1
0
mirror of https://github.com/samba-team/samba.git synced 2025-01-03 01:18:10 +03:00
samba-mirror/python/samba/graph.py
Douglas Bagnall c3a95b22aa python: remove all 'from __future__ import division'
This made '//' and '/' in Python 2 behave as in Python 3.

Signed-off-by: Douglas Bagnall <douglas.bagnall@catalyst.net.nz>
Reviewed-by: Andrew Bartlett <abartlet@samba.org>
2021-04-28 03:43:34 +00:00

819 lines
28 KiB
Python

# -*- coding: utf-8 -*-
# Graph topology utilities and dot file generation
#
# Copyright (C) Andrew Bartlett 2018.
#
# Written by Douglas Bagnall <douglas.bagnall@catalyst.net.nz>
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
from samba import colour
import sys
from itertools import cycle, groupby
FONT_SIZE = 10
def reformat_graph_label(s):
"""Break DNs over multiple lines, for better shaped and arguably more
readable nodes. We try to split after commas, and if necessary
after hyphens or failing that in arbitrary places."""
if len(s) < 12:
return s
s = s.replace(',', ',\n')
pieces = []
for p in s.split('\n'):
while len(p) > 20:
if '-' in p[2:20]:
q, p = p.split('-', 1)
else:
n = len(p) // 12
b = len(p) // n
q, p = p[:b], p[b:]
pieces.append(q + '-')
if p:
pieces.append(p)
return '\\n'.join(pieces)
def quote_graph_label(s, reformat=False):
"""Escape a string as graphvis requires."""
# escaping inside quotes is simple in dot, because only " is escaped.
# there is no need to count backslashes in sequences like \\\\"
s = s.replace('"', '\"')
if reformat:
s = reformat_graph_label(s)
return "%s" % s
def shorten_vertex_names(vertices, suffix=',...', aggressive=False):
"""Replace the common suffix (in practice, the base DN) of a number of
vertices with a short string (default ",..."). If this seems
pointless because the replaced string is very short or the results
seem strange, the original vertices are retained.
:param vertices: a sequence of vertices to shorten
:param suffix: the replacement string [",..."]
:param aggressive: replace certain common non-suffix strings
:return: tuple of (rename map, replacements)
The rename map is a dictionary mapping the old vertex names to
their shortened versions. If no changes are made, replacements
will be empty.
"""
vmap = dict((v, v) for v in vertices)
replacements = []
if len(vmap) > 1:
# walk backwards along all the strings until we meet a character
# that is not shared by all.
i = -1
vlist = list(vmap.values())
try:
while True:
c = set(x[i] for x in vlist)
if len(c) > 1 or '*' in c:
break
i -= 1
except IndexError:
# We have indexed beyond the start of a string, which should
# only happen if one node is a strict suffix of all others.
return vmap, replacements
# add one to get to the last unanimous character.
i += 1
# now, we actually really want to split on a comma. So we walk
# back to a comma.
x = vlist[0]
while i < len(x) and x[i] != ',':
i += 1
if i >= -len(suffix):
# there is nothing to gain here
return vmap, replacements
replacements.append((suffix, x[i:]))
for k, v in vmap.items():
vmap[k] = v[:i] + suffix
if aggressive:
# Remove known common annoying strings
for v in vmap.values():
if ',CN=Servers,' not in v:
break
else:
vmap = dict((k, v.replace(',CN=Servers,', ',**,', 1))
for k, v in vmap.items())
replacements.append(('**', 'CN=Servers'))
for v in vmap.values():
if not v.startswith('CN=NTDS Settings,'):
break
else:
vmap = dict((k, v.replace('CN=NTDS Settings,', '*,', 1))
for k, v in vmap.items())
replacements.append(('*', 'CN=NTDS Settings'))
return vmap, replacements
def compile_graph_key(key_items, nodes_above=[], elisions=None,
prefix='key_', width=2):
"""Generate a dot file snippet that acts as a legend for a graph.
