mirror of
https://github.com/samba-team/samba.git
synced 2024-12-24 21:34:56 +03:00
0691a112f6
Signed-off-by: Joseph Sutton <josephsutton@catalyst.net.nz> Reviewed-by: Andrew Bartlett <abartlet@samba.org>
3071 lines
71 KiB
C
3071 lines
71 KiB
C
/*
|
|
Samba Unix SMB/CIFS implementation.
|
|
|
|
Samba trivial allocation library - new interface
|
|
|
|
NOTE: Please read talloc_guide.txt for full documentation
|
|
|
|
Copyright (C) Andrew Tridgell 2004
|
|
Copyright (C) Stefan Metzmacher 2006
|
|
|
|
** NOTE! The following LGPL license applies to the talloc
|
|
** library. This does NOT imply that all of Samba is released
|
|
** under the LGPL
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 3 of the License, or (at your option) any later version.
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/*
|
|
inspired by http://swapped.cc/halloc/
|
|
*/
|
|
|
|
#include "replace.h"
|
|
#include "talloc.h"
|
|
|
|
#ifdef HAVE_SYS_AUXV_H
|
|
#include <sys/auxv.h>
|
|
#endif
|
|
|
|
#if (TALLOC_VERSION_MAJOR != TALLOC_BUILD_VERSION_MAJOR)
|
|
#error "TALLOC_VERSION_MAJOR != TALLOC_BUILD_VERSION_MAJOR"
|
|
#endif
|
|
|
|
#if (TALLOC_VERSION_MINOR != TALLOC_BUILD_VERSION_MINOR)
|
|
#error "TALLOC_VERSION_MINOR != TALLOC_BUILD_VERSION_MINOR"
|
|
#endif
|
|
|
|
/* Special macros that are no-ops except when run under Valgrind on
|
|
* x86. They've moved a little bit from valgrind 1.0.4 to 1.9.4 */
|
|
#ifdef HAVE_VALGRIND_MEMCHECK_H
|
|
/* memcheck.h includes valgrind.h */
|
|
#include <valgrind/memcheck.h>
|
|
#elif defined(HAVE_VALGRIND_H)
|
|
#include <valgrind.h>
|
|
#endif
|
|
|
|
#define MAX_TALLOC_SIZE 0x10000000
|
|
|
|
#define TALLOC_FLAG_FREE 0x01
|
|
#define TALLOC_FLAG_LOOP 0x02
|
|
#define TALLOC_FLAG_POOL 0x04 /* This is a talloc pool */
|
|
#define TALLOC_FLAG_POOLMEM 0x08 /* This is allocated in a pool */
|
|
|
|
/*
|
|
* Bits above this are random, used to make it harder to fake talloc
|
|
* headers during an attack. Try not to change this without good reason.
|
|
*/
|
|
#define TALLOC_FLAG_MASK 0x0F
|
|
|
|
#define TALLOC_MAGIC_REFERENCE ((const char *)1)
|
|
|
|
#define TALLOC_MAGIC_BASE 0xe814ec70
|
|
#define TALLOC_MAGIC_NON_RANDOM ( \
|
|
~TALLOC_FLAG_MASK & ( \
|
|
TALLOC_MAGIC_BASE + \
|
|
(TALLOC_BUILD_VERSION_MAJOR << 24) + \
|
|
(TALLOC_BUILD_VERSION_MINOR << 16) + \
|
|
(TALLOC_BUILD_VERSION_RELEASE << 8)))
|
|
static unsigned int talloc_magic = TALLOC_MAGIC_NON_RANDOM;
|
|
|
|
/* by default we abort when given a bad pointer (such as when talloc_free() is called
|
|
on a pointer that came from malloc() */
|
|
#ifndef TALLOC_ABORT
|
|
#define TALLOC_ABORT(reason) abort()
|
|
#endif
|
|
|
|
#ifndef discard_const_p
|
|
#if defined(__intptr_t_defined) || defined(HAVE_INTPTR_T)
|
|
# define discard_const_p(type, ptr) ((type *)((intptr_t)(ptr)))
|
|
#else
|
|
# define discard_const_p(type, ptr) ((type *)(ptr))
|
|
#endif
|
|
#endif
|
|
|
|
/* these macros gain us a few percent of speed on gcc */
|
|
#if (__GNUC__ >= 3)
|
|
/* the strange !! is to ensure that __builtin_expect() takes either 0 or 1
|
|
as its first argument */
|
|
#ifndef likely
|
|
#define likely(x) __builtin_expect(!!(x), 1)
|
|
#endif
|
|
#ifndef unlikely
|
|
#define unlikely(x) __builtin_expect(!!(x), 0)
|
|
#endif
|
|
#else
|
|
#ifndef likely
|
|
#define likely(x) (x)
|
|
#endif
|
|
#ifndef unlikely
|
|
#define unlikely(x) (x)
|
|
#endif
|
|
#endif
|
|
|
|
/* this null_context is only used if talloc_enable_leak_report() or
|
|
talloc_enable_leak_report_full() is called, otherwise it remains
|
|
NULL
|
|
*/
|
|
static void *null_context;
|
|
static bool talloc_report_null;
|
|
static bool talloc_report_null_full;
|
|
static void *autofree_context;
|
|
|
|
static void talloc_setup_atexit(void);
|
|
|
|
/* used to enable fill of memory on free, which can be useful for
|
|
* catching use after free errors when valgrind is too slow
|
|
*/
|
|
static struct {
|
|
bool initialised;
|
|
bool enabled;
|
|
uint8_t fill_value;
|
|
} talloc_fill;
|
|
|
|
#define TALLOC_FILL_ENV "TALLOC_FREE_FILL"
|
|
|
|
/*
|
|
* do not wipe the header, to allow the
|
|
* double-free logic to still work
|
|
*/
|
|
#define TC_INVALIDATE_FULL_FILL_CHUNK(_tc) do { \
|
|
if (unlikely(talloc_fill.enabled)) { \
|
|
size_t _flen = (_tc)->size; \
|
|
char *_fptr = (char *)TC_PTR_FROM_CHUNK(_tc); \
|
|
memset(_fptr, talloc_fill.fill_value, _flen); \
|
|
} \
|
|
} while (0)
|
|
|
|
#if defined(DEVELOPER) && defined(VALGRIND_MAKE_MEM_NOACCESS)
|
|
/* Mark the whole chunk as not accessible */
|
|
#define TC_INVALIDATE_FULL_VALGRIND_CHUNK(_tc) do { \
|
|
size_t _flen = TC_HDR_SIZE + (_tc)->size; \
|
|
char *_fptr = (char *)(_tc); \
|
|
VALGRIND_MAKE_MEM_NOACCESS(_fptr, _flen); \
|
|
} while(0)
|
|
#else
|
|
#define TC_INVALIDATE_FULL_VALGRIND_CHUNK(_tc) do { } while (0)
|
|
#endif
|
|
|
|
#define TC_INVALIDATE_FULL_CHUNK(_tc) do { \
|
|
TC_INVALIDATE_FULL_FILL_CHUNK(_tc); \
|
|
TC_INVALIDATE_FULL_VALGRIND_CHUNK(_tc); \
|
|
} while (0)
|
|
|
|
#define TC_INVALIDATE_SHRINK_FILL_CHUNK(_tc, _new_size) do { \
|
|
if (unlikely(talloc_fill.enabled)) { \
|
|
size_t _flen = (_tc)->size - (_new_size); \
|
|
char *_fptr = (char *)TC_PTR_FROM_CHUNK(_tc); \
|
|
_fptr += (_new_size); \
|
|
memset(_fptr, talloc_fill.fill_value, _flen); \
|
|
} \
|
|
} while (0)
|
|
|
|
#if defined(DEVELOPER) && defined(VALGRIND_MAKE_MEM_NOACCESS)
|
|
/* Mark the unused bytes not accessible */
|
|
#define TC_INVALIDATE_SHRINK_VALGRIND_CHUNK(_tc, _new_size) do { \
|
|
size_t _flen = (_tc)->size - (_new_size); \
|
|
char *_fptr = (char *)TC_PTR_FROM_CHUNK(_tc); \
|
|
_fptr += (_new_size); \
|
|
VALGRIND_MAKE_MEM_NOACCESS(_fptr, _flen); \
|
|
} while (0)
|
|
#else
|
|
#define TC_INVALIDATE_SHRINK_VALGRIND_CHUNK(_tc, _new_size) do { } while (0)
|
|
#endif
|
|
|
|
#define TC_INVALIDATE_SHRINK_CHUNK(_tc, _new_size) do { \
|
|
TC_INVALIDATE_SHRINK_FILL_CHUNK(_tc, _new_size); \
|
|
TC_INVALIDATE_SHRINK_VALGRIND_CHUNK(_tc, _new_size); \
|
|
} while (0)
|
|
|
|
#define TC_UNDEFINE_SHRINK_FILL_CHUNK(_tc, _new_size) do { \
|
|
if (unlikely(talloc_fill.enabled)) { \
|
|
size_t _flen = (_tc)->size - (_new_size); \
|
|
char *_fptr = (char *)TC_PTR_FROM_CHUNK(_tc); \
|
|
_fptr += (_new_size); \
|
|
memset(_fptr, talloc_fill.fill_value, _flen); \
|
|
} \
|
|
} while (0)
|
|
|
|
#if defined(DEVELOPER) && defined(VALGRIND_MAKE_MEM_UNDEFINED)
|
|
/* Mark the unused bytes as undefined */
|
|
#define TC_UNDEFINE_SHRINK_VALGRIND_CHUNK(_tc, _new_size) do { \
|
|
size_t _flen = (_tc)->size - (_new_size); \
|
|
char *_fptr = (char *)TC_PTR_FROM_CHUNK(_tc); \
|
|
