/*
ctdb vacuuming events
Copyright (C) Ronnie Sahlberg 2009
Copyright (C) Michael Adam 2010-2013
Copyright (C) Stefan Metzmacher 2010-2011
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, see .
*/
#include "replace.h"
#include "system/network.h"
#include "system/filesys.h"
#include "system/time.h"
#include
#include
#include "lib/tdb_wrap/tdb_wrap.h"
#include "lib/util/dlinklist.h"
#include "lib/util/debug.h"
#include "lib/util/samba_util.h"
#include "lib/util/sys_rw.h"
#include "lib/util/util_process.h"
#include "ctdb_private.h"
#include "ctdb_client.h"
#include "common/rb_tree.h"
#include "common/common.h"
#include "common/logging.h"
#define TIMELIMIT() timeval_current_ofs(10, 0)
enum vacuum_child_status { VACUUM_RUNNING, VACUUM_OK, VACUUM_ERROR, VACUUM_TIMEOUT};
struct ctdb_vacuum_child_context {
struct ctdb_vacuum_child_context *next, *prev;
struct ctdb_vacuum_handle *vacuum_handle;
/* fd child writes status to */
int fd[2];
pid_t child_pid;
enum vacuum_child_status status;
struct timeval start_time;
};
struct ctdb_vacuum_handle {
struct ctdb_db_context *ctdb_db;
struct ctdb_vacuum_child_context *child_ctx;
uint32_t fast_path_count;
};
/* a list of records to possibly delete */
struct vacuum_data {
struct ctdb_context *ctdb;
struct ctdb_db_context *ctdb_db;
struct tdb_context *dest_db;
trbt_tree_t *delete_list;
struct ctdb_marshall_buffer **vacuum_fetch_list;
struct timeval start;
bool traverse_error;
bool vacuum;
struct {
struct {
uint32_t added_to_vacuum_fetch_list;
uint32_t added_to_delete_list;
uint32_t deleted;
uint32_t skipped;
uint32_t error;
uint32_t total;
} delete_queue;
struct {
uint32_t scheduled;
uint32_t skipped;
uint32_t error;
uint32_t total;
} db_traverse;
struct {
uint32_t total;
uint32_t remote_error;
uint32_t local_error;
uint32_t deleted;
uint32_t skipped;
uint32_t left;
} delete_list;
struct {
uint32_t vacuumed;
uint32_t copied;
} repack;
} count;
};
/* this structure contains the information for one record to be deleted */
struct delete_record_data {
struct ctdb_context *ctdb;
struct ctdb_db_context *ctdb_db;
struct ctdb_ltdb_header hdr;
TDB_DATA key;
uint8_t keydata[1];
};
struct delete_records_list {
struct ctdb_marshall_buffer *records;
struct vacuum_data *vdata;
};
static int insert_record_into_delete_queue(struct ctdb_db_context *ctdb_db,
const struct ctdb_ltdb_header *hdr,
TDB_DATA key);
/**
* Store key and header in a tree, indexed by the key hash.
*/
static int insert_delete_record_data_into_tree(struct ctdb_context *ctdb,
struct ctdb_db_context *ctdb_db,
trbt_tree_t *tree,
const struct ctdb_ltdb_header *hdr,
TDB_DATA key)
{
struct delete_record_data *dd;
uint32_t hash;
size_t len;
len = offsetof(struct delete_record_data, keydata) + key.dsize;
dd = (struct delete_record_data *)talloc_size(tree, len);
if (dd == NULL) {
DEBUG(DEBUG_ERR,(__location__ " Out of memory\n"));
return -1;
}
talloc_set_name_const(dd, "struct delete_record_data");
dd->ctdb = ctdb;
dd->ctdb_db = ctdb_db;
dd->key.dsize = key.dsize;
dd->key.dptr = dd->keydata;
memcpy(dd->keydata, key.dptr, key.dsize);
dd->hdr = *hdr;
hash = ctdb_hash(&key);
trbt_insert32(tree, hash, dd);
return 0;
}
static int add_record_to_delete_list(struct vacuum_data *vdata, TDB_DATA key,
struct ctdb_ltdb_header *hdr)
{
struct ctdb_context *ctdb = vdata->ctdb;
struct ctdb_db_context *ctdb_db = vdata->ctdb_db;
uint32_t hash;
int ret;
hash = ctdb_hash(&key);
if (trbt_lookup32(vdata->delete_list, hash)) {
DEBUG(DEBUG_INFO, (__location__ " Hash collision when vacuuming, skipping this record.\n"));
return 0;
}
ret = insert_delete_record_data_into_tree(ctdb, ctdb_db,
vdata->delete_list,
hdr, key);
if (ret != 0) {
return -1;
}
vdata->count.delete_list.total++;
return 0;
}
/**
* Add a record to the list of records to be sent
* to their lmaster with VACUUM_FETCH.
*/
static int add_record_to_vacuum_fetch_list(struct vacuum_data *vdata,
TDB_DATA key)
{
struct ctdb_context *ctdb = vdata->ctdb;
uint32_t lmaster;
struct ctdb_marshall_buffer *vfl;
lmaster = ctdb_lmaster(ctdb, &key);
vfl = vdata->vacuum_fetch_list[lmaster];
vfl = ctdb_marshall_add(ctdb, vfl, vfl->db_id, ctdb->pnn,
key, NULL, tdb_null);
if (vfl == NULL) {
DEBUG(DEBUG_ERR,(__location__ " Out of memory\n"));
vdata->traverse_error = true;
return -1;
}
vdata->vacuum_fetch_list[lmaster] = vfl;
return 0;
}
static void ctdb_vacuum_event(struct tevent_context *ev,
struct tevent_timer *te,
struct timeval t, void *private_data);
static int vacuum_record_parser(TDB_DATA key, TDB_DATA data, void *private_data)
{
struct ctdb_ltdb_header *header =
(struct ctdb_ltdb_header *)private_data;
if (data.dsize != sizeof(struct ctdb_ltdb_header)) {
return -1;
}
*header = *(struct ctdb_ltdb_header *)data.dptr;
return 0;
}
/*
* traverse function for gathering the records that can be deleted
*/
static int vacuum_traverse(struct tdb_context *tdb, TDB_DATA key, TDB_DATA data,
void *private_data)
{
struct vacuum_data *vdata = talloc_get_type(private_data,
struct vacuum_data);
struct ctdb_context *ctdb = vdata->ctdb;
struct ctdb_db_context *ctdb_db = vdata->ctdb_db;
uint32_t lmaster;
struct ctdb_ltdb_header *hdr;
int res = 0;
vdata->count.db_traverse.total++;
lmaster = ctdb_lmaster(ctdb, &key);
if (lmaster >= ctdb->num_nodes) {
vdata->count.db_traverse.error++;
DEBUG(DEBUG_CRIT, (__location__
" lmaster[%u] >= ctdb->num_nodes[%u] for key"
" with hash[%u]!\n",
(unsigned)lmaster,
(unsigned)ctdb->num_nodes,
(unsigned)ctdb_hash(&key)));
return -1;
}
if (data.dsize != sizeof(struct ctdb_ltdb_header)) {
/* it is not a deleted record */
vdata->count.db_traverse.skipped++;
return 0;
}
hdr = (struct ctdb_ltdb_header *)data.dptr;
if (hdr->dmaster != ctdb->pnn) {
vdata->count.db_traverse.skipped++;
return 0;
}
/*
* Add the record to this process's delete_queue for processing
* in the subsequent traverse in the fast vacuum run.