:param key_items: sequence of items (is_vertex, style, label)
:param nodes_above: list of vertices (pushes key into right position)
:param elision: tuple (short, full) indicating suffix replacement
:param prefix: string used to generate key node names ["key_"]
:param width: default width of node lines
Each item in key_items is a tuple of (is_vertex, style, label).
is_vertex is a boolean indicating whether the item is a vertex
(True) or edge (False). Style is a dot style string for the edge
or vertex. label is the text associated with the key item.
"""
edge_lines = []
edge_names = []
vertex_lines = []
vertex_names = []
order_lines = []
for i, item in enumerate(key_items):
is_vertex, style, label = item
tag = '%s%d_' % (prefix, i)
label = quote_graph_label(label)
name = '%s_label' % tag
if is_vertex:
order_lines.append(name)
vertex_names.append(name)
vertex_lines.append('%s[label="%s"; %s]' %
(name, label, style))
else:
edge_names.append(name)
e1 = '%se1' % tag
e2 = '%se2' % tag
order_lines.append(name)
edge_lines.append('subgraph cluster_%s {' % tag)
edge_lines.append('%s[label=src; color="#000000"; group="%s_g"]' %
(e1, tag))
edge_lines.append('%s[label=dest; color="#000000"; group="%s_g"]' %
(e2, tag))
edge_lines.append('%s -> %s [constraint = false; %s]' % (e1, e2,
style))
edge_lines.append(('%s[shape=plaintext; style=solid; width=%f; '
'label="%s\\r"]') %
(name, width, label))
edge_lines.append('}')
elision_str = ''
if elisions:
for i, elision in enumerate(reversed(elisions)):
order_lines.append('elision%d' % i)
short, long = elision
if short[0] == ',' and long[0] == ',':
short = short[1:]
long = long[1:]
elision_str += ('\nelision%d[shape=plaintext; style=solid; '
'label="\%s” means “%s\\r"]\n'
% ((i, short, long)))
above_lines = []
if order_lines:
for n in nodes_above:
above_lines.append('"%s" -> %s [style=invis]' %
(n, order_lines[0]))
s = ('subgraph cluster_key {\n'
'label="Key";\n'
'subgraph cluster_key_nodes {\n'
'label="";\n'
'color = "invis";\n'
'%s\n'
'}\n'
'subgraph cluster_key_edges {\n'
'label="";\n'
'color = "invis";\n'
'%s\n'
'{%s}\n'
'}\n'
'%s\n'
'}\n'
'%s\n'
'%s [style=invis; weight=9]'
'\n'
% (';\n'.join(vertex_lines),
'\n'.join(edge_lines),
' '.join(edge_names),
elision_str,
';\n'.join(above_lines),
' -> '.join(order_lines),
))
return s
def dot_graph(vertices, edges,
directed=False,
title=None,
reformat_labels=True,
vertex_colors=None,
edge_colors=None,
edge_labels=None,
vertex_styles=None,
edge_styles=None,
graph_name=None,
shorten_names=False,
key_items=None,
vertex_clusters=None):
"""Generate a Graphviz representation of a list of vertices and edges.
:param vertices: list of vertex names (optional).
:param edges: list of (vertex, vertex) pairs
:param directed: bool: whether the graph is directed
:param title: optional title for the graph
:param reformat_labels: whether to wrap long vertex labels
:param vertex_colors: if not None, a sequence of colours for the vertices
:param edge_colors: if not None, colours for the edges
:param edge_labels: if not None, labels for the edges
:param vertex_styles: if not None, DOT style strings for vertices
:param edge_styles: if not None, DOT style strings for edges
:param graph_name: if not None, name of graph
:param shorten_names: if True, remove common DN suffixes
:param key: (is_vertex, style, description) tuples
:param vertex_clusters: list of subgraph cluster names
Colour, style, and label lists must be the same length as the
corresponding list of edges or vertices (or None).