_fptr += (_new_size); \
|
|
VALGRIND_MAKE_MEM_UNDEFINED(_fptr, _flen); \
|
|
} while (0)
|
|
#else
|
|
#define TC_UNDEFINE_SHRINK_VALGRIND_CHUNK(_tc, _new_size) do { } while (0)
|
|
#endif
|
|
|
|
#define TC_UNDEFINE_SHRINK_CHUNK(_tc, _new_size) do { \
|
|
TC_UNDEFINE_SHRINK_FILL_CHUNK(_tc, _new_size); \
|
|
TC_UNDEFINE_SHRINK_VALGRIND_CHUNK(_tc, _new_size); \
|
|
} while (0)
|
|
|
|
#if defined(DEVELOPER) && defined(VALGRIND_MAKE_MEM_UNDEFINED)
|
|
/* Mark the new bytes as undefined */
|
|
#define TC_UNDEFINE_GROW_VALGRIND_CHUNK(_tc, _new_size) do { \
|
|
size_t _old_used = TC_HDR_SIZE + (_tc)->size; \
|
|
size_t _new_used = TC_HDR_SIZE + (_new_size); \
|
|
size_t _flen = _new_used - _old_used; \
|
|
char *_fptr = _old_used + (char *)(_tc); \
|
|
VALGRIND_MAKE_MEM_UNDEFINED(_fptr, _flen); \
|
|
} while (0)
|
|
#else
|
|
#define TC_UNDEFINE_GROW_VALGRIND_CHUNK(_tc, _new_size) do { } while (0)
|
|
#endif
|
|
|
|
#define TC_UNDEFINE_GROW_CHUNK(_tc, _new_size) do { \
|
|
TC_UNDEFINE_GROW_VALGRIND_CHUNK(_tc, _new_size); \
|
|
} while (0)
|
|
|
|
struct talloc_reference_handle {
|
|
struct talloc_reference_handle *next, *prev;
|
|
void *ptr;
|
|
const char *location;
|
|
};
|
|
|
|
struct talloc_memlimit {
|
|
struct talloc_chunk *parent;
|
|
struct talloc_memlimit *upper;
|
|
size_t max_size;
|
|
size_t cur_size;
|
|
};
|
|
|
|
static inline bool talloc_memlimit_check(struct talloc_memlimit *limit, size_t size);
|
|
static inline void talloc_memlimit_grow(struct talloc_memlimit *limit,
|
|
size_t size);
|
|
static inline void talloc_memlimit_shrink(struct talloc_memlimit *limit,
|
|
size_t size);
|
|
static inline void tc_memlimit_update_on_free(struct talloc_chunk *tc);
|
|
|
|
static inline void _tc_set_name_const(struct talloc_chunk *tc,
|
|
const char *name);
|
|
static struct talloc_chunk *_vasprintf_tc(const void *t,
|
|
const char *fmt,
|
|
va_list ap);
|
|
|
|
typedef int (*talloc_destructor_t)(void *);
|
|
|
|
struct talloc_pool_hdr;
|
|
|
|
struct talloc_chunk {
|
|
/*
|
|
* flags includes the talloc magic, which is randomised to
|
|
* make overwrite attacks harder
|
|
*/
|
|
unsigned flags;
|
|
|
|
/*
|
|
* If you have a logical tree like:
|
|
*
|
|
* <parent>
|
|
* / | \
|
|
* / | \
|
|
* / | \
|
|
* <child 1> <child 2> <child 3>
|
|
*
|
|
* The actual talloc tree is:
|
|
*
|
|
* <parent>
|
|
* |
|
|
* <child 1> - <child 2> - <child 3>
|
|
*
|
|
* The children are linked with next/prev pointers, and
|
|
* child 1 is linked to the parent with parent/child
|
|
* pointers.
|
|
*/
|
|
|
|
struct talloc_chunk *next, *prev;
|
|
struct talloc_chunk *parent, *child;
|
|
struct talloc_reference_handle *refs;
|
|
talloc_destructor_t destructor;
|
|
const char *name;
|
|
size_t size;
|
|
|
|
/*
|
|
* limit semantics:
|
|
* if 'limit' is set it means all *new* children of the context will
|
|
* be limited to a total aggregate size ox max_size for memory
|
|
* allocations.
|
|
* cur_size is used to keep track of the current use
|
|
*/
|
|
struct talloc_memlimit *limit;
|
|
|
|
/*
|
|
* For members of a pool (i.e. TALLOC_FLAG_POOLMEM is set), "pool"
|
|
* is a pointer to the struct talloc_chunk of the pool that it was
|
|
* allocated from. This way children can quickly find the pool to chew
|
|
* from.
|
|
*/
|
|
struct talloc_pool_hdr *pool;
|
|
};
|
|
|
|
union talloc_chunk_cast_u {
|
|
uint8_t *ptr;
|
|
struct talloc_chunk *chunk;
|
|
};
|
|
|
|
/* 16 byte alignment seems to keep everyone happy */
|
|
#define TC_ALIGN16(s) (((s)+15)&~15)
|
|
#define TC_HDR_SIZE TC_ALIGN16(sizeof(struct talloc_chunk))
|
|
#define TC_PTR_FROM_CHUNK(tc) ((void *)(TC_HDR_SIZE + (char*)tc))
|
|
|
|
_PUBLIC_ int talloc_version_major(void)
|
|
{
|
|
return TALLOC_VERSION_MAJOR;
|
|
}
|
|
|
|
_PUBLIC_ int talloc_version_minor(void)
|
|
{
|
|
return TALLOC_VERSION_MINOR;
|
|
}
|
|
|
|
_PUBLIC_ int talloc_test_get_magic(void)
|
|
{
|
|
return talloc_magic;
|
|
}
|
|
|
|
static inline void _talloc_chunk_set_free(struct talloc_chunk *tc,
|
|
const char *location)
|
|
{
|
|
/*
|
|
* Mark this memory as free, and also over-stamp the talloc
|
|
* magic with the old-style magic.
|
|
*
|
|
* Why? This tries to avoid a memory read use-after-free from
|
|
* disclosing our talloc magic, which would then allow an
|
|
* attacker to prepare a valid header and so run a destructor.
|
|
*
|
|
*/
|
|
tc->flags = TALLOC_MAGIC_NON_RANDOM | TALLOC_FLAG_FREE
|
|
| (tc->flags & TALLOC_FLAG_MASK);
|
|
|
|
/* we mark the freed memory with where we called the free
|
|
* from. This means on a double free error we can report where
|
|
* the first free came from
|
|
*/
|
|
if (location) {
|
|
tc->name = location;
|
|
}
|
|
}
|
|
|
|
static inline void _talloc_chunk_set_not_free(struct talloc_chunk *tc)
|
|
{
|
|
/*
|
|
* Mark this memory as not free.
|
|
*
|
|
* Why? This is memory either in a pool (and so available for
|
|
* talloc's re-use or after the realloc(). We need to mark
|
|
* the memory as free() before any realloc() call as we can't
|
|
* write to the memory after that.
|
|
*
|
|
* We put back the normal magic instead of the 'not random'
|
|
* magic.
|
|
*/
|
|
|
|
tc->flags = talloc_magic |
|
|
((tc->flags & TALLOC_FLAG_MASK) & ~TALLOC_FLAG_FREE);
|
|
}
|
|
|
|
static void (*talloc_log_fn)(const char *message);
|
|
|
|
_PUBLIC_ void talloc_set_log_fn(void (*log_fn)(const char *message))
|
|
{
|
|
talloc_log_fn = log_fn;
|
|
}
|
|
|
|
#ifdef HAVE_CONSTRUCTOR_ATTRIBUTE
|
|
#define CONSTRUCTOR __attribute__((constructor))
|
|
#elif defined(HAVE_PRAGMA_INIT)
|
|
#define CONSTRUCTOR
|
|
#pragma init (talloc_lib_init)
|
|
#endif
|
|
#if defined(HAVE_CONSTRUCTOR_ATTRIBUTE) || defined(HAVE_PRAGMA_INIT)
|
|
void talloc_lib_init(void) CONSTRUCTOR;
|
|
void talloc_lib_init(void)
|
|
{
|
|
uint32_t random_value;
|
|
#if defined(HAVE_GETAUXVAL) && defined(AT_RANDOM)
|
|
uint8_t *p;
|
|
/*
|
|
* Use the kernel-provided random values used for
|
|
* ASLR. This won't change per-exec, which is ideal for us
|
|
*/
|
|
p = (uint8_t *) getauxval(AT_RANDOM);
|
|
if (p) {
|
|
/*
|
|
* We get 16 bytes from getauxval. By calling rand(),
|
|
* a totally insecure PRNG, but one that will
|
|
* deterministically have a different value when called
|
|
* twice, we ensure that if two talloc-like libraries
|
|
* are somehow loaded in the same address space, that
|
|
* because we choose different bytes, we will keep the
|
|
* protection against collision of multiple talloc
|
|
* libs.
|
|
*
|
|
* This protection is important because the effects of
|
|
* passing a talloc pointer from one to the other may
|
|
* be very hard to determine.