*/
res = insert_record_into_delete_queue(ctdb_db, hdr, key);
if (res != 0) {
vdata->count.db_traverse.error++;
} else {
vdata->count.db_traverse.scheduled++;
}
return 0;
}
/*
* traverse the tree of records to delete and marshall them into
* a blob
*/
static int delete_marshall_traverse(void *param, void *data)
{
struct delete_record_data *dd = talloc_get_type(data, struct delete_record_data);
struct delete_records_list *recs = talloc_get_type(param, struct delete_records_list);
struct ctdb_marshall_buffer *m;
m = ctdb_marshall_add(recs, recs->records, recs->records->db_id,
recs->records->db_id,
dd->key, &dd->hdr, tdb_null);
if (m == NULL) {
DEBUG(DEBUG_ERR, (__location__ " failed to marshall record\n"));
return -1;
}
recs->records = m;
return 0;
}
/**
* Variant of delete_marshall_traverse() that bumps the
* RSN of each traversed record in the database.
*
* This is needed to ensure that when rolling out our
* empty record copy before remote deletion, we as the
* record's dmaster keep a higher RSN than the non-dmaster
* nodes. This is needed to prevent old copies from
* resurrection in recoveries.
*/
static int delete_marshall_traverse_first(void *param, void *data)
{
struct delete_record_data *dd = talloc_get_type(data, struct delete_record_data);
struct delete_records_list *recs = talloc_get_type(param, struct delete_records_list);
struct ctdb_db_context *ctdb_db = dd->ctdb_db;
struct ctdb_context *ctdb = ctdb_db->ctdb;
struct ctdb_ltdb_header header;
uint32_t lmaster;
uint32_t hash = ctdb_hash(&(dd->key));
int res;
res = tdb_chainlock_nonblock(ctdb_db->ltdb->tdb, dd->key);
if (res != 0) {
recs->vdata->count.delete_list.skipped++;
recs->vdata->count.delete_list.left--;
talloc_free(dd);
return 0;
}
/*
* Verify that the record is still empty, its RSN has not
* changed and that we are still its lmaster and dmaster.
*/
res = tdb_parse_record(ctdb_db->ltdb->tdb, dd->key,
vacuum_record_parser, &header);
if (res != 0) {
goto skip;
}
if (header.flags & CTDB_REC_RO_FLAGS) {
DEBUG(DEBUG_INFO, (__location__ ": record with hash [0x%08x] "
"on database db[%s] has read-only flags. "
"skipping.\n",
hash, ctdb_db->db_name));
goto skip;
}
if (header.dmaster != ctdb->pnn) {
DEBUG(DEBUG_INFO, (__location__ ": record with hash [0x%08x] "
"on database db[%s] has been migrated away. "
"skipping.\n",
hash, ctdb_db->db_name));
goto skip;
}
if (header.rsn != dd->hdr.rsn) {
DEBUG(DEBUG_INFO, (__location__ ": record with hash [0x%08x] "
"on database db[%s] seems to have been "
"migrated away and back again (with empty "
"data). skipping.\n",
hash, ctdb_db->db_name));
goto skip;
}
lmaster = ctdb_lmaster(ctdb_db->ctdb, &dd->key);
if (lmaster != ctdb->pnn) {
DEBUG(DEBUG_INFO, (__location__ ": not lmaster for record in "
"delete list (key hash [0x%08x], db[%s]). "
"Strange! skipping.\n",
hash, ctdb_db->db_name));
goto skip;
}
/*
* Increment the record's RSN to ensure the dmaster (i.e. the current
* node) has the highest RSN of the record in the cluster.
* This is to prevent old record copies from resurrecting in recoveries
* if something should fail during the deletion process.
* Note that ctdb_ltdb_store_server() increments the RSN if called
* on the record's dmaster.
*/
res = ctdb_ltdb_store(ctdb_db, dd->key, &header, tdb_null);
if (res != 0) {
DEBUG(DEBUG_ERR, (__location__ ": Failed to store record with "
"key hash [0x%08x] on database db[%s].\n",
hash, ctdb_db->db_name));
goto skip;
}
tdb_chainunlock(ctdb_db->ltdb->tdb, dd->key);
goto done;
skip:
tdb_chainunlock(ctdb_db->ltdb->tdb, dd->key);
recs->vdata->count.delete_list.skipped++;
recs->vdata->count.delete_list.left--;
talloc_free(dd);
dd = NULL;
done:
if (dd == NULL) {
return 0;
}
return delete_marshall_traverse(param, data);
}
/**
* traverse function for the traversal of the delete_queue,
* the fast-path vacuuming list.
*
* - If the record has been migrated off the node
* or has been revived (filled with data) on the node,
* then skip the record.
*
* - If the current node is the record's lmaster and it is
* a record that has never been migrated with data, then
* delete the record from the local tdb.
*
* - If the current node is the record's lmaster and it has
* been migrated with data, then schedule it for the normal
* vacuuming procedure (i.e. add it to the delete_list).
*
* - If the current node is NOT the record's lmaster then
* add it to the list of records that are to be sent to
* the lmaster with the VACUUM_FETCH message.
*/
static int delete_queue_traverse(void *param, void *data)
{
struct delete_record_data *dd =
talloc_get_type(data, struct delete_record_data);
struct vacuum_data *vdata = talloc_get_type(param, struct vacuum_data);
struct ctdb_db_context *ctdb_db = dd->ctdb_db;
struct ctdb_context *ctdb = ctdb_db->ctdb; /* or dd->ctdb ??? */
int res;
struct ctdb_ltdb_header header;
uint32_t lmaster;
uint32_t hash = ctdb_hash(&(dd->key));
vdata->count.delete_queue.total++;
res = tdb_chainlock_nonblock(ctdb_db->ltdb->tdb, dd->key);
if (res != 0) {
vdata->count.delete_queue.error++;
return 0;
}
res = tdb_parse_record(ctdb_db->ltdb->tdb, dd->key,
vacuum_record_parser, &header);
if (res != 0) {
goto skipped;
}
if (header.dmaster != ctdb->pnn) {
/* The record has been migrated off the node. Skip. */
goto skipped;
}
if (header.rsn != dd->hdr.rsn) {
/*
* The record has been migrated off the node and back again.
* But not requeued for deletion. Skip it.
*/
goto skipped;
}
/*
* We are dmaster, and the record has no data, and it has
* not been migrated after it has been queued for deletion.
