if (offset > output_index) { return -1; } CHECK_OUTPUT_BYTES(sizeof(uint8_t)); output[output_index] = output[output_index - offset]; output_index += sizeof(uint8_t); } } } while ((output_index < max_output_size) && (input_index < (input_size))); return output_index; }