|
|
*/
|
|
int offset = rand() % (16 - sizeof(random_value));
|
|
memcpy(&random_value, p + offset, sizeof(random_value));
|
|
} else
|
|
#endif
|
|
{
|
|
/*
|
|
* Otherwise, hope the location we are loaded in
|
|
* memory is randomised by someone else
|
|
*/
|
|
random_value = ((uintptr_t)talloc_lib_init & 0xFFFFFFFF);
|
|
}
|
|
talloc_magic = random_value & ~TALLOC_FLAG_MASK;
|
|
}
|
|
#else
|
|
#warning "No __attribute__((constructor)) support found on this platform, additional talloc security measures not available"
|
|
#endif
|
|
|
|
static void talloc_lib_atexit(void)
|
|
{
|
|
TALLOC_FREE(autofree_context);
|
|
|
|
if (talloc_total_size(null_context) == 0) {
|
|
return;
|
|
}
|
|
|
|
if (talloc_report_null_full) {
|
|
talloc_report_full(null_context, stderr);
|
|
} else if (talloc_report_null) {
|
|
talloc_report(null_context, stderr);
|
|
}
|
|
}
|
|
|
|
static void talloc_setup_atexit(void)
|
|
{
|
|
static bool done;
|
|
|
|
if (done) {
|
|
return;
|
|
}
|
|
|
|
atexit(talloc_lib_atexit);
|
|
done = true;
|
|
}
|
|
|
|
static void talloc_log(const char *fmt, ...) PRINTF_ATTRIBUTE(1,2);
|
|
static void talloc_log(const char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
char *message;
|
|
|
|
if (!talloc_log_fn) {
|
|
return;
|
|
}
|
|
|
|
va_start(ap, fmt);
|
|
message = talloc_vasprintf(NULL, fmt, ap);
|
|
va_end(ap);
|
|
|
|
talloc_log_fn(message);
|
|
talloc_free(message);
|
|
}
|
|
|
|
static void talloc_log_stderr(const char *message)
|
|
{
|
|
fprintf(stderr, "%s", message);
|
|
}
|
|
|
|
_PUBLIC_ void talloc_set_log_stderr(void)
|
|
{
|
|
talloc_set_log_fn(talloc_log_stderr);
|
|
}
|
|
|
|
static void (*talloc_abort_fn)(const char *reason);
|
|
|
|
_PUBLIC_ void talloc_set_abort_fn(void (*abort_fn)(const char *reason))
|
|
{
|
|
talloc_abort_fn = abort_fn;
|
|
}
|
|
|
|
static void talloc_abort(const char *reason)
|
|
{
|
|
talloc_log("%s\n", reason);
|
|
|
|
if (!talloc_abort_fn) {
|
|
TALLOC_ABORT(reason);
|
|
}
|
|
|
|
talloc_abort_fn(reason);
|
|
}
|
|
|
|
static void talloc_abort_access_after_free(void)
|
|
{
|
|
talloc_abort("Bad talloc magic value - access after free");
|
|
}
|
|
|
|
static void talloc_abort_unknown_value(void)
|
|
{
|
|
talloc_abort("Bad talloc magic value - unknown value");
|
|
}
|
|
|
|
/* panic if we get a bad magic value */
|
|
static inline struct talloc_chunk *talloc_chunk_from_ptr(const void *ptr)
|
|
{
|
|
const char *pp = (const char *)ptr;
|
|
struct talloc_chunk *tc = discard_const_p(struct talloc_chunk, pp - TC_HDR_SIZE);
|
|
if (unlikely((tc->flags & (TALLOC_FLAG_FREE | ~TALLOC_FLAG_MASK)) != talloc_magic)) {
|
|
if ((tc->flags & (TALLOC_FLAG_FREE | ~TALLOC_FLAG_MASK))
|
|
== (TALLOC_MAGIC_NON_RANDOM | TALLOC_FLAG_FREE)) {
|
|
talloc_log("talloc: access after free error - first free may be at %s\n", tc->name);
|
|
talloc_abort_access_after_free();
|
|
return NULL;
|
|
}
|
|
|
|
talloc_abort_unknown_value();
|
|
return NULL;
|
|
}
|
|
return tc;
|
|
}
|
|
|
|
/* hook into the front of the list */
|
|
#define _TLIST_ADD(list, p) \
|
|
do { \
|
|
if (!(list)) { \
|
|
(list) = (p); \
|
|
(p)->next = (p)->prev = NULL; \
|
|
} else { \
|
|
(list)->prev = (p); \
|
|
(p)->next = (list); \
|
|
(p)->prev = NULL; \
|
|
(list) = (p); \
|
|
}\
|
|
} while (0)
|
|
|
|
/* remove an element from a list - element doesn't have to be in list. */
|
|
#define _TLIST_REMOVE(list, p) \
|
|
do { \
|
|
if ((p) == (list)) { \
|
|
(list) = (p)->next; \
|
|
if (list) (list)->prev = NULL; \
|
|
} else { \
|
|
if ((p)->prev) (p)->prev->next = (p)->next; \
|
|
if ((p)->next) (p)->next->prev = (p)->prev; \
|
|
} \
|
|
if ((p) && ((p) != (list))) (p)->next = (p)->prev = NULL; \
|
|
} while (0)
|
|
|
|
|
|
/*
|
|
return the parent chunk of a pointer
|
|
*/
|
|
static inline struct talloc_chunk *talloc_parent_chunk(const void *ptr)
|
|
{
|
|
struct talloc_chunk *tc;
|
|
|
|
if (unlikely(ptr == NULL)) {
|
|
return NULL;
|
|
}
|
|
|
|
tc = talloc_chunk_from_ptr(ptr);
|
|
while (tc->prev) tc=tc->prev;
|
|
|
|
return tc->parent;
|
|
}
|
|
|
|
_PUBLIC_ void *talloc_parent(const void *ptr)
|
|
{
|
|
struct talloc_chunk *tc = talloc_parent_chunk(ptr);
|
|
return tc? TC_PTR_FROM_CHUNK(tc) : NULL;
|
|
}
|
|
|
|
/*
|
|
find parents name
|
|
*/
|
|
_PUBLIC_ const char *talloc_parent_name(const void *ptr)
|
|
{
|
|
struct talloc_chunk *tc = talloc_parent_chunk(ptr);
|
|
return tc? tc->name : NULL;
|
|
}
|
|
|
|
/*
|
|
A pool carries an in-pool object count count in the first 16 bytes.
|
|
bytes. This is done to support talloc_steal() to a parent outside of the
|
|
pool. The count includes the pool itself, so a talloc_free() on a pool will
|
|
only destroy the pool if the count has dropped to zero. A talloc_free() of a
|
|
pool member will reduce the count, and eventually also call free(3) on the
|
|
pool memory.
|
|
|
|
The object count is not put into "struct talloc_chunk" because it is only
|
|
relevant for talloc pools and the alignment to 16 bytes would increase the
|
|
memory footprint of each talloc chunk by those 16 bytes.
|
|
*/
|
|
|
|
struct talloc_pool_hdr {
|
|
void *end;
|
|
unsigned int object_count;
|
|
size_t poolsize;
|
|
};
|
|
|
|
union talloc_pool_hdr_cast_u {
|
|
uint8_t *ptr;
|
|
struct talloc_pool_hdr *hdr;
|
|
};
|
|
|
|
#define TP_HDR_SIZE TC_ALIGN16(sizeof(struct talloc_pool_hdr))
|
|
|
|
static inline struct talloc_pool_hdr *talloc_pool_from_chunk(struct talloc_chunk *c)
|
|
{
|
|
union talloc_chunk_cast_u tcc = { .chunk = c };
|
|
union talloc_pool_hdr_cast_u tphc = { tcc.ptr - TP_HDR_SIZE };
|
|
return tphc.hdr;
|
|
}
|
|
|
|
static inline struct talloc_chunk *talloc_chunk_from_pool(struct talloc_pool_hdr *h)
|
|
{
|
|
union talloc_pool_hdr_cast_u tphc = { .hdr = h };
|
|
union talloc_chunk_cast_u tcc = { .ptr = tphc.ptr + TP_HDR_SIZE };
|
|
return tcc.chunk;
|
|
}
|
|
|
|
static inline void *tc_pool_end(struct talloc_pool_hdr *pool_hdr)
|
|
{
|
|
struct talloc_chunk *tc = talloc_chunk_from_pool(pool_hdr);
|
|
return (char *)tc + TC_HDR_SIZE + pool_hdr->poolsize;
|
|
}
|
|
|
|
static inline size_t tc_pool_space_left(struct talloc_pool_hdr *pool_hdr)
|
|
{
|
|
return (char *)tc_pool_end(pool_hdr) - (char *)pool_hdr->end;
|
|
}
|
|
|
|
/* If tc is inside a pool, this gives the next neighbour. */
|
|
static inline void *tc_next_chunk(struct talloc_chunk *tc)
|
|
{
|
|
return (char *)tc + TC_ALIGN16(TC_HDR_SIZE + tc->size);
|
|
}
|
|
|
|
static inline void *tc_pool_first_chunk(struct talloc_pool_hdr *pool_hdr)
|
|
{
|
|
struct talloc_chunk *tc = talloc_chunk_from_pool(pool_hdr);
|
|
return tc_next_chunk(tc);
|
|
}
|
|
|
|
/* Mark the whole remaining pool as not accessible */
|
|
static inline void tc_invalidate_pool(struct talloc_pool_hdr *pool_hdr)
|
|
{
|
|
size_t flen = tc_pool_space_left(pool_hdr);
|
|
|
|
if (unlikely(talloc_fill.enabled)) {
|
|
memset(pool_hdr->end, talloc_fill.fill_value, flen);
|
|
}
|
|
|
|
#if defined(DEVELOPER) && defined(VALGRIND_MAKE_MEM_NOACCESS)
|
|
VALGRIND_MAKE_MEM_NOACCESS(pool_hdr->end, flen);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
Allocate from a pool
|
|
*/
|
|
|
|
static inline struct talloc_chunk *tc_alloc_pool(struct talloc_chunk *parent,
|
|
size_t size, size_t prefix_len)
|
|
{
|
|
struct talloc_pool_hdr *pool_hdr = NULL;
|
|
union talloc_chunk_cast_u tcc;
|
|
size_t space_left;
|
|
struct talloc_chunk *result;
|
|
size_t chunk_size;
|
|
|
|
if (parent == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
if (parent->flags & TALLOC_FLAG_POOL) {
|
|
pool_hdr = talloc_pool_from_chunk(parent);
|
|
}
|
|
else if (parent->flags & TALLOC_FLAG_POOLMEM) {
|
|
pool_hdr = parent->pool;
|
|
}
|
|
|
|
if (pool_hdr == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
space_left = tc_pool_space_left(pool_hdr);
|
|
|
|
/*
|
|
* Align size to 16 bytes
|
|
*/
|
|
chunk_size = TC_ALIGN16(size + prefix_len);
|
|
|
|
if (space_left < chunk_size) {
|
|
return NULL;
|
|
}
|
|
|
|
tcc = (union talloc_chunk_cast_u) {
|
|
.ptr = ((uint8_t *)pool_hdr->end) + prefix_len
|
|
};
|
|
result = tcc.chunk;
|
|
|
|
#if defined(DEVELOPER) && defined(VALGRIND_MAKE_MEM_UNDEFINED)
|
|
VALGRIND_MAKE_MEM_UNDEFINED(pool_hdr->end, chunk_size);
|
|
#endif
|
|
|
|
pool_hdr->end = (void *)((char *)pool_hdr->end + chunk_size);
|
|
|
|
result->flags = talloc_magic | TALLOC_FLAG_POOLMEM;
|
|
result->pool = pool_hdr;
|
|
|
|
pool_hdr->object_count++;
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
Allocate a bit of memory as a child of an existing pointer
|
|
*/
|
|
static inline void *__talloc_with_prefix(const void *context,
|
|
size_t size,
|
|
size_t prefix_len,
|
|
struct talloc_chunk **tc_ret)
|
|
{
|
|
struct talloc_chunk *tc = NULL;
|
|
struct talloc_memlimit *limit = NULL;
|
|
size_t total_len = TC_HDR_SIZE + size + prefix_len;
|
|
struct talloc_chunk *parent = NULL;
|
|
|
|
if (unlikely(context == NULL)) {
|
|
context = null_context;
|
|
}
|
|
|
|
if (unlikely(size >= MAX_TALLOC_SIZE)) {
|
|
return NULL;
|
|
}
|
|
|
|
if (unlikely(total_len < TC_HDR_SIZE)) {
|
|
return NULL;
|
|
}
|
|
|
|
if (likely(context != NULL)) {
|
|
parent = talloc_chunk_from_ptr(context);
|
|
|
|
if (parent->limit != NULL) {
|
|
limit = parent->limit;
|
|
}
|
|
|
|
tc = tc_alloc_pool(parent, TC_HDR_SIZE+size, prefix_len);
|
|
}
|
|
|
|
if (tc == NULL) {
|
|
uint8_t *ptr = NULL;
|
|
union talloc_chunk_cast_u tcc;
|
|
|
|
/*
|
|
* Only do the memlimit check/update on actual allocation.