*
* At this stage, the record could still have been revived locally
* and last been written with empty data. This can only be
* fixed with the addition of an active or delete flag. (TODO)
*/
lmaster = ctdb_lmaster(ctdb_db->ctdb, &dd->key);
if (lmaster != ctdb->pnn) {
res = add_record_to_vacuum_fetch_list(vdata, dd->key);
if (res != 0) {
DEBUG(DEBUG_ERR,
(__location__ " Error adding record to list "
"of records to send to lmaster.\n"));
vdata->count.delete_queue.error++;
} else {
vdata->count.delete_queue.added_to_vacuum_fetch_list++;
}
goto done;
}
/* use header->flags or dd->hdr.flags ?? */
if (dd->hdr.flags & CTDB_REC_FLAG_MIGRATED_WITH_DATA) {
res = add_record_to_delete_list(vdata, dd->key, &dd->hdr);
if (res != 0) {
DEBUG(DEBUG_ERR,
(__location__ " Error adding record to list "
"of records for deletion on lmaster.\n"));
vdata->count.delete_queue.error++;
} else {
vdata->count.delete_queue.added_to_delete_list++;
}
} else {
res = tdb_delete(ctdb_db->ltdb->tdb, dd->key);
if (res != 0) {
DEBUG(DEBUG_ERR,
(__location__ " Error deleting record with key "
"hash [0x%08x] from local data base db[%s].\n",
hash, ctdb_db->db_name));
vdata->count.delete_queue.error++;
goto done;
}
DEBUG(DEBUG_DEBUG,
(__location__ " Deleted record with key hash "
"[0x%08x] from local data base db[%s].\n",
hash, ctdb_db->db_name));
vdata->count.delete_queue.deleted++;
}
goto done;
skipped:
vdata->count.delete_queue.skipped++;
done:
tdb_chainunlock(ctdb_db->ltdb->tdb, dd->key);
return 0;
}
/**
* Delete the records that we are lmaster and dmaster for and
* that could be deleted on all other nodes via the TRY_DELETE_RECORDS
* control.
*/
static int delete_record_traverse(void *param, void *data)
{
struct delete_record_data *dd =
talloc_get_type(data, struct delete_record_data);
struct vacuum_data *vdata = talloc_get_type(param, struct vacuum_data);
struct ctdb_db_context *ctdb_db = dd->ctdb_db;
struct ctdb_context *ctdb = ctdb_db->ctdb;
int res;
struct ctdb_ltdb_header header;
uint32_t lmaster;
uint32_t hash = ctdb_hash(&(dd->key));
res = tdb_chainlock(ctdb_db->ltdb->tdb, dd->key);
if (res != 0) {
DEBUG(DEBUG_ERR,
(__location__ " Error getting chainlock on record with "
"key hash [0x%08x] on database db[%s].\n",
hash, ctdb_db->db_name));
vdata->count.delete_list.local_error++;
vdata->count.delete_list.left--;
talloc_free(dd);
return 0;
}
/*
* Verify that the record is still empty, its RSN has not
* changed and that we are still its lmaster and dmaster.
*/
res = tdb_parse_record(ctdb_db->ltdb->tdb, dd->key,
vacuum_record_parser, &header);
if (res != 0) {
goto skip;
}
if (header.flags & CTDB_REC_RO_FLAGS) {
DEBUG(DEBUG_INFO, (__location__ ": record with hash [0x%08x] "
"on database db[%s] has read-only flags. "
"skipping.\n",
hash, ctdb_db->db_name));
goto skip;
}
if (header.dmaster != ctdb->pnn) {
DEBUG(DEBUG_INFO, (__location__ ": record with hash [0x%08x] "
"on database db[%s] has been migrated away. "
"skipping.\n",
hash, ctdb_db->db_name));
goto skip;
}
if (header.rsn != dd->hdr.rsn + 1) {
/*
* The record has been migrated off the node and back again.
* But not requeued for deletion. Skip it.
* (Note that the first marshall traverse has bumped the RSN
* on disk.)
*/
DEBUG(DEBUG_INFO, (__location__ ": record with hash [0x%08x] "
"on database db[%s] seems to have been "
"migrated away and back again (with empty "
"data). skipping.\n",
hash, ctdb_db->db_name));
goto skip;
}
lmaster = ctdb_lmaster(ctdb_db->ctdb, &dd->key);
if (lmaster != ctdb->pnn) {
DEBUG(DEBUG_INFO, (__location__ ": not lmaster for record in "
"delete list (key hash [0x%08x], db[%s]). "
"Strange! skipping.\n",
hash, ctdb_db->db_name));
goto skip;
}
res = tdb_delete(ctdb_db->ltdb->tdb, dd->key);
if (res != 0) {
DEBUG(DEBUG_ERR,
(__location__ " Error deleting record with key hash "
"[0x%08x] from local data base db[%s].\n",
hash, ctdb_db->db_name));
vdata->count.delete_list.local_error++;
goto done;
}
DEBUG(DEBUG_DEBUG,
(__location__ " Deleted record with key hash [0x%08x] from "
"local data base db[%s].\n", hash, ctdb_db->db_name));
vdata->count.delete_list.deleted++;
goto done;
skip:
vdata->count.delete_list.skipped++;
done:
tdb_chainunlock(ctdb_db->ltdb->tdb, dd->key);
talloc_free(dd);
vdata->count.delete_list.left--;
return 0;
}
/**
* Traverse the delete_queue.
* Records are either deleted directly or filled
* into the delete list or the vacuum fetch lists
* for further processing.
*/
static void ctdb_process_delete_queue(struct ctdb_db_context *ctdb_db,
struct vacuum_data *vdata)
{
uint32_t sum;
int ret;
ret = trbt_traversearray32(ctdb_db->delete_queue, 1,
delete_queue_traverse, vdata);
if (ret != 0) {
DEBUG(DEBUG_ERR, (__location__ " Error traversing "
"the delete queue.\n"));
}
sum = vdata->count.delete_queue.deleted
+ vdata->count.delete_queue.skipped
+ vdata->count.delete_queue.error
+ vdata->count.delete_queue.added_to_delete_list
+ vdata->count.delete_queue.added_to_vacuum_fetch_list;
if (vdata->count.delete_queue.total != sum) {
DEBUG(DEBUG_ERR, (__location__ " Inconsistency in fast vacuum "
"counts for db[%s]: total[%u] != sum[%u]\n",
ctdb_db->db_name,
(unsigned)vdata->count.delete_queue.total,
(unsigned)sum));
}
if (vdata->count.delete_queue.total > 0) {
DEBUG(DEBUG_INFO,
(__location__
" fast vacuuming delete_queue traverse statistics: "
"db[%s] "
"total[%u] "
"del[%u] "
"skp[%u] "
"err[%u] "
"adl[%u] "
"avf[%u]\n",
ctdb_db->db_name,
(unsigned)vdata->count.delete_queue.total,
(unsigned)vdata->count.delete_queue.deleted,
(unsigned)vdata->count.delete_queue.skipped,
(unsigned)vdata->count.delete_queue.error,
(unsigned)vdata->count.delete_queue.added_to_delete_list,
(unsigned)vdata->count.delete_queue.added_to_vacuum_fetch_list));
}
return;
}
/**
* read-only traverse of the database, looking for records that
* might be able to be vacuumed.
*
* This is not done each time but only every tunable
* VacuumFastPathCount times.