Colours can be HTML RGB strings ("#FF0000") or common names
("red"), or some other formats you don't want to think about.
If `vertices` is None, only the vertices mentioned in the edges
are shown, and their appearance can be modified using the
vertex_colors and vertex_styles arguments. Vertices appearing in
the edges but not in the `vertices` list will be shown but their
styles can not be modified.
"""
out = []
write = out.append
if vertices is None:
vertices = set(x[0] for x in edges) | set(x[1] for x in edges)
if shorten_names:
vlist = list(set(x[0] for x in edges) |
set(x[1] for x in edges) |
set(vertices))
vmap, elisions = shorten_vertex_names(vlist)
vertices = [vmap[x] for x in vertices]
edges = [(vmap[a], vmap[b]) for a, b in edges]
else:
elisions = None
if graph_name is None:
graph_name = 'A_samba_tool_production'
if directed:
graph_type = 'digraph'
connector = '->'
else:
graph_type = 'graph'
connector = '--'
write('/* generated by samba */')
write('%s %s {' % (graph_type, graph_name))
if title is not None:
write('label="%s";' % (title,))
write('fontsize=%s;\n' % (FONT_SIZE))
write('node[fontname=Helvetica; fontsize=%s];\n' % (FONT_SIZE))
prev_cluster = None
cluster_n = 0
quoted_vertices = []
for i, v in enumerate(vertices):
v = quote_graph_label(v, reformat_labels)
quoted_vertices.append(v)
attrs = []
if vertex_clusters and vertex_clusters[i]:
cluster = vertex_clusters[i]
if cluster != prev_cluster:
if prev_cluster is not None:
write("}")
prev_cluster = cluster
n = quote_graph_label(cluster)
if cluster:
write('subgraph cluster_%d {' % cluster_n)
cluster_n += 1
write('style = "rounded,dotted";')
write('node [style="filled"; fillcolor=white];')
write('label = "%s";' % n)
if vertex_styles and vertex_styles[i]:
attrs.append(vertex_styles[i])
if vertex_colors and vertex_colors[i]:
attrs.append('color="%s"' % quote_graph_label(vertex_colors[i]))
if attrs:
write('"%s" [%s];' % (v, ', '.join(attrs)))
else:
write('"%s";' % (v,))
if prev_cluster:
write("}")
for i, edge in enumerate(edges):
a, b = edge
if a is None:
a = "Missing source value"
if b is None:
b = "Missing destination value"
a = quote_graph_label(a, reformat_labels)
b = quote_graph_label(b, reformat_labels)
attrs = []
if edge_labels:
label = quote_graph_label(edge_labels[i])
attrs.append('label="%s"' % label)
if edge_colors:
attrs.append('color="%s"' % quote_graph_label(edge_colors[i]))
if edge_styles:
attrs.append(edge_styles[i]) # no quoting
if attrs:
write('"%s" %s "%s" [%s];' % (a, connector, b, ', '.join(attrs)))
else:
write('"%s" %s "%s";' % (a, connector, b))
if key_items:
key = compile_graph_key(key_items, nodes_above=quoted_vertices,
elisions=elisions)
write(key)
write('}\n')
return '\n'.join(out)
COLOUR_SETS = {
'ansi': {
'alternate rows': (colour.DARK_WHITE, colour.BLACK),
'disconnected': colour.RED,
'connected': colour.GREEN,
'transitive': colour.DARK_YELLOW,
'header': colour.UNDERLINE,
'reset': colour.C_NORMAL,
},
'ansi-heatmap': {
'alternate rows': (colour.DARK_WHITE, colour.BLACK),
'disconnected': colour.REV_RED,
'connected': colour.REV_GREEN,
'transitive': colour.REV_DARK_YELLOW,
'header': colour.UNDERLINE,
'reset': colour.C_NORMAL,
},
'xterm-256color': {
'alternate rows': (colour.xterm_256_colour(39),
colour.xterm_256_colour(45)),
# 'alternate rows': (colour.xterm_256_colour(246),
# colour.xterm_256_colour(247)),
'disconnected': colour.xterm_256_colour(124, bg=True),