|
|
*/
|
|
if (!talloc_memlimit_check(limit, total_len)) {
|
|
errno = ENOMEM;
|
|
return NULL;
|
|
}
|
|
|
|
ptr = malloc(total_len);
|
|
if (unlikely(ptr == NULL)) {
|
|
return NULL;
|
|
}
|
|
tcc = (union talloc_chunk_cast_u) { .ptr = ptr + prefix_len };
|
|
tc = tcc.chunk;
|
|
tc->flags = talloc_magic;
|
|
tc->pool = NULL;
|
|
|
|
talloc_memlimit_grow(limit, total_len);
|
|
}
|
|
|
|
tc->limit = limit;
|
|
tc->size = size;
|
|
tc->destructor = NULL;
|
|
tc->child = NULL;
|
|
tc->name = NULL;
|
|
tc->refs = NULL;
|
|
|
|
if (likely(context != NULL)) {
|
|
if (parent->child) {
|
|
parent->child->parent = NULL;
|
|
tc->next = parent->child;
|
|
tc->next->prev = tc;
|
|
} else {
|
|
tc->next = NULL;
|
|
}
|
|
tc->parent = parent;
|
|
tc->prev = NULL;
|
|
parent->child = tc;
|
|
} else {
|
|
tc->next = tc->prev = tc->parent = NULL;
|
|
}
|
|
|
|
*tc_ret = tc;
|
|
return TC_PTR_FROM_CHUNK(tc);
|
|
}
|
|
|
|
static inline void *__talloc(const void *context,
|
|
size_t size,
|
|
struct talloc_chunk **tc)
|
|
{
|
|
return __talloc_with_prefix(context, size, 0, tc);
|
|
}
|
|
|
|
/*
|
|
* Create a talloc pool
|
|
*/
|
|
|
|
static inline void *_talloc_pool(const void *context, size_t size)
|
|
{
|
|
struct talloc_chunk *tc = NULL;
|
|
struct talloc_pool_hdr *pool_hdr;
|
|
void *result;
|
|
|
|
result = __talloc_with_prefix(context, size, TP_HDR_SIZE, &tc);
|
|
|
|
if (unlikely(result == NULL)) {
|
|
return NULL;
|
|
}
|
|
|
|
pool_hdr = talloc_pool_from_chunk(tc);
|
|
|
|
tc->flags |= TALLOC_FLAG_POOL;
|
|
tc->size = 0;
|
|
|
|
pool_hdr->object_count = 1;
|
|
pool_hdr->end = result;
|
|
pool_hdr->poolsize = size;
|
|
|
|
tc_invalidate_pool(pool_hdr);
|
|
|
|
return result;
|
|
}
|
|
|
|
_PUBLIC_ void *talloc_pool(const void *context, size_t size)
|
|
{
|
|
return _talloc_pool(context, size);
|
|
}
|
|
|
|
/*
|
|
* Create a talloc pool correctly sized for a basic size plus
|
|
* a number of subobjects whose total size is given. Essentially
|
|
* a custom allocator for talloc to reduce fragmentation.
|
|
*/
|
|
|
|
_PUBLIC_ void *_talloc_pooled_object(const void *ctx,
|
|
size_t type_size,
|
|
const char *type_name,
|
|
unsigned num_subobjects,
|
|
size_t total_subobjects_size)
|
|
{
|
|
size_t poolsize, subobjects_slack, tmp;
|
|
struct talloc_chunk *tc;
|
|
struct talloc_pool_hdr *pool_hdr;
|
|
void *ret;
|
|
|
|
poolsize = type_size + total_subobjects_size;
|
|
|
|
if ((poolsize < type_size) || (poolsize < total_subobjects_size)) {
|
|
goto overflow;
|
|
}
|
|
|
|
if (num_subobjects == UINT_MAX) {
|
|
goto overflow;
|
|
}
|
|
num_subobjects += 1; /* the object body itself */
|
|
|
|
/*
|
|
* Alignment can increase the pool size by at most 15 bytes per object
|
|
* plus alignment for the object itself
|
|
*/
|
|
subobjects_slack = (TC_HDR_SIZE + TP_HDR_SIZE + 15) * num_subobjects;
|
|
if (subobjects_slack < num_subobjects) {
|
|
goto overflow;
|
|
}
|
|
|
|
tmp = poolsize + subobjects_slack;
|
|
if ((tmp < poolsize) || (tmp < subobjects_slack)) {
|
|
goto overflow;
|
|
}
|
|
poolsize = tmp;
|
|
|
|
ret = _talloc_pool(ctx, poolsize);
|
|
if (ret == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
tc = talloc_chunk_from_ptr(ret);
|
|
tc->size = type_size;
|
|
|
|
pool_hdr = talloc_pool_from_chunk(tc);
|
|
|
|
#if defined(DEVELOPER) && defined(VALGRIND_MAKE_MEM_UNDEFINED)
|
|
VALGRIND_MAKE_MEM_UNDEFINED(pool_hdr->end, type_size);
|
|
#endif
|
|
|
|
pool_hdr->end = ((char *)pool_hdr->end + TC_ALIGN16(type_size));
|
|
|
|
_tc_set_name_const(tc, type_name);
|
|
return ret;
|
|
|
|
overflow:
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
setup a destructor to be called on free of a pointer
|
|
the destructor should return 0 on success, or -1 on failure.
|
|
if the destructor fails then the free is failed, and the memory can
|
|
be continued to be used
|
|
*/
|
|
_PUBLIC_ void _talloc_set_destructor(const void *ptr, int (*destructor)(void *))
|
|
{
|
|
struct talloc_chunk *tc = talloc_chunk_from_ptr(ptr);
|
|
tc->destructor = destructor;
|
|
}
|
|
|
|
/*
|
|
increase the reference count on a piece of memory.
|
|
*/
|
|
_PUBLIC_ int talloc_increase_ref_count(const void *ptr)
|
|
{
|
|
if (unlikely(!talloc_reference(null_context, ptr))) {
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
helper for talloc_reference()
|
|
|
|
this is referenced by a function pointer and should not be inline
|
|
*/
|
|
static int talloc_reference_destructor(struct talloc_reference_handle *handle)
|
|
{
|
|
struct talloc_chunk *ptr_tc = talloc_chunk_from_ptr(handle->ptr);
|
|
_TLIST_REMOVE(ptr_tc->refs, handle);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
more efficient way to add a name to a pointer - the name must point to a
|
|
true string constant
|
|
*/
|
|
static inline void _tc_set_name_const(struct talloc_chunk *tc,
|
|
const char *name)
|
|
{
|
|
tc->name = name;
|
|
}
|
|
|
|
/*
|
|
internal talloc_named_const()
|
|
*/
|
|
static inline void *_talloc_named_const(const void *context, size_t size, const char *name)
|
|
{
|
|
void *ptr;
|
|
struct talloc_chunk *tc = NULL;
|
|
|
|
ptr = __talloc(context, size, &tc);
|
|
if (unlikely(ptr == NULL)) {
|
|
return NULL;
|
|
}
|
|
|
|
_tc_set_name_const(tc, name);
|
|
|
|
return ptr;
|
|
}
|
|
|
|
/*
|
|
make a secondary reference to a pointer, hanging off the given context.
|
|
the pointer remains valid until both the original caller and this given
|
|
context are freed.