*/
static void ctdb_vacuum_traverse_db(struct ctdb_db_context *ctdb_db,
struct vacuum_data *vdata)
{
int ret;
ret = tdb_traverse_read(ctdb_db->ltdb->tdb, vacuum_traverse, vdata);
if (ret == -1 || vdata->traverse_error) {
DEBUG(DEBUG_ERR, (__location__ " Traverse error in vacuuming "
"'%s'\n", ctdb_db->db_name));
return;
}
if (vdata->count.db_traverse.total > 0) {
DEBUG(DEBUG_INFO,
(__location__
" full vacuuming db traverse statistics: "
"db[%s] "
"total[%u] "
"skp[%u] "
"err[%u] "
"sched[%u]\n",
ctdb_db->db_name,
(unsigned)vdata->count.db_traverse.total,
(unsigned)vdata->count.db_traverse.skipped,
(unsigned)vdata->count.db_traverse.error,
(unsigned)vdata->count.db_traverse.scheduled));
}
return;
}
/**
* Process the vacuum fetch lists:
* For records for which we are not the lmaster, tell the lmaster to
* fetch the record.
*/
static void ctdb_process_vacuum_fetch_lists(struct ctdb_db_context *ctdb_db,
struct vacuum_data *vdata)
{
int i;
struct ctdb_context *ctdb = ctdb_db->ctdb;
for (i = 0; i < ctdb->num_nodes; i++) {
TDB_DATA data;
struct ctdb_marshall_buffer *vfl = vdata->vacuum_fetch_list[i];
if (ctdb->nodes[i]->pnn == ctdb->pnn) {
continue;
}
if (vfl->count == 0) {
continue;
}
DEBUG(DEBUG_INFO, ("Found %u records for lmaster %u in '%s'\n",
vfl->count, ctdb->nodes[i]->pnn,
ctdb_db->db_name));
data = ctdb_marshall_finish(vfl);
if (ctdb_client_send_message(ctdb, ctdb->nodes[i]->pnn,
CTDB_SRVID_VACUUM_FETCH,
data) != 0)
{
DEBUG(DEBUG_ERR, (__location__ " Failed to send vacuum "
"fetch message to %u\n",
ctdb->nodes[i]->pnn));
}
}
return;
}
/**
* Process the delete list:
*
* This is the last step of vacuuming that consistently deletes
* those records that have been migrated with data and can hence
* not be deleted when leaving a node.
*
* In this step, the lmaster does the final deletion of those empty
* records that it is also dmaster for. It has ususally received
* at least some of these records previously from the former dmasters
* with the vacuum fetch message.
*
* This last step is implemented as a 3-phase process to protect from
* races leading to data corruption:
*
* 1) Send the lmaster's copy to all other active nodes with the
* RECEIVE_RECORDS control: The remote nodes store the lmaster's copy.
* 2) Send the records that could successfully be stored remotely
* in step #1 to all active nodes with the TRY_DELETE_RECORDS
* control. The remote notes delete their local copy.
* 3) The lmaster locally deletes its copies of all records that
* could successfully be deleted remotely in step #2.
*/
static void ctdb_process_delete_list(struct ctdb_db_context *ctdb_db,
struct vacuum_data *vdata)
{
int ret, i;
struct ctdb_context *ctdb = ctdb_db->ctdb;
struct delete_records_list *recs;
TDB_DATA indata;
struct ctdb_node_map_old *nodemap;
uint32_t *active_nodes;
int num_active_nodes;
TALLOC_CTX *tmp_ctx;
uint32_t sum;
if (vdata->count.delete_list.total == 0) {
return;
}
tmp_ctx = talloc_new(vdata);
if (tmp_ctx == NULL) {
DEBUG(DEBUG_ERR,(__location__ " Out of memory\n"));
return;
}
vdata->count.delete_list.left = vdata->count.delete_list.total;
/*
* get the list of currently active nodes
*/
ret = ctdb_ctrl_getnodemap(ctdb, TIMELIMIT(),
CTDB_CURRENT_NODE,
tmp_ctx,
&nodemap);
if (ret != 0) {
DEBUG(DEBUG_ERR,(__location__ " unable to get node map\n"));
goto done;
}
active_nodes = list_of_active_nodes(ctdb, nodemap,
nodemap, /* talloc context */
false /* include self */);
/* yuck! ;-) */
num_active_nodes = talloc_get_size(active_nodes)/sizeof(*active_nodes);
/*
* Now delete the records all active nodes in a three-phase process:
* 1) send all active remote nodes the current empty copy with this
* node as DMASTER
* 2) if all nodes could store the new copy,
* tell all the active remote nodes to delete all their copy
* 3) if all remote nodes deleted their record copy, delete it locally
*/
/*
* Step 1:
* Send currently empty record copy to all active nodes for storing.
*/
recs = talloc_zero(tmp_ctx, struct delete_records_list);
if (recs == NULL) {
DEBUG(DEBUG_ERR,(__location__ " Out of memory\n"));
goto done;
}
recs->records = (struct ctdb_marshall_buffer *)
talloc_zero_size(recs,
offsetof(struct ctdb_marshall_buffer, data));
if (recs->records == NULL) {
DEBUG(DEBUG_ERR,(__location__ " Out of memory\n"));
goto done;
}
recs->records->db_id = ctdb_db->db_id;
recs->vdata = vdata;
/*
* traverse the tree of all records we want to delete and
* create a blob we can send to the other nodes.
*
* We call delete_marshall_traverse_first() to bump the
* records' RSNs in the database, to ensure we (as dmaster)
* keep the highest RSN of the records in the cluster.
*/
ret = trbt_traversearray32(vdata->delete_list, 1,
delete_marshall_traverse_first, recs);
if (ret != 0) {
DEBUG(DEBUG_ERR, (__location__ " Error traversing the "
"delete list for first marshalling.\n"));
goto done;
}
indata = ctdb_marshall_finish(recs->records);
for (i = 0; i < num_active_nodes; i++) {
struct ctdb_marshall_buffer *records;
struct ctdb_rec_data_old *rec;
int32_t res;
TDB_DATA outdata;
ret = ctdb_control(ctdb, active_nodes[i], 0,
CTDB_CONTROL_RECEIVE_RECORDS, 0,
indata, recs, &outdata, &res,
NULL, NULL);
if (ret != 0 || res != 0) {
DEBUG(DEBUG_ERR, ("Error storing record copies on "
"node %u: ret[%d] res[%d]\n",
active_nodes[i], ret, res));
goto done;
}
/*
* outdata contains the list of records coming back
* from the node: These are the records that the
* remote node could not store. We remove these from
* the list to process further.
*/
records = (struct ctdb_marshall_buffer *)outdata.dptr;
rec = (struct ctdb_rec_data_old *)&records->data[0];
while (records->count-- > 1) {
TDB_DATA reckey, recdata;
struct ctdb_ltdb_header *rechdr;
struct delete_record_data *dd;
reckey.dptr = &rec->data[0];
reckey.dsize = rec->keylen;
recdata.dptr = &rec->data[reckey.dsize];
recdata.dsize = rec->datalen;
if (recdata.dsize < sizeof(struct ctdb_ltdb_header)) {
DEBUG(DEBUG_CRIT,(__location__ " bad ltdb record\n"));
goto done;
}
rechdr = (struct ctdb_ltdb_header *)recdata.dptr;
recdata.dptr += sizeof(*rechdr);
recdata.dsize -= sizeof(*rechdr);
dd = (struct delete_record_data *)trbt_lookup32(
vdata->delete_list,
ctdb_hash(&reckey));
if (dd != NULL) {
/*
* The other node could not store the record
* copy and it is the first node that failed.
* So we should remove it from the tree and
* update statistics.