'connected': colour.xterm_256_colour(112),
'transitive': colour.xterm_256_colour(214),
'transitive scale': (colour.xterm_256_colour(190),
colour.xterm_256_colour(184),
colour.xterm_256_colour(220),
colour.xterm_256_colour(214),
colour.xterm_256_colour(208),
),
'header': colour.UNDERLINE,
'reset': colour.C_NORMAL,
},
'xterm-256color-heatmap': {
'alternate rows': (colour.xterm_256_colour(171),
colour.xterm_256_colour(207)),
# 'alternate rows': (colour.xterm_256_colour(246),
# colour.xterm_256_colour(247)),
'disconnected': colour.xterm_256_colour(124, bg=True),
'connected': colour.xterm_256_colour(112, bg=True),
'transitive': colour.xterm_256_colour(214, bg=True),
'transitive scale': (colour.xterm_256_colour(190, bg=True),
colour.xterm_256_colour(184, bg=True),
colour.xterm_256_colour(220, bg=True),
colour.xterm_256_colour(214, bg=True),
colour.xterm_256_colour(208, bg=True),
),
'header': colour.UNDERLINE,
'reset': colour.C_NORMAL,
},
None: {
'alternate rows': ('',),
'disconnected': '',
'connected': '',
'transitive': '',
'header': '',
'reset': '',
}
}
CHARSETS = {
'utf8': {
'vertical': '',
'horizontal': '',
'corner': '',
# 'diagonal': '╲',
'diagonal': '·',
# 'missing': '🕱',
'missing': '-',
'right_arrow': '',
},
'ascii': {
'vertical': '|',
'horizontal': '-',
'corner': ',',
'diagonal': '0',
'missing': '-',
'right_arrow': '<-',
}
}
def find_transitive_distance(vertices, edges):
all_vertices = (set(vertices) |
set(e[0] for e in edges) |
set(e[1] for e in edges))
if all_vertices != set(vertices):
print("there are unknown vertices: %s" %
(all_vertices - set(vertices)),
file=sys.stderr)
# with n vertices, we are always less than n hops away from
# anywhere else.
inf = len(all_vertices)
distances = {}
for v in all_vertices:
distances[v] = {v: 0}
for src, dest in edges:
distances[src][dest] = distances[src].get(dest, 1)
# This algorithm (and implementation) seems very suboptimal.
# potentially O(n^4), though n is smallish.
for i in range(inf):
changed = False
new_distances = {}
for v, d in distances.items():
new_d = d.copy()
new_distances[v] = new_d
for dest, cost in d.items():
for leaf, cost2 in distances[dest].items():
new_cost = cost + cost2
old_cost = d.get(leaf, inf)
if new_cost < old_cost:
new_d[leaf] = new_cost
changed = True
distances = new_distances
if not changed:
break
# filter out unwanted vertices and infinite links
answer = {}
for v in vertices:
answer[v] = {}
for v2 in vertices:
a = distances[v].get(v2, inf)
if a < inf:
answer[v][v2] = a
return answer
def get_transitive_colourer(colours, n_vertices):
if 'transitive scale' in colours:
scale = colours['transitive scale']
m = len(scale)
n = 1 + int(n_vertices ** 0.5)
def f(link):
if not isinstance(link, int):
return ''
return scale[min(link * m // n, m - 1)]
else:
def f(link):
return colours['transitive']
return f
def distance_matrix(vertices, edges,
utf8=False,
colour=None,
shorten_names=False,
generate_key=False,
grouping_function=None,
row_comments=None):
lines = []
write = lines.append
charset = CHARSETS['utf8' if utf8 else 'ascii']
vertical = charset['vertical']
horizontal = charset['horizontal']
corner = charset['corner']
diagonal = charset['diagonal']
missing = charset['missing']
right_arrow = charset['right_arrow']
colours = COLOUR_SETS[colour]
colour_cycle = cycle(colours.get('alternate rows', ('',)))
if vertices is None:
vertices = sorted(set(x[0] for x in edges) | set(x[1] for x in edges))
if grouping_function is not None:
# we sort and colour according to the grouping function
# which can be used to e.g. alternate colours by site.
vertices = sorted(vertices, key=grouping_function)
colour_list = []
for k, v in groupby(vertices, key=grouping_function):
c = next(colour_cycle)
colour_list.extend(c for x in v)
else:
colour_list = [next(colour_cycle) for v in vertices]
if shorten_names:
vlist = list(set(x[0] for x in edges) |
set(x[1] for x in edges) |
set(vertices))
vmap, replacements = shorten_vertex_names(vlist, '+',
aggressive=True)
vertices = [vmap[x] for x in vertices]
edges = [(vmap[a], vmap[b]) for a, b in edges]
vlen = max(6, max(len(v) for v in vertices))
# first, the key for the columns
c_header = colours.get('header', '')
c_disconn = colours.get('disconnected', '')
c_conn = colours.get('connected', '')
c_reset = colours.get('reset', '')
colour_transitive = get_transitive_colourer(colours, len(vertices))
vspace = ' ' * vlen
verticals = ''
write("%*s %s %sdestination%s" % (vlen, '',
' ' * len(vertices),
c_header,
c_reset))
for i, v in enumerate(vertices):
j = len(vertices) - i
c = colour_list[i]
if j == 1:
start = '%s%ssource%s' % (vspace[:-6], c_header, c_reset)
else:
start = vspace
write('%s %s%s%s%s%s %s%s' % (start,
verticals,
c_reset,
c,
corner,
horizontal * j,
v,
c_reset
))
verticals += c + vertical
connections = find_transitive_distance(vertices, edges)
for i, v in enumerate(vertices):
c = colour_list[i]
links = connections[v]
row = []
for v2 in vertices:
link = links.get(v2)
if link is None:
row.append('%s%s' % (c_disconn, missing))
continue
if link == 0:
row.append('%s%s%s%s' % (c_reset, c, diagonal, c_reset))
elif link == 1:
row.append('%s1%s' % (c_conn, c_reset))
else:
ct = colour_transitive(link)
if link > 9:
link = '>'
row.append('%s%s%s' % (ct, link, c_reset))
if row_comments is not None and row_comments[i]:
row.append('%s %s %s' % (c_reset, right_arrow, row_comments[i]))
write('%s%*s%s %s%s' % (c, vlen, v, c_reset,
''.join(row), c_reset))
example_c = next(colour_cycle)
if shorten_names:
write('')
for substitute, original in reversed(replacements):
write("'%s%s%s' stands for '%s%s%s'" % (example_c,
substitute,
c_reset,
example_c,
original,
c_reset))
if generate_key:
write('')
write("Data can get from %ssource%s to %sdestination%s in the "
"indicated number of steps." % (c_header, c_reset,
c_header, c_reset))
write("%s%s%s means zero steps (it is the same DC)" %
(example_c, diagonal, c_reset))
write("%s1%s means a direct link" % (c_conn, c_reset))
write("%s2%s means a transitive link involving two steps "
"(i.e. one intermediate DC)" %
(colour_transitive(2), c_reset))
write("%s%s%s means there is no connection, even through other DCs" %
(c_disconn, missing, c_reset))
return '\n'.join(lines)
def pad_char(char, digits, padding=' '):
if digits == 1:
padding = ''
return ' ' * (digits - 1) + char + padding
def transpose_dict_matrix(m):
m2 = {}
for k1, row in m.items():
for k2, dist in row.items():
m2.setdefault(k2, {})[k1] = dist
return m2
def full_matrix(rows,
utf8=False,
colour=None,
shorten_names=False,
generate_key=False,
grouping_function=None,
row_comments=None,
colour_scale=None,
digits=1,
ylabel='source',
xlabel='destination',
transpose=True):
lines = []
write = lines.append
if transpose:
rows = transpose_dict_matrix(rows)
use_padding = digits > 1
charset = CHARSETS['utf8' if utf8 else 'ascii']
vertical = pad_char(charset['vertical'], digits)
horizontal = charset['horizontal'] * (digits + use_padding)
corner = pad_char(charset['corner'], digits,
charset['horizontal'])
diagonal = pad_char(charset['diagonal'], digits)
missing = pad_char(charset['missing'], digits)
toobig = pad_char('>', digits)
right_arrow = charset['right_arrow']
empty = pad_char(' ', digits)
colours = COLOUR_SETS[colour]
colour_cycle = cycle(colours.get('alternate rows', ('',)))
vertices = list(rows.keys())
if grouping_function is not None:
# we sort and colour according to the grouping function
# which can be used to e.g. alternate colours by site.
vertices.sort(key=grouping_function)
colour_list = []
for k, v in groupby(vertices, key=grouping_function):
c = next(colour_cycle)
colour_list.extend(c for x in v)
else:
colour_list = [next(colour_cycle) for v in vertices]
if shorten_names:
vmap, replacements = shorten_vertex_names(vertices, '+',
aggressive=True)
rows2 = {}
for vert, r in rows.items():
rows2[vmap[vert]] = dict((vmap[k], v) for k, v in r.items())
rows = rows2
vertices = list(rows.keys())
vlen = max(6, len(xlabel), max(len(v) for v in vertices))
# first, the key for the columns
c_header = colours.get('header', '')
c_disconn = colours.get('disconnected', '')
c_conn = colours.get('connected', '')
c_reset = colours.get('reset', '')
if colour_scale is None:
colour_scale = len(rows)
colour_transitive = get_transitive_colourer(colours, colour_scale)
vspace = ' ' * vlen
verticals = ''
write("%s %s %s%s%s" % (vspace,
empty * (len(rows) + 1),
c_header,
xlabel,
c_reset))
for i, v in enumerate(vertices):
j = len(rows) - i
c = colour_list[i]
if j == 1:
start = '%s%s%s%s' % (vspace[:-len(ylabel)],
c_header,
ylabel,
c_reset)
else:
start = vspace
write('%s %s%s%s%s%s %s%s' % (start,
verticals,
c_reset,
c,
corner,
horizontal * j,
v,
c_reset
))
verticals += '%s%s' % (c, vertical)
end_cell = '%s%s' % (' ' * use_padding, c_reset)
overflow = False
for i, v in enumerate(vertices):
links = rows[v]
c = colour_list[i]
row = []
for v2 in vertices:
if v2 not in links:
row.append('%s%s%s' % (c_disconn, missing, c_reset))
elif v == v2:
row.append('%s%s%s%s' % (c_reset, c, diagonal, c_reset))
else:
link = links[v2]
if link >= 10 ** digits:
ct = colour_transitive(link)
row.append('%s%s%s' % (ct, toobig, c_reset))
overflow = True
continue
if link == 0:
ct = c_conn
else:
ct = colour_transitive(link)
row.append('%s%*s%s' % (ct, digits, link, end_cell))
if row_comments is not None and row_comments[i]:
row.append('%s %s %s' % (c_reset, right_arrow, row_comments[i]))
write('%s%*s%s %s%s' % (c, vlen, v, c_reset,
''.join(row), c_reset))
if overflow or shorten_names:
write('')
if overflow:
write("'%s%s%s' means greater than %d " %
(colour_transitive(10 ** digits),
toobig,
c_reset,
10 ** digits - 1))
if shorten_names:
example_c = next(colour_cycle)
for substitute, original in reversed(replacements):
write("'%s%s%s' stands for '%s%s%s'" % (example_c,
substitute,
c_reset,
example_c,
original,
c_reset))
return '\n'.join(lines)