|
|
|
|
the major use for this is when two different structures need to reference the
|
|
same underlying data, and you want to be able to free the two instances separately,
|
|
and in either order
|
|
*/
|
|
_PUBLIC_ void *_talloc_reference_loc(const void *context, const void *ptr, const char *location)
|
|
{
|
|
struct talloc_chunk *tc;
|
|
struct talloc_reference_handle *handle;
|
|
if (unlikely(ptr == NULL)) return NULL;
|
|
|
|
tc = talloc_chunk_from_ptr(ptr);
|
|
handle = (struct talloc_reference_handle *)_talloc_named_const(context,
|
|
sizeof(struct talloc_reference_handle),
|
|
TALLOC_MAGIC_REFERENCE);
|
|
if (unlikely(handle == NULL)) return NULL;
|
|
|
|
/* note that we hang the destructor off the handle, not the
|
|
main context as that allows the caller to still setup their
|
|
own destructor on the context if they want to */
|
|
talloc_set_destructor(handle, talloc_reference_destructor);
|
|
handle->ptr = discard_const_p(void, ptr);
|
|
handle->location = location;
|
|
_TLIST_ADD(tc->refs, handle);
|
|
return handle->ptr;
|
|
}
|
|
|
|
static void *_talloc_steal_internal(const void *new_ctx, const void *ptr);
|
|
|
|
static inline void _tc_free_poolmem(struct talloc_chunk *tc,
|
|
const char *location)
|
|
{
|
|
struct talloc_pool_hdr *pool;
|
|
struct talloc_chunk *pool_tc;
|
|
void *next_tc;
|
|
|
|
pool = tc->pool;
|
|
pool_tc = talloc_chunk_from_pool(pool);
|
|
next_tc = tc_next_chunk(tc);
|
|
|
|
_talloc_chunk_set_free(tc, location);
|
|
|
|
TC_INVALIDATE_FULL_CHUNK(tc);
|
|
|
|
if (unlikely(pool->object_count == 0)) {
|
|
talloc_abort("Pool object count zero!");
|
|
return;
|
|
}
|
|
|
|
pool->object_count--;
|
|
|
|
if (unlikely(pool->object_count == 1
|
|
&& !(pool_tc->flags & TALLOC_FLAG_FREE))) {
|
|
/*
|
|
* if there is just one object left in the pool
|
|
* and pool->flags does not have TALLOC_FLAG_FREE,
|
|
* it means this is the pool itself and
|
|
* the rest is available for new objects
|
|
* again.
|
|
*/
|
|
pool->end = tc_pool_first_chunk(pool);
|
|
tc_invalidate_pool(pool);
|
|
return;
|
|
}
|
|
|
|
if (unlikely(pool->object_count == 0)) {
|
|
/*
|
|
* we mark the freed memory with where we called the free
|
|
* from. This means on a double free error we can report where
|
|
* the first free came from
|
|
*/
|
|
pool_tc->name = location;
|
|
|
|
if (pool_tc->flags & TALLOC_FLAG_POOLMEM) {
|
|
_tc_free_poolmem(pool_tc, location);
|
|
} else {
|
|
/*
|
|
* The tc_memlimit_update_on_free()
|
|
* call takes into account the
|
|
* prefix TP_HDR_SIZE allocated before
|
|
* the pool talloc_chunk.
|
|
*/
|
|
tc_memlimit_update_on_free(pool_tc);
|
|
TC_INVALIDATE_FULL_CHUNK(pool_tc);
|
|
free(pool);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (pool->end == next_tc) {
|
|
/*
|
|
* if pool->pool still points to end of
|
|
* 'tc' (which is stored in the 'next_tc' variable),
|
|
* we can reclaim the memory of 'tc'.
|
|
*/
|
|
pool->end = tc;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Do nothing. The memory is just "wasted", waiting for the pool
|
|
* itself to be freed.
|
|
*/
|
|
}
|
|
|
|
static inline void _tc_free_children_internal(struct talloc_chunk *tc,
|
|
void *ptr,
|
|
const char *location);
|
|
|
|
static inline int _talloc_free_internal(void *ptr, const char *location);
|
|
|
|
/*
|
|
internal free call that takes a struct talloc_chunk *.
|
|
*/
|
|
static inline int _tc_free_internal(struct talloc_chunk *tc,
|
|
const char *location)
|
|
{
|
|
void *ptr_to_free;
|
|
void *ptr = TC_PTR_FROM_CHUNK(tc);
|
|
|
|
if (unlikely(tc->refs)) {
|
|
int is_child;
|
|
/* check if this is a reference from a child or
|
|
* grandchild back to it's parent or grandparent
|
|
*
|
|
* in that case we need to remove the reference and
|
|
* call another instance of talloc_free() on the current
|
|
* pointer.
|
|
*/
|
|
is_child = talloc_is_parent(tc->refs, ptr);
|
|
_talloc_free_internal(tc->refs, location);
|
|
if (is_child) {
|
|
return _talloc_free_internal(ptr, location);
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
if (unlikely(tc->flags & TALLOC_FLAG_LOOP)) {
|
|
/* we have a free loop - stop looping */
|
|
return 0;
|
|
}
|
|
|
|
if (unlikely(tc->destructor)) {
|
|
talloc_destructor_t d = tc->destructor;
|
|
|
|
/*
|
|
* Protect the destructor against some overwrite
|
|
* attacks, by explicitly checking it has the right
|
|
* magic here.
|
|
*/
|
|
if (talloc_chunk_from_ptr(ptr) != tc) {
|
|
/*
|
|
* This can't actually happen, the
|
|
* call itself will panic.
|
|
*/
|
|
TALLOC_ABORT("talloc_chunk_from_ptr failed!");
|
|
}
|
|
|
|
if (d == (talloc_destructor_t)-1) {
|
|
return -1;
|
|
}
|
|
tc->destructor = (talloc_destructor_t)-1;
|
|
if (d(ptr) == -1) {
|
|
/*
|
|
* Only replace the destructor pointer if
|
|
* calling the destructor didn't modify it.
|
|
*/
|
|
if (tc->destructor == (talloc_destructor_t)-1) {
|
|
tc->destructor = d;
|
|
}
|
|
return -1;
|
|
}
|
|
tc->destructor = NULL;
|
|
}
|
|
|
|
if (tc->parent) {
|
|
_TLIST_REMOVE(tc->parent->child, tc);
|
|
if (tc->parent->child) {
|
|
tc->parent->child->parent = tc->parent;
|
|
}
|
|
} else {
|
|
if (tc->prev) tc->prev->next = tc->next;
|
|
if (tc->next) tc->next->prev = tc->prev;
|
|
tc->prev = tc->next = NULL;
|
|
}
|
|
|
|
tc->flags |= TALLOC_FLAG_LOOP;
|
|
|
|
_tc_free_children_internal(tc, ptr, location);
|
|
|
|
_talloc_chunk_set_free(tc, location);
|
|
|
|
if (tc->flags & TALLOC_FLAG_POOL) {
|
|
struct talloc_pool_hdr *pool;
|
|
|
|
pool = talloc_pool_from_chunk(tc);
|
|
|
|
if (unlikely(pool->object_count == 0)) {
|
|
talloc_abort("Pool object count zero!");
|
|
return 0;
|
|
}
|
|
|
|
pool->object_count--;
|
|
|
|
if (likely(pool->object_count != 0)) {
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* With object_count==0, a pool becomes a normal piece of
|
|
* memory to free. If it's allocated inside a pool, it needs
|
|
* to be freed as poolmem, else it needs to be just freed.
|
|
*/
|
|
ptr_to_free = pool;
|
|
} else {
|
|
ptr_to_free = tc;
|
|
}
|
|
|
|
if (tc->flags & TALLOC_FLAG_POOLMEM) {
|
|
_tc_free_poolmem(tc, location);
|
|
return 0;
|
|
}
|
|
|
|
tc_memlimit_update_on_free(tc);
|
|
|
|
TC_INVALIDATE_FULL_CHUNK(tc);
|
|
free(ptr_to_free);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
internal talloc_free call
|
|
*/
|
|
static inline int _talloc_free_internal(void *ptr, const char *location)
|
|
{
|
|
struct talloc_chunk *tc;
|
|
|
|
if (unlikely(ptr == NULL)) {
|
|
return -1;
|
|
}
|
|
|
|
/* possibly initialised the talloc fill value */
|
|
if (unlikely(!talloc_fill.initialised)) {
|
|
const char *fill = getenv(TALLOC_FILL_ENV);
|
|
if (fill != NULL) {
|
|
talloc_fill.enabled = true;
|
|
talloc_fill.fill_value = strtoul(fill, NULL, 0);
|
|
}
|
|
talloc_fill.initialised = true;
|
|
}
|
|
|
|
tc = talloc_chunk_from_ptr(ptr);
|
|
return _tc_free_internal(tc, location);
|
|
}
|
|
|
|
static inline size_t _talloc_total_limit_size(const void *ptr,
|
|
struct talloc_memlimit *old_limit,
|
|
struct talloc_memlimit *new_limit);
|
|
|
|
/*
|
|
move a lump of memory from one talloc context to another returning the
|
|
ptr on success, or NULL if it could not be transferred.
|
|
passing NULL as ptr will always return NULL with no side effects.
|
|
*/
|
|
static void *_talloc_steal_internal(const void *new_ctx, const void *ptr)
|
|
{
|
|
struct talloc_chunk *tc, *new_tc;
|
|
size_t ctx_size = 0;
|
|
|
|
if (unlikely(!ptr)) {
|
|
return NULL;
|
|
}
|
|
|
|
if (unlikely(new_ctx == NULL)) {
|
|
new_ctx = null_context;
|
|
}
|
|
|
|
tc = talloc_chunk_from_ptr(ptr);
|
|
|
|
if (tc->limit != NULL) {
|
|
|
|
ctx_size = _talloc_total_limit_size(ptr, NULL, NULL);
|
|
|
|
/* Decrement the memory limit from the source .. */
|
|
talloc_memlimit_shrink(tc->limit->upper, ctx_size);
|
|
|
|
if (tc->limit->parent == tc) {
|
|
tc->limit->upper = NULL;
|
|
} else {
|
|
tc->limit = NULL;
|
|
}
|
|
}
|
|
|
|
if (unlikely(new_ctx == NULL)) {
|
|
if (tc->parent) {
|
|
_TLIST_REMOVE(tc->parent->child, tc);
|
|
if (tc->parent->child) {
|
|
tc->parent->child->parent = tc->parent;
|
|
}
|
|
} else {
|
|
if (tc->prev) tc->prev->next = tc->next;
|
|
if (tc->next) tc->next->prev = tc->prev;
|
|
}
|
|
|
|
tc->parent = tc->next = tc->prev = NULL;
|
|
return discard_const_p(void, ptr);
|
|
}
|
|
|
|
new_tc = talloc_chunk_from_ptr(new_ctx);
|
|
|
|
if (unlikely(tc == new_tc || tc->parent == new_tc)) {
|
|
return discard_const_p(void, ptr);
|
|
}
|
|
|
|
if (tc->parent) {
|
|
_TLIST_REMOVE(tc->parent->child, tc);
|
|
if (tc->parent->child) {
|
|
tc->parent->child->parent = tc->parent;
|
|
}
|
|
} else {
|
|
if (tc->prev) tc->prev->next = tc->next;
|
|
if (tc->next) tc->next->prev = tc->prev;
|
|
tc->prev = tc->next = NULL;
|
|
}
|
|
|
|
tc->parent = new_tc;
|
|
if (new_tc->child) new_tc->child->parent = NULL;
|
|
_TLIST_ADD(new_tc->child, tc);
|
|
|
|
if (tc->limit || new_tc->limit) {
|
|
ctx_size = _talloc_total_limit_size(ptr, tc->limit,
|
|
new_tc->limit);
|
|
/* .. and increment it in the destination. */
|
|
if (new_tc->limit) {
|
|
talloc_memlimit_grow(new_tc->limit, ctx_size);
|
|
}
|
|
}
|
|
|
|
return discard_const_p(void, ptr);
|
|
}
|
|
|
|
/*
|
|
move a lump of memory from one talloc context to another returning the
|
|
ptr on success, or NULL if it could not be transferred.