*/
talloc_free(dd);
vdata->count.delete_list.remote_error++;
vdata->count.delete_list.left--;
} else {
DEBUG(DEBUG_ERR, (__location__ " Failed to "
"find record with hash 0x%08x coming "
"back from RECEIVE_RECORDS "
"control in delete list.\n",
ctdb_hash(&reckey)));
vdata->count.delete_list.local_error++;
vdata->count.delete_list.left--;
}
rec = (struct ctdb_rec_data_old *)(rec->length + (uint8_t *)rec);
}
}
if (vdata->count.delete_list.left == 0) {
goto success;
}
/*
* Step 2:
* Send the remaining records to all active nodes for deletion.
*
* The lmaster's (i.e. our) copies of these records have been stored
* successfully on the other nodes.
*/
/*
* Create a marshall blob from the remaining list of records to delete.
*/
talloc_free(recs->records);
recs->records = (struct ctdb_marshall_buffer *)
talloc_zero_size(recs,
offsetof(struct ctdb_marshall_buffer, data));
if (recs->records == NULL) {
DEBUG(DEBUG_ERR,(__location__ " Out of memory\n"));
goto done;
}
recs->records->db_id = ctdb_db->db_id;
ret = trbt_traversearray32(vdata->delete_list, 1,
delete_marshall_traverse, recs);
if (ret != 0) {
DEBUG(DEBUG_ERR, (__location__ " Error traversing the "
"delete list for second marshalling.\n"));
goto done;
}
indata = ctdb_marshall_finish(recs->records);
for (i = 0; i < num_active_nodes; i++) {
struct ctdb_marshall_buffer *records;
struct ctdb_rec_data_old *rec;
int32_t res;
TDB_DATA outdata;
ret = ctdb_control(ctdb, active_nodes[i], 0,
CTDB_CONTROL_TRY_DELETE_RECORDS, 0,
indata, recs, &outdata, &res,
NULL, NULL);
if (ret != 0 || res != 0) {
DEBUG(DEBUG_ERR, ("Failed to delete records on "
"node %u: ret[%d] res[%d]\n",
active_nodes[i], ret, res));
goto done;
}
/*
* outdata contains the list of records coming back
* from the node: These are the records that the
* remote node could not delete. We remove these from
* the list to delete locally.
*/
records = (struct ctdb_marshall_buffer *)outdata.dptr;
rec = (struct ctdb_rec_data_old *)&records->data[0];
while (records->count-- > 1) {
TDB_DATA reckey, recdata;
struct ctdb_ltdb_header *rechdr;
struct delete_record_data *dd;
reckey.dptr = &rec->data[0];
reckey.dsize = rec->keylen;
recdata.dptr = &rec->data[reckey.dsize];
recdata.dsize = rec->datalen;
if (recdata.dsize < sizeof(struct ctdb_ltdb_header)) {
DEBUG(DEBUG_CRIT,(__location__ " bad ltdb record\n"));
goto done;
}
rechdr = (struct ctdb_ltdb_header *)recdata.dptr;
recdata.dptr += sizeof(*rechdr);
recdata.dsize -= sizeof(*rechdr);
dd = (struct delete_record_data *)trbt_lookup32(
vdata->delete_list,
ctdb_hash(&reckey));
if (dd != NULL) {
/*
* The other node could not delete the
* record and it is the first node that
* failed. So we should remove it from
* the tree and update statistics.
*/
talloc_free(dd);
vdata->count.delete_list.remote_error++;
vdata->count.delete_list.left--;
} else {
DEBUG(DEBUG_ERR, (__location__ " Failed to "
"find record with hash 0x%08x coming "
"back from TRY_DELETE_RECORDS "
"control in delete list.\n",
ctdb_hash(&reckey)));
vdata->count.delete_list.local_error++;
vdata->count.delete_list.left--;
}
rec = (struct ctdb_rec_data_old *)(rec->length + (uint8_t *)rec);
}
}
if (vdata->count.delete_list.left == 0) {
goto success;
}
/*
* Step 3:
* Delete the remaining records locally.
*
* These records have successfully been deleted on all
* active remote nodes.
*/
ret = trbt_traversearray32(vdata->delete_list, 1,
delete_record_traverse, vdata);
if (ret != 0) {
DEBUG(DEBUG_ERR, (__location__ " Error traversing the "
"delete list for deletion.\n"));
}
success:
if (vdata->count.delete_list.left != 0) {
DEBUG(DEBUG_ERR, (__location__ " Vaccum db[%s] error: "
"there are %u records left for deletion after "
"processing delete list\n",
ctdb_db->db_name,
(unsigned)vdata->count.delete_list.left));
}
sum = vdata->count.delete_list.deleted
+ vdata->count.delete_list.skipped
+ vdata->count.delete_list.remote_error
+ vdata->count.delete_list.local_error
+ vdata->count.delete_list.left;
if (vdata->count.delete_list.total != sum) {
DEBUG(DEBUG_ERR, (__location__ " Inconsistency in vacuum "
"delete list counts for db[%s]: total[%u] != sum[%u]\n",
ctdb_db->db_name,
(unsigned)vdata->count.delete_list.total,
(unsigned)sum));
}
if (vdata->count.delete_list.total > 0) {
DEBUG(DEBUG_INFO,
(__location__
" vacuum delete list statistics: "
"db[%s] "
"total[%u] "
"del[%u] "
"skip[%u] "
"rem.err[%u] "
"loc.err[%u] "
"left[%u]\n",
ctdb_db->db_name,
(unsigned)vdata->count.delete_list.total,
(unsigned)vdata->count.delete_list.deleted,
(unsigned)vdata->count.delete_list.skipped,
(unsigned)vdata->count.delete_list.remote_error,
(unsigned)vdata->count.delete_list.local_error,
(unsigned)vdata->count.delete_list.left));
}
done:
talloc_free(tmp_ctx);
return;
}
/**
* initialize the vacuum_data
*/
static struct vacuum_data *ctdb_vacuum_init_vacuum_data(
struct ctdb_db_context *ctdb_db,
TALLOC_CTX *mem_ctx)
{
int i;
struct ctdb_context *ctdb = ctdb_db->ctdb;
struct vacuum_data *vdata;
vdata = talloc_zero(mem_ctx, struct vacuum_data);
if (vdata == NULL) {
DEBUG(DEBUG_ERR,(__location__ " Out of memory\n"));
return NULL;
}
vdata->ctdb = ctdb_db->ctdb;
vdata->ctdb_db = ctdb_db;
vdata->delete_list = trbt_create(vdata, 0);
if (vdata->delete_list == NULL) {
DEBUG(DEBUG_ERR,(__location__ " Out of memory\n"));
goto fail;
}
vdata->start = timeval_current();
vdata->count.delete_queue.added_to_delete_list = 0;
vdata->count.delete_queue.added_to_vacuum_fetch_list = 0;
vdata->count.delete_queue.deleted = 0;
vdata->count.delete_queue.skipped = 0;
vdata->count.delete_queue.error = 0;
vdata->count.delete_queue.total = 0;
vdata->count.db_traverse.scheduled = 0;
vdata->count.db_traverse.skipped = 0;
vdata->count.db_traverse.error = 0;
vdata->count.db_traverse.total = 0;
vdata->count.delete_list.total = 0;
vdata->count.delete_list.left = 0;
vdata->count.delete_list.remote_error = 0;
vdata->count.delete_list.local_error = 0;
vdata->count.delete_list.skipped = 0;
vdata->count.delete_list.deleted = 0;
/* the list needs to be of length num_nodes */
vdata->vacuum_fetch_list = talloc_zero_array(vdata,
struct ctdb_marshall_buffer *,
ctdb->num_nodes);
if (vdata->vacuum_fetch_list == NULL) {
DEBUG(DEBUG_ERR,(__location__ " Out of memory\n"));
goto fail;
}
for (i = 0; i < ctdb->num_nodes; i++) {
vdata->vacuum_fetch_list[i] = (struct ctdb_marshall_buffer *)
talloc_zero_size(vdata->vacuum_fetch_list,
offsetof(struct ctdb_marshall_buffer, data));
if (vdata->vacuum_fetch_list[i] == NULL) {
DEBUG(DEBUG_ERR,(__location__ " Out of memory\n"));
talloc_free(vdata);
return NULL;
}
vdata->vacuum_fetch_list[i]->db_id = ctdb_db->db_id;
}
return vdata;
fail:
talloc_free(vdata);
return NULL;
}
/**
* Vacuum a DB:
* - Always do the fast vacuuming run, which traverses
* the in-memory delete queue: these records have been
* scheduled for deletion.
* - Only if explicitly requested, the database is traversed
* in order to use the traditional heuristics on empty records
* to trigger deletion.
* This is done only every VacuumFastPathCount'th vacuuming run.
*
* The traverse runs fill two lists:
*
* - The delete_list:
* This is the list of empty records the current
* node is lmaster and dmaster for. These records are later
* deleted first on other nodes and then locally.
*
* The fast vacuuming run has a short cut for those records
* that have never been migrated with data: these records
* are immediately deleted locally, since they have left
* no trace on other nodes.
*
* - The vacuum_fetch lists
* (one for each other lmaster node):
* The records in this list are sent for deletion to
* their lmaster in a bulk VACUUM_FETCH message.
*
* The lmaster then migrates all these records to itelf
* so that they can be vacuumed there.
*
* This executes in the child context.
*/
static int ctdb_vacuum_db(struct ctdb_db_context *ctdb_db,
bool full_vacuum_run)
{
struct ctdb_context *ctdb = ctdb_db->ctdb;
int ret, pnn;
struct vacuum_data *vdata;
TALLOC_CTX *tmp_ctx;
DEBUG(DEBUG_INFO, (__location__ " Entering %s vacuum run for db "
"%s db_id[0x%08x]\n",
full_vacuum_run ? "full" : "fast",
ctdb_db->db_name, ctdb_db->db_id));
ret = ctdb_ctrl_getvnnmap(ctdb, TIMELIMIT(), CTDB_CURRENT_NODE, ctdb, &ctdb->vnn_map);
if (ret != 0) {
DEBUG(DEBUG_ERR, ("Unable to get vnnmap from local node\n"));
return ret;
}
pnn = ctdb_ctrl_getpnn(ctdb, TIMELIMIT(), CTDB_CURRENT_NODE);
if (pnn == -1) {
DEBUG(DEBUG_ERR, ("Unable to get pnn from local node\n"));
return -1;
}
ctdb->pnn = pnn;
tmp_ctx = talloc_new(ctdb_db);
if (tmp_ctx == NULL) {
DEBUG(DEBUG_ERR, ("Out of memory!\n"));
return -1;
}
vdata = ctdb_vacuum_init_vacuum_data(ctdb_db, tmp_ctx);
if (vdata == NULL) {
talloc_free(tmp_ctx);
return -1;
}
if (full_vacuum_run) {
ctdb_vacuum_traverse_db(ctdb_db, vdata);
}
ctdb_process_delete_queue(ctdb_db, vdata);
ctdb_process_vacuum_fetch_lists(ctdb_db, vdata);
ctdb_process_delete_list(ctdb_db, vdata);
talloc_free(tmp_ctx);
/* this ensures we run our event queue */
ctdb_ctrl_getpnn(ctdb, TIMELIMIT(), CTDB_CURRENT_NODE);
return 0;
}
/*
* repack and vaccum a db
* called from the child context
*/
static int ctdb_vacuum_and_repack_db(struct ctdb_db_context *ctdb_db,
bool full_vacuum_run)
{
uint32_t repack_limit = ctdb_db->ctdb->tunable.repack_limit;
const char *name = ctdb_db->db_name;
int freelist_size = 0;
int ret;
if (ctdb_vacuum_db(ctdb_db, full_vacuum_run) != 0) {
DEBUG(DEBUG_ERR,(__location__ " Failed to vacuum '%s'\n", name));
}
freelist_size = tdb_freelist_size(ctdb_db->ltdb->tdb);
if (freelist_size == -1) {
DEBUG(DEBUG_ERR,(__location__ " Failed to get freelist size for '%s'\n", name));
return -1;
}
/*
* decide if a repack is necessary
*/
if ((repack_limit == 0 || (uint32_t)freelist_size < repack_limit))
{
return 0;
}
DEBUG(DEBUG_INFO, ("Repacking %s with %u freelist entries\n",
name, freelist_size));
ret = tdb_repack(ctdb_db->ltdb->tdb);
if (ret != 0) {
DEBUG(DEBUG_ERR,(__location__ " Failed to repack '%s'\n", name));
return -1;
}
return 0;
}
static uint32_t get_vacuum_interval(struct ctdb_db_context *ctdb_db)
{
uint32_t interval = ctdb_db->ctdb->tunable.vacuum_interval;
return interval;
}
static int vacuum_child_destructor(struct ctdb_vacuum_child_context *child_ctx)
{
double l = timeval_elapsed(&child_ctx->start_time);
struct ctdb_db_context *ctdb_db = child_ctx->vacuum_handle->ctdb_db;
struct ctdb_context *ctdb = ctdb_db->ctdb;
CTDB_UPDATE_DB_LATENCY(ctdb_db, "vacuum", vacuum.latency, l);
DEBUG(DEBUG_INFO,("Vacuuming took %.3f seconds for database %s\n", l, ctdb_db->db_name));
if (child_ctx->child_pid != -1) {
ctdb_kill(ctdb, child_ctx->child_pid, SIGKILL);
} else {
/* Bump the number of successful fast-path runs. */
child_ctx->vacuum_handle->fast_path_count++;
}
DLIST_REMOVE(ctdb->vacuumers, child_ctx);
tevent_add_timer(ctdb->ev, child_ctx->vacuum_handle,
timeval_current_ofs(get_vacuum_interval(ctdb_db), 0),
ctdb_vacuum_event, child_ctx->vacuum_handle);
return 0;
}
/*
* this event is generated when a vacuum child process times out
*/
static void vacuum_child_timeout(struct tevent_context *ev,
struct tevent_timer *te,
struct timeval t, void *private_data)
{
struct ctdb_vacuum_child_context *child_ctx = talloc_get_type(private_data, struct ctdb_vacuum_child_context);
DEBUG(DEBUG_ERR,("Vacuuming child process timed out for db %s\n", child_ctx->vacuum_handle->ctdb_db->db_name));
child_ctx->status = VACUUM_TIMEOUT;
talloc_free(child_ctx);
}
/*
* this event is generated when a vacuum child process has completed
*/
static void vacuum_child_handler(struct tevent_context *ev,
struct tevent_fd *fde,
uint16_t flags, void *private_data)
{
struct ctdb_vacuum_child_context *child_ctx = talloc_get_type(private_data, struct ctdb_vacuum_child_context);
char c = 0;
int ret;
DEBUG(DEBUG_INFO,("Vacuuming child process %d finished for db %s\n", child_ctx->child_pid, child_ctx->vacuum_handle->ctdb_db->db_name));
child_ctx->child_pid = -1;
ret = sys_read(child_ctx->fd[0], &c, 1);
if (ret != 1 || c != 0) {
child_ctx->status = VACUUM_ERROR;
DEBUG(DEBUG_ERR, ("A vacuum child process failed with an error for database %s. ret=%d c=%d\n", child_ctx->vacuum_handle->ctdb_db->db_name, ret, c));
} else {
child_ctx->status = VACUUM_OK;
}
talloc_free(child_ctx);
}
/*
* this event is called every time we need to start a new vacuum process
*/
static void ctdb_vacuum_event(struct tevent_context *ev,
struct tevent_timer *te,
struct timeval t, void *private_data)
{
struct ctdb_vacuum_handle *vacuum_handle = talloc_get_type(private_data, struct ctdb_vacuum_handle);
struct ctdb_db_context *ctdb_db = vacuum_handle->ctdb_db;
struct ctdb_context *ctdb = ctdb_db->ctdb;
struct ctdb_vacuum_child_context *child_ctx;
struct tevent_fd *fde;
int ret;
/* we don't vacuum if we are in recovery mode, or db frozen */
if (ctdb->recovery_mode == CTDB_RECOVERY_ACTIVE ||
ctdb_db_frozen(ctdb_db)) {
DEBUG(DEBUG_INFO, ("Not vacuuming %s (%s)\n", ctdb_db->db_name,
ctdb->recovery_mode == CTDB_RECOVERY_ACTIVE ?