|
|
passing NULL as ptr will always return NULL with no side effects.
|
|
*/
|
|
_PUBLIC_ void *_talloc_steal_loc(const void *new_ctx, const void *ptr, const char *location)
|
|
{
|
|
struct talloc_chunk *tc;
|
|
|
|
if (unlikely(ptr == NULL)) {
|
|
return NULL;
|
|
}
|
|
|
|
tc = talloc_chunk_from_ptr(ptr);
|
|
|
|
if (unlikely(tc->refs != NULL) && talloc_parent(ptr) != new_ctx) {
|
|
struct talloc_reference_handle *h;
|
|
|
|
talloc_log("WARNING: talloc_steal with references at %s\n",
|
|
location);
|
|
|
|
for (h=tc->refs; h; h=h->next) {
|
|
talloc_log("\treference at %s\n",
|
|
h->location);
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
/* this test is probably too expensive to have on in the
|
|
normal build, but it useful for debugging */
|
|
if (talloc_is_parent(new_ctx, ptr)) {
|
|
talloc_log("WARNING: stealing into talloc child at %s\n", location);
|
|
}
|
|
#endif
|
|
|
|
return _talloc_steal_internal(new_ctx, ptr);
|
|
}
|
|
|
|
/*
|
|
this is like a talloc_steal(), but you must supply the old
|
|
parent. This resolves the ambiguity in a talloc_steal() which is
|
|
called on a context that has more than one parent (via references)
|
|
|
|
The old parent can be either a reference or a parent
|
|
*/
|
|
_PUBLIC_ void *talloc_reparent(const void *old_parent, const void *new_parent, const void *ptr)
|
|
{
|
|
struct talloc_chunk *tc;
|
|
struct talloc_reference_handle *h;
|
|
|
|
if (unlikely(ptr == NULL)) {
|
|
return NULL;
|
|
}
|
|
|
|
if (old_parent == talloc_parent(ptr)) {
|
|
return _talloc_steal_internal(new_parent, ptr);
|
|
}
|
|
|
|
tc = talloc_chunk_from_ptr(ptr);
|
|
for (h=tc->refs;h;h=h->next) {
|
|
if (talloc_parent(h) == old_parent) {
|
|
if (_talloc_steal_internal(new_parent, h) != h) {
|
|
return NULL;
|
|
}
|
|
return discard_const_p(void, ptr);
|
|
}
|
|
}
|
|
|
|
/* it wasn't a parent */
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
remove a secondary reference to a pointer. This undo's what
|
|
talloc_reference() has done. The context and pointer arguments
|
|
must match those given to a talloc_reference()
|
|
*/
|
|
static inline int talloc_unreference(const void *context, const void *ptr)
|
|
{
|
|
struct talloc_chunk *tc = talloc_chunk_from_ptr(ptr);
|
|
struct talloc_reference_handle *h;
|
|
|
|
if (unlikely(context == NULL)) {
|
|
context = null_context;
|
|
}
|
|
|
|
for (h=tc->refs;h;h=h->next) {
|
|
struct talloc_chunk *p = talloc_parent_chunk(h);
|
|
if (p == NULL) {
|
|
if (context == NULL) break;
|
|
} else if (TC_PTR_FROM_CHUNK(p) == context) {
|
|
break;
|
|
}
|
|
}
|
|
if (h == NULL) {
|
|
return -1;
|
|
}
|
|
|
|
return _talloc_free_internal(h, __location__);
|
|
}
|
|
|
|
/*
|
|
remove a specific parent context from a pointer. This is a more
|
|
controlled variant of talloc_free()
|
|
*/
|
|
|
|
/* coverity[ -tainted_data_sink : arg-1 ] */
|
|
_PUBLIC_ int talloc_unlink(const void *context, void *ptr)
|
|
{
|
|
struct talloc_chunk *tc_p, *new_p, *tc_c;
|
|
void *new_parent;
|
|
|
|
if (ptr == NULL) {
|
|
return -1;
|
|
}
|
|
|
|
if (context == NULL) {
|
|
context = null_context;
|
|
}
|
|
|
|
if (talloc_unreference(context, ptr) == 0) {
|
|
return 0;
|
|
}
|
|
|
|
if (context != NULL) {
|
|
tc_c = talloc_chunk_from_ptr(context);
|
|
} else {
|
|
tc_c = NULL;
|
|
}
|
|
if (tc_c != talloc_parent_chunk(ptr)) {
|
|
return -1;
|
|
}
|
|
|
|
tc_p = talloc_chunk_from_ptr(ptr);
|
|
|
|
if (tc_p->refs == NULL) {
|
|
return _talloc_free_internal(ptr, __location__);
|
|
}
|
|
|
|
new_p = talloc_parent_chunk(tc_p->refs);
|
|
if (new_p) {
|
|
new_parent = TC_PTR_FROM_CHUNK(new_p);
|
|
} else {
|
|
new_parent = NULL;
|
|
}
|
|
|
|
if (talloc_unreference(new_parent, ptr) != 0) {
|
|
return -1;
|
|
}
|
|
|
|
_talloc_steal_internal(new_parent, ptr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
add a name to an existing pointer - va_list version
|
|
*/
|
|
static inline const char *tc_set_name_v(struct talloc_chunk *tc,
|
|
const char *fmt,
|
|
va_list ap) PRINTF_ATTRIBUTE(2,0);
|
|
|
|
static inline const char *tc_set_name_v(struct talloc_chunk *tc,
|
|
const char *fmt,
|
|
va_list ap)
|
|
{
|
|
struct talloc_chunk *name_tc = _vasprintf_tc(TC_PTR_FROM_CHUNK(tc),
|
|
fmt,
|
|
ap);
|
|
if (likely(name_tc)) {
|
|
tc->name = TC_PTR_FROM_CHUNK(name_tc);
|
|
_tc_set_name_const(name_tc, ".name");
|
|
} else {
|
|
tc->name = NULL;
|
|
}
|
|
return tc->name;
|
|
}
|
|
|
|
/*
|
|
add a name to an existing pointer
|
|
*/
|
|
_PUBLIC_ const char *talloc_set_name(const void *ptr, const char *fmt, ...)
|
|
{
|
|
struct talloc_chunk *tc = talloc_chunk_from_ptr(ptr);
|
|
const char *name;
|
|
va_list ap;
|
|
va_start(ap, fmt);
|
|
name = tc_set_name_v(tc, fmt, ap);
|
|
va_end(ap);
|
|
return name;
|
|
}
|
|
|
|
|
|
/*
|
|
create a named talloc pointer. Any talloc pointer can be named, and
|
|
talloc_named() operates just like talloc() except that it allows you
|
|
to name the pointer.
|
|
*/
|
|
_PUBLIC_ void *talloc_named(const void *context, size_t size, const char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
void *ptr;
|
|
const char *name;
|
|
struct talloc_chunk *tc = NULL;
|
|
|
|
ptr = __talloc(context, size, &tc);
|
|
if (unlikely(ptr == NULL)) return NULL;
|
|
|
|
va_start(ap, fmt);
|
|
name = tc_set_name_v(tc, fmt, ap);
|
|
va_end(ap);
|
|
|
|
if (unlikely(name == NULL)) {
|
|
_talloc_free_internal(ptr, __location__);
|
|
return NULL;
|
|
}
|
|
|
|
return ptr;
|
|
}
|
|
|
|
/*
|
|
return the name of a talloc ptr, or "UNNAMED"
|
|
*/
|
|
static inline const char *__talloc_get_name(const void *ptr)
|
|
{
|
|
struct talloc_chunk *tc = talloc_chunk_from_ptr(ptr);
|
|
if (unlikely(tc->name == TALLOC_MAGIC_REFERENCE)) {
|
|
return ".reference";
|
|
}
|
|
if (likely(tc->name)) {
|
|
return tc->name;
|
|
}
|
|
return "UNNAMED";
|
|
}
|
|
|
|
_PUBLIC_ const char *talloc_get_name(const void *ptr)
|
|
{
|
|
return __talloc_get_name(ptr);
|
|
}
|
|
|
|
/*
|
|
check if a pointer has the given name. If it does, return the pointer,
|
|
otherwise return NULL
|
|
*/
|
|
_PUBLIC_ void *talloc_check_name(const void *ptr, const char *name)
|
|
{
|
|
const char *pname;
|
|
if (unlikely(ptr == NULL)) return NULL;
|
|
pname = __talloc_get_name(ptr);
|
|
if (likely(pname == name || strcmp(pname, name) == 0)) {
|
|
return discard_const_p(void, ptr);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static void talloc_abort_type_mismatch(const char *location,
|
|
const char *name,
|
|
const char *expected)
|
|
{
|
|
const char *reason;
|
|
|
|
reason = talloc_asprintf(NULL,
|
|
"%s: Type mismatch: name[%s] expected[%s]",
|
|
location,
|
|
name?name:"NULL",
|
|
expected);
|
|
if (!reason) {
|
|
reason = "Type mismatch";
|
|
}
|
|
|
|
talloc_abort(reason);
|
|
}
|
|
|
|
_PUBLIC_ void *_talloc_get_type_abort(const void *ptr, const char *name, const char *location)
|
|
{
|
|
const char *pname;
|
|
|
|
if (unlikely(ptr == NULL)) {
|
|
talloc_abort_type_mismatch(location, NULL, name);
|
|
return NULL;
|
|
}
|
|
|
|
pname = __talloc_get_name(ptr);
|
|
if (likely(pname == name || strcmp(pname, name) == 0)) {
|
|
return discard_const_p(void, ptr);
|
|
}
|
|
|
|
talloc_abort_type_mismatch(location, pname, name);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
this is for compatibility with older versions of talloc
|
|
*/
|
|
_PUBLIC_ void *talloc_init(const char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
void *ptr;
|
|
const char *name;
|
|
struct talloc_chunk *tc = NULL;
|
|
|
|
ptr = __talloc(NULL, 0, &tc);
|
|
if (unlikely(ptr == NULL)) return NULL;
|
|
|
|
va_start(ap, fmt);
|
|
name = tc_set_name_v(tc, fmt, ap);
|
|
va_end(ap);
|
|
|
|
if (unlikely(name == NULL)) {
|
|
_talloc_free_internal(ptr, __location__);
|
|
return NULL;
|
|
}
|
|
|
|
return ptr;
|
|
}
|
|
|
|
static inline void _tc_free_children_internal(struct talloc_chunk *tc,
|
|
void *ptr,
|
|
const char *location)
|
|
{
|
|
while (tc->child) {
|
|
/* we need to work out who will own an abandoned child
|
|
if it cannot be freed. In priority order, the first
|
|
choice is owner of any remaining reference to this
|
|
pointer, the second choice is our parent, and the
|
|
final choice is the null context. */
|
|
void *child = TC_PTR_FROM_CHUNK(tc->child);
|
|
const void *new_parent = null_context;
|
|
if (unlikely(tc->child->refs)) {
|
|
struct talloc_chunk *p = talloc_parent_chunk(tc->child->refs);
|
|
if (p) new_parent = TC_PTR_FROM_CHUNK(p);
|
|
}
|
|
if (unlikely(_tc_free_internal(tc->child, location) == -1)) {
|
|
if (talloc_parent_chunk(child) != tc) {
|
|
/*
|
|
* Destructor already reparented this child.
|
|
* No further reparenting needed.
|
|
*/
|
|
continue;
|
|
}
|
|
if (new_parent == null_context) {
|
|
struct talloc_chunk *p = talloc_parent_chunk(ptr);
|
|
if (p) new_parent = TC_PTR_FROM_CHUNK(p);
|
|
}
|
|
_talloc_steal_internal(new_parent, child);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
this is a replacement for the Samba3 talloc_destroy_pool functionality. It
|
|
should probably not be used in new code. It's in here to keep the talloc
|
|
code consistent across Samba 3 and 4.
|
|
*/
|
|
_PUBLIC_ void talloc_free_children(void *ptr)
|
|
{
|
|
struct talloc_chunk *tc_name = NULL;
|
|
struct talloc_chunk *tc;
|
|
|
|
if (unlikely(ptr == NULL)) {
|
|
return;
|
|
}
|
|
|
|
tc = talloc_chunk_from_ptr(ptr);
|
|
|
|
/* we do not want to free the context name if it is a child .. */
|
|
if (likely(tc->child)) {
|
|
for (tc_name = tc->child; tc_name; tc_name = tc_name->next) {
|
|
if (tc->name == TC_PTR_FROM_CHUNK(tc_name)) break;
|
|
}
|
|
if (tc_name) {
|
|
_TLIST_REMOVE(tc->child, tc_name);
|
|
if (tc->child) {
|
|
tc->child->parent = tc;
|
|
}
|
|
}
|
|
}
|
|
|
|
_tc_free_children_internal(tc, ptr, __location__);
|
|
|
|
/* .. so we put it back after all other children have been freed */
|
|
if (tc_name) {
|
|
if (tc->child) {
|
|
tc->child->parent = NULL;
|
|
}
|
|
tc_name->parent = tc;
|
|
_TLIST_ADD(tc->child, tc_name);
|
|
}
|
|
}
|
|
|
|
/*
|
|
Allocate a bit of memory as a child of an existing pointer
|
|
*/
|
|
_PUBLIC_ void *_talloc(const void *context, size_t size)
|
|
{
|
|
struct talloc_chunk *tc;
|
|
return __talloc(context, size, &tc);
|
|
}
|
|
|
|
/*
|
|
externally callable talloc_set_name_const()
|
|
*/
|
|
_PUBLIC_ void talloc_set_name_const(const void *ptr, const char *name)
|
|
{
|
|
_tc_set_name_const(talloc_chunk_from_ptr(ptr), name);
|
|
}
|
|
|
|
/*
|
|
create a named talloc pointer. Any talloc pointer can be named, and
|
|
talloc_named() operates just like talloc() except that it allows you
|
|
to name the pointer.
|
|
*/
|
|
_PUBLIC_ void *talloc_named_const(const void *context, size_t size, const char *name)
|
|
{
|
|
return _talloc_named_const(context, size, name);
|
|
}
|
|
|
|
/*
|
|
free a talloc pointer. This also frees all child pointers of this
|
|
pointer recursively
|
|
|
|
return 0 if the memory is actually freed, otherwise -1. The memory
|
|
will not be freed if the ref_count is > 1 or the destructor (if
|
|
any) returns non-zero
|
|
*/
|
|
_PUBLIC_ int _talloc_free(void *ptr, const char *location)
|
|
{
|
|
struct talloc_chunk *tc;
|
|
|
|
if (unlikely(ptr == NULL)) {
|
|
return -1;
|
|
}
|
|
|
|
tc = talloc_chunk_from_ptr(ptr);
|
|
|
|
if (unlikely(tc->refs != NULL)) {
|
|
struct talloc_reference_handle *h;
|
|
|
|
if (talloc_parent(ptr) == null_context && tc->refs->next == NULL) {
|
|
/* in this case we do know which parent should
|
|
get this pointer, as there is really only
|
|
one parent */
|
|
return talloc_unlink(null_context, ptr);
|
|
}
|
|
|
|
talloc_log("ERROR: talloc_free with references at %s\n",
|
|
location);
|
|
|
|
for (h=tc->refs; h; h=h->next) {
|
|
talloc_log("\treference at %s\n",
|
|
h->location);
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
return _talloc_free_internal(ptr, location);
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
A talloc version of realloc. The context argument is only used if
|
|
ptr is NULL
|
|
*/
|
|
_PUBLIC_ void *_talloc_realloc(const void *context, void *ptr, size_t size, const char *name)
|
|
{
|
|
struct talloc_chunk *tc;
|
|
void *new_ptr;
|
|
bool malloced = false;
|
|
struct talloc_pool_hdr *pool_hdr = NULL;
|
|
size_t old_size = 0;
|
|
size_t new_size = 0;
|
|
|
|
/* size zero is equivalent to free() */
|
|
if (unlikely(size == 0)) {
|
|
talloc_unlink(context, ptr);
|
|
return NULL;
|
|
}
|
|
|
|
if (unlikely(size >= MAX_TALLOC_SIZE)) {
|
|
return NULL;
|
|
}
|
|
|
|
/* realloc(NULL) is equivalent to malloc() */
|
|
if (ptr == NULL) {
|
|
return _talloc_named_const(context, size, name);
|
|
}
|
|
|
|
tc = talloc_chunk_from_ptr(ptr);
|
|
|
|
/* don't allow realloc on referenced pointers */
|
|
if (unlikely(tc->refs)) {
|
|
return NULL;
|
|
}
|
|
|
|
/* don't let anybody try to realloc a talloc_pool */
|
|
if (unlikely(tc->flags & TALLOC_FLAG_POOL)) {
|
|
return NULL;
|
|
}
|
|
|
|
/* handle realloc inside a talloc_pool */
|
|
if (unlikely(tc->flags & TALLOC_FLAG_POOLMEM)) {
|
|
pool_hdr = tc->pool;
|
|
}
|
|
|
|
/* don't shrink if we have less than 1k to gain */
|
|
if (size < tc->size && tc->limit == NULL) {
|
|
if (pool_hdr) {
|
|
void *next_tc = tc_next_chunk(tc);
|
|
TC_INVALIDATE_SHRINK_CHUNK(tc, size);
|
|
tc->size = size;
|
|
if (next_tc == pool_hdr->end) {
|
|
/* note: tc->size has changed, so this works */
|
|
pool_hdr->end = tc_next_chunk(tc);
|
|
}
|
|
return ptr;
|
|
} else if ((tc->size - size) < 1024) {
|
|
/*
|
|
* if we call TC_INVALIDATE_SHRINK_CHUNK() here
|
|
* we would need to call TC_UNDEFINE_GROW_CHUNK()
|
|
* after each realloc call, which slows down
|
|
* testing a lot :-(.
|
|
*
|
|
* That is why we only mark memory as undefined here.
|
|
*/
|
|
TC_UNDEFINE_SHRINK_CHUNK(tc, size);
|
|
|
|
/* do not shrink if we have less than 1k to gain */
|
|
tc->size = size;
|
|
return ptr;
|
|
}
|
|
} else if (tc->size == size) {
|
|
/*
|
|
* do not change the pointer if it is exactly
|
|
* the same size.
|
|
*/
|
|
return ptr;
|
|
}
|
|
|
|
/*
|
|
* by resetting magic we catch users of the old memory
|
|
*
|
|
* We mark this memory as free, and also over-stamp the talloc
|
|
* magic with the old-style magic.
|
|
*
|
|
* Why? This tries to avoid a memory read use-after-free from
|
|
* disclosing our talloc magic, which would then allow an
|
|
* attacker to prepare a valid header and so run a destructor.
|
|
*
|
|
* What else? We have to re-stamp back a valid normal magic
|
|
* on this memory once realloc() is done, as it will have done
|
|
* a memcpy() into the new valid memory. We can't do this in
|
|
* reverse as that would be a real use-after-free.