"in recovery" : "frozen"));
tevent_add_timer(ctdb->ev, vacuum_handle,
timeval_current_ofs(get_vacuum_interval(ctdb_db), 0),
ctdb_vacuum_event, vacuum_handle);
return;
}
/* Do not allow multiple vacuuming child processes to be active at the
* same time. If there is vacuuming child process active, delay
* new vacuuming event to stagger vacuuming events.
*/
if (ctdb->vacuumers != NULL) {
tevent_add_timer(ctdb->ev, vacuum_handle,
timeval_current_ofs(0, 500*1000),
ctdb_vacuum_event, vacuum_handle);
return;
}
child_ctx = talloc(vacuum_handle, struct ctdb_vacuum_child_context);
if (child_ctx == NULL) {
DEBUG(DEBUG_CRIT, (__location__ " Failed to allocate child context for vacuuming of %s\n", ctdb_db->db_name));
ctdb_fatal(ctdb, "Out of memory when crating vacuum child context. Shutting down\n");
}
ret = pipe(child_ctx->fd);
if (ret != 0) {
talloc_free(child_ctx);
DEBUG(DEBUG_ERR, ("Failed to create pipe for vacuum child process.\n"));
tevent_add_timer(ctdb->ev, vacuum_handle,
timeval_current_ofs(get_vacuum_interval(ctdb_db), 0),
ctdb_vacuum_event, vacuum_handle);
return;
}
if (vacuum_handle->fast_path_count > ctdb->tunable.vacuum_fast_path_count) {
vacuum_handle->fast_path_count = 0;
}
child_ctx->child_pid = ctdb_fork(ctdb);
if (child_ctx->child_pid == (pid_t)-1) {
close(child_ctx->fd[0]);
close(child_ctx->fd[1]);
talloc_free(child_ctx);
DEBUG(DEBUG_ERR, ("Failed to fork vacuum child process.\n"));
tevent_add_timer(ctdb->ev, vacuum_handle,
timeval_current_ofs(get_vacuum_interval(ctdb_db), 0),
ctdb_vacuum_event, vacuum_handle);
return;
}
if (child_ctx->child_pid == 0) {
char cc = 0;
bool full_vacuum_run = false;
close(child_ctx->fd[0]);
DEBUG(DEBUG_INFO,("Vacuuming child process %d for db %s started\n", getpid(), ctdb_db->db_name));
prctl_set_comment("ctdb_vacuum");
if (switch_from_server_to_client(ctdb) != 0) {
DEBUG(DEBUG_CRIT, (__location__ "ERROR: failed to switch vacuum daemon into client mode. Shutting down.\n"));
_exit(1);
}
if ((ctdb->tunable.vacuum_fast_path_count > 0) &&
(vacuum_handle->fast_path_count == 0))
{
full_vacuum_run = true;
}
cc = ctdb_vacuum_and_repack_db(ctdb_db, full_vacuum_run);
sys_write(child_ctx->fd[1], &cc, 1);
_exit(0);
}
set_close_on_exec(child_ctx->fd[0]);
close(child_ctx->fd[1]);
child_ctx->status = VACUUM_RUNNING;
child_ctx->start_time = timeval_current();
DLIST_ADD(ctdb->vacuumers, child_ctx);
talloc_set_destructor(child_ctx, vacuum_child_destructor);
/*
* Clear the fastpath vacuuming list in the parent.
*/
talloc_free(ctdb_db->delete_queue);
ctdb_db->delete_queue = trbt_create(ctdb_db, 0);
if (ctdb_db->delete_queue == NULL) {
/* fatal here? ... */
ctdb_fatal(ctdb, "Out of memory when re-creating vacuum tree "
"in parent context. Shutting down\n");
}
tevent_add_timer(ctdb->ev, child_ctx,
timeval_current_ofs(ctdb->tunable.vacuum_max_run_time, 0),
vacuum_child_timeout, child_ctx);
DEBUG(DEBUG_DEBUG, (__location__ " Created PIPE FD:%d to child vacuum process\n", child_ctx->fd[0]));
fde = tevent_add_fd(ctdb->ev, child_ctx, child_ctx->fd[0],
TEVENT_FD_READ, vacuum_child_handler, child_ctx);
tevent_fd_set_auto_close(fde);
vacuum_handle->child_ctx = child_ctx;
child_ctx->vacuum_handle = vacuum_handle;
}
void ctdb_stop_vacuuming(struct ctdb_context *ctdb)
{
/* Simply free them all. */
while (ctdb->vacuumers) {
DEBUG(DEBUG_INFO, ("Aborting vacuuming for %s (%i)\n",
ctdb->vacuumers->vacuum_handle->ctdb_db->db_name,
(int)ctdb->vacuumers->child_pid));
/* vacuum_child_destructor kills it, removes from list */
talloc_free(ctdb->vacuumers);
}
}
/* this function initializes the vacuuming context for a database
* starts the vacuuming events
*/
int ctdb_vacuum_init(struct ctdb_db_context *ctdb_db)
{
if (! ctdb_db_volatile(ctdb_db)) {
DEBUG(DEBUG_ERR,
("Vacuuming is disabled for non-volatile database %s\n",
ctdb_db->db_name));
return 0;
}
ctdb_db->vacuum_handle = talloc(ctdb_db, struct ctdb_vacuum_handle);
CTDB_NO_MEMORY(ctdb_db->ctdb, ctdb_db->vacuum_handle);
ctdb_db->vacuum_handle->ctdb_db = ctdb_db;
ctdb_db->vacuum_handle->fast_path_count = 0;
tevent_add_timer(ctdb_db->ctdb->ev, ctdb_db->vacuum_handle,
timeval_current_ofs(get_vacuum_interval(ctdb_db), 0),
ctdb_vacuum_event, ctdb_db->vacuum_handle);
return 0;
}
static void remove_record_from_delete_queue(struct ctdb_db_context *ctdb_db,
const struct ctdb_ltdb_header *hdr,
const TDB_DATA key)
{
struct delete_record_data *kd;
uint32_t hash;
hash = (uint32_t)ctdb_hash(&key);
DEBUG(DEBUG_DEBUG, (__location__
" remove_record_from_delete_queue: "
"db[%s] "
"db_id[0x%08x] "
"key_hash[0x%08x] "
"lmaster[%u] "
"migrated_with_data[%s]\n",
ctdb_db->db_name, ctdb_db->db_id,
hash,
ctdb_lmaster(ctdb_db->ctdb, &key),
hdr->flags & CTDB_REC_FLAG_MIGRATED_WITH_DATA ? "yes" : "no"));
kd = (struct delete_record_data *)trbt_lookup32(ctdb_db->delete_queue, hash);
if (kd == NULL) {
DEBUG(DEBUG_DEBUG, (__location__
" remove_record_from_delete_queue: "
"record not in queue (hash[0x%08x])\n.",
hash));
return;
}
if ((kd->key.dsize != key.dsize) ||
(memcmp(kd->key.dptr, key.dptr, key.dsize) != 0))
{
DEBUG(DEBUG_DEBUG, (__location__
" remove_record_from_delete_queue: "
"hash collision for key with hash[0x%08x] "
"in db[%s] - skipping\n",
hash, ctdb_db->db_name));
return;
}
DEBUG(DEBUG_DEBUG, (__location__
" remove_record_from_delete_queue: "
"removing key with hash[0x%08x]\n",
hash));
talloc_free(kd);
return;
}
/**
* Insert a record into the ctdb_db context's delete queue,
* handling hash collisions.
*/
static int insert_record_into_delete_queue(struct ctdb_db_context *ctdb_db,
const struct ctdb_ltdb_header *hdr,
TDB_DATA key)
{
struct delete_record_data *kd;
uint32_t hash;
int ret;
hash = (uint32_t)ctdb_hash(&key);
DEBUG(DEBUG_DEBUG, (__location__ " schedule for deletion: db[%s] "
"db_id[0x%08x] "
"key_hash[0x%08x] "
"lmaster[%u] "
"migrated_with_data[%s]\n",
ctdb_db->db_name, ctdb_db->db_id,
hash,
ctdb_lmaster(ctdb_db->ctdb, &key),
hdr->flags & CTDB_REC_FLAG_MIGRATED_WITH_DATA ? "yes" : "no"));
kd = (struct delete_record_data *)trbt_lookup32(ctdb_db->delete_queue, hash);
if (kd != NULL) {
if ((kd->key.dsize != key.dsize) ||
(memcmp(kd->key.dptr, key.dptr, key.dsize) != 0))
{
DEBUG(DEBUG_INFO,
(__location__ " schedule for deletion: "
"hash collision for key hash [0x%08x]. "
"Skipping the record.\n", hash));
return 0;
} else {
DEBUG(DEBUG_DEBUG,
(__location__ " schedule for deletion: "
"updating entry for key with hash [0x%08x].\n",
hash));
}
}
ret = insert_delete_record_data_into_tree(ctdb_db->ctdb, ctdb_db,
ctdb_db->delete_queue,
hdr, key);
if (ret != 0) {
DEBUG(DEBUG_INFO,
(__location__ " schedule for deletion: error "
"inserting key with hash [0x%08x] into delete queue\n",
hash));
return -1;
}
return 0;
}
/**
* Schedule a record for deletetion.
* Called from the parent context.
*/
int32_t ctdb_control_schedule_for_deletion(struct ctdb_context *ctdb,
TDB_DATA indata)
{
struct ctdb_control_schedule_for_deletion *dd;
struct ctdb_db_context *ctdb_db;
int ret;
TDB_DATA key;
dd = (struct ctdb_control_schedule_for_deletion *)indata.dptr;
ctdb_db = find_ctdb_db(ctdb, dd->db_id);
if (ctdb_db == NULL) {
DEBUG(DEBUG_ERR, (__location__ " Unknown db id 0x%08x\n",
dd->db_id));
return -1;
}
key.dsize = dd->keylen;
key.dptr = dd->key;
ret = insert_record_into_delete_queue(ctdb_db, &dd->hdr, key);
return ret;
}
int32_t ctdb_local_schedule_for_deletion(struct ctdb_db_context *ctdb_db,
const struct ctdb_ltdb_header *hdr,
TDB_DATA key)
{
int ret;
struct ctdb_control_schedule_for_deletion *dd;
TDB_DATA indata;
int32_t status;
if (ctdb_db->ctdb->ctdbd_pid == getpid()) {
/* main daemon - directly queue */
ret = insert_record_into_delete_queue(ctdb_db, hdr, key);
return ret;
}
/* if we don't have a connection to the daemon we can not send
a control. For example sometimes from update_record control child
process.
*/
if (!ctdb_db->ctdb->can_send_controls) {
return -1;
}
/* child process: send the main daemon a control */
indata.dsize = offsetof(struct ctdb_control_schedule_for_deletion, key) + key.dsize;
indata.dptr = talloc_zero_array(ctdb_db, uint8_t, indata.dsize);
if (indata.dptr == NULL) {
DEBUG(DEBUG_ERR, (__location__ " out of memory\n"));
return -1;
}
dd = (struct ctdb_control_schedule_for_deletion *)(void *)indata.dptr;
dd->db_id = ctdb_db->db_id;
dd->hdr = *hdr;
dd->keylen = key.dsize;
memcpy(dd->key, key.dptr, key.dsize);
ret = ctdb_control(ctdb_db->ctdb,
CTDB_CURRENT_NODE,
ctdb_db->db_id,
CTDB_CONTROL_SCHEDULE_FOR_DELETION,
CTDB_CTRL_FLAG_NOREPLY, /* flags */
indata,
NULL, /* mem_ctx */
NULL, /* outdata */
&status,
NULL, /* timeout : NULL == wait forever */
NULL); /* error message */
talloc_free(indata.dptr);
if (ret != 0 || status != 0) {
DEBUG(DEBUG_ERR, (__location__ " Error sending "
"SCHEDULE_FOR_DELETION "
"control.\n"));
if (status != 0) {
ret = -1;
}
}
return ret;
}
void ctdb_local_remove_from_delete_queue(struct ctdb_db_context *ctdb_db,
const struct ctdb_ltdb_header *hdr,
const TDB_DATA key)
{
if (ctdb_db->ctdb->ctdbd_pid != getpid()) {
/*
* Only remove the record from the delete queue if called
* in the main daemon.
*/
return;
}
remove_record_from_delete_queue(ctdb_db, hdr, key);
return;
}