|
|
*/
|
|
_talloc_chunk_set_free(tc, NULL);
|
|
|
|
if (pool_hdr) {
|
|
struct talloc_chunk *pool_tc;
|
|
void *next_tc = tc_next_chunk(tc);
|
|
size_t old_chunk_size = TC_ALIGN16(TC_HDR_SIZE + tc->size);
|
|
size_t new_chunk_size = TC_ALIGN16(TC_HDR_SIZE + size);
|
|
size_t space_needed;
|
|
size_t space_left;
|
|
unsigned int chunk_count = pool_hdr->object_count;
|
|
|
|
pool_tc = talloc_chunk_from_pool(pool_hdr);
|
|
if (!(pool_tc->flags & TALLOC_FLAG_FREE)) {
|
|
chunk_count -= 1;
|
|
}
|
|
|
|
if (chunk_count == 1) {
|
|
/*
|
|
* optimize for the case where 'tc' is the only
|
|
* chunk in the pool.
|
|
*/
|
|
char *start = tc_pool_first_chunk(pool_hdr);
|
|
space_needed = new_chunk_size;
|
|
space_left = (char *)tc_pool_end(pool_hdr) - start;
|
|
|
|
if (space_left >= space_needed) {
|
|
size_t old_used = TC_HDR_SIZE + tc->size;
|
|
size_t new_used = TC_HDR_SIZE + size;
|
|
new_ptr = start;
|
|
|
|
#if defined(DEVELOPER) && defined(VALGRIND_MAKE_MEM_UNDEFINED)
|
|
{
|
|
/*
|
|
* The area from
|
|
* start -> tc may have
|
|
* been freed and thus been marked as
|
|
* VALGRIND_MEM_NOACCESS. Set it to
|
|
* VALGRIND_MEM_UNDEFINED so we can
|
|
* copy into it without valgrind errors.
|
|
* We can't just mark
|
|
* new_ptr -> new_ptr + old_used
|
|
* as this may overlap on top of tc,
|
|
* (which is why we use memmove, not
|
|
* memcpy below) hence the MIN.
|
|
*/
|
|
size_t undef_len = MIN((((char *)tc) - ((char *)new_ptr)),old_used);
|
|
VALGRIND_MAKE_MEM_UNDEFINED(new_ptr, undef_len);
|
|
}
|
|
#endif
|
|
|
|
memmove(new_ptr, tc, old_used);
|
|
|
|
tc = (struct talloc_chunk *)new_ptr;
|
|
TC_UNDEFINE_GROW_CHUNK(tc, size);
|
|
|
|
/*
|
|
* first we do not align the pool pointer
|
|
* because we want to invalidate the padding
|
|
* too.
|
|
*/
|
|
pool_hdr->end = new_used + (char *)new_ptr;
|
|
tc_invalidate_pool(pool_hdr);
|
|
|
|
/* now the aligned pointer */
|
|
pool_hdr->end = new_chunk_size + (char *)new_ptr;
|
|
goto got_new_ptr;
|
|
}
|
|
|
|
next_tc = NULL;
|
|
}
|
|
|
|
if (new_chunk_size == old_chunk_size) {
|
|
TC_UNDEFINE_GROW_CHUNK(tc, size);
|
|
_talloc_chunk_set_not_free(tc);
|
|
tc->size = size;
|
|
return ptr;
|
|
}
|
|
|
|
if (next_tc == pool_hdr->end) {
|
|
/*
|
|
* optimize for the case where 'tc' is the last
|
|
* chunk in the pool.
|
|
*/
|
|
space_needed = new_chunk_size - old_chunk_size;
|
|
space_left = tc_pool_space_left(pool_hdr);
|
|
|
|
if (space_left >= space_needed) {
|
|
TC_UNDEFINE_GROW_CHUNK(tc, size);
|
|
_talloc_chunk_set_not_free(tc);
|
|
tc->size = size;
|
|
pool_hdr->end = tc_next_chunk(tc);
|
|
return ptr;
|
|
}
|
|
}
|
|
|
|
new_ptr = tc_alloc_pool(tc, size + TC_HDR_SIZE, 0);
|
|
|
|
if (new_ptr == NULL) {
|
|
/*
|
|
* Couldn't allocate from pool (pool size
|
|
* counts as already allocated for memlimit
|
|
* purposes). We must check memory limit
|
|
* before any real malloc.
|
|
*/
|
|
if (tc->limit) {
|
|
/*
|
|
* Note we're doing an extra malloc,
|
|
* on top of the pool size, so account
|
|
* for size only, not the difference
|
|
* between old and new size.
|
|
*/
|
|
if (!talloc_memlimit_check(tc->limit, size)) {
|
|
_talloc_chunk_set_not_free(tc);
|
|
errno = ENOMEM;
|
|
return NULL;
|
|
}
|
|
}
|
|
new_ptr = malloc(TC_HDR_SIZE+size);
|
|
malloced = true;
|
|
new_size = size;
|
|
}
|
|
|
|
if (new_ptr) {
|
|
memcpy(new_ptr, tc, MIN(tc->size,size) + TC_HDR_SIZE);
|
|
|
|
_tc_free_poolmem(tc, __location__ "_talloc_realloc");
|
|
}
|
|
}
|
|
else {
|
|
/* We're doing realloc here, so record the difference. */
|
|
old_size = tc->size;
|
|
new_size = size;
|
|
/*
|
|
* We must check memory limit
|
|
* before any real realloc.
|
|
*/
|
|
if (tc->limit && (size > old_size)) {
|
|
if (!talloc_memlimit_check(tc->limit,
|
|
(size - old_size))) {
|
|
_talloc_chunk_set_not_free(tc);
|
|
errno = ENOMEM;
|
|
return NULL;
|
|
}
|
|
}
|
|
new_ptr = realloc(tc, size + TC_HDR_SIZE);
|
|
}
|
|
got_new_ptr:
|
|
|
|
if (unlikely(!new_ptr)) {
|
|
/*
|
|
* Ok, this is a strange spot. We have to put back
|
|
* the old talloc_magic and any flags, except the
|
|
* TALLOC_FLAG_FREE as this was not free'ed by the
|
|
* realloc() call after all
|
|
*/
|
|
_talloc_chunk_set_not_free(tc);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* tc is now the new value from realloc(), the old memory we
|
|
* can't access any more and was preemptively marked as
|
|
* TALLOC_FLAG_FREE before the call. Now we mark it as not
|
|
* free again
|
|
*/
|
|
tc = (struct talloc_chunk *)new_ptr;
|
|
_talloc_chunk_set_not_free(tc);
|
|
if (malloced) {
|
|
tc->flags &= ~TALLOC_FLAG_POOLMEM;
|
|
}
|
|
if (tc->parent) {
|
|
tc->parent->child = tc;
|
|
}
|
|
if (tc->child) {
|
|
tc->child->parent = tc;
|
|
}
|
|
|
|
if (tc->prev) {
|
|
tc->prev->next = tc;
|
|
}
|
|
if (tc->next) {
|
|
tc->next->prev = tc;
|
|
}
|
|
|
|
if (new_size > old_size) {
|
|
talloc_memlimit_grow(tc->limit, new_size - old_size);
|
|
} else if (new_size < old_size) {
|
|
talloc_memlimit_shrink(tc->limit, old_size - new_size);
|
|
}
|
|
|
|
tc->size = size;
|
|
_tc_set_name_const(tc, name);
|
|
|
|
return TC_PTR_FROM_CHUNK(tc);
|
|
}
|
|
|
|
/*
|
|
a wrapper around talloc_steal() for situations where you are moving a pointer
|
|
between two structures, and want the old pointer to be set to NULL
|
|
*/
|
|
_PUBLIC_ void *_talloc_move(const void *new_ctx, const void *_pptr)
|
|
{
|
|
const void **pptr = discard_const_p(const void *,_pptr);
|
|
void *ret = talloc_steal(new_ctx, discard_const_p(void, *pptr));
|
|
(*pptr) = NULL;
|
|
return ret;
|
|
}
|
|
|
|
enum talloc_mem_count_type {
|
|
TOTAL_MEM_SIZE,
|
|
TOTAL_MEM_BLOCKS,
|
|
TOTAL_MEM_LIMIT,
|
|
};
|
|
|
|
static inline size_t _talloc_total_mem_internal(const void *ptr,
|
|
enum talloc_mem_count_type type,
|
|
struct talloc_memlimit *old_limit,
|
|
struct talloc_memlimit *new_limit)
|
|
{
|
|
size_t total = 0;
|
|
struct talloc_chunk *c, *tc;
|
|
|
|
if (ptr == NULL) {
|
|
ptr = null_context;
|
|
}
|
|
if (ptr == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
tc = talloc_chunk_from_ptr(ptr);
|
|
|
|
if (old_limit || new_limit) {
|
|
if (tc->limit && tc->limit->upper == old_limit) {
|
|
tc->limit->upper = new_limit;
|
|
}
|
|
}
|
|
|
|
/* optimize in the memlimits case */
|
|
if (type == TOTAL_MEM_LIMIT &&
|
|
tc->limit != NULL &&
|
|
tc->limit != old_limit &&
|
|
tc->limit->parent == tc) {
|
|
return tc->limit->cur_size;
|
|
}
|
|
|
|
if (tc->flags & TALLOC_FLAG_LOOP) {
|
|
return 0;
|
|
}
|
|
|
|
tc->flags |= TALLOC_FLAG_LOOP;
|
|
|
|
if (old_limit || new_limit) {
|
|
if (old_limit == tc->limit) {
|
|
tc->limit = new_limit;
|
|
}
|
|
}
|
|
|
|
switch (type) {
|
|
case TOTAL_MEM_SIZE:
|
|
if (likely(tc->name != TALLOC_MAGIC_REFERENCE)) {
|
|
total = tc->size;
|
|
}
|
|
break;
|
|
case TOTAL_MEM_BLOCKS:
|
|
total++;
|
|
break;
|
|
case TOTAL_MEM_LIMIT:
|
|
if (likely(tc->name != TALLOC_MAGIC_REFERENCE)) {
|
|
/*
|
|
* Don't count memory allocated from a pool
|
|
* when calculating limits. Only count the
|
|
* pool itself.
|
|
*/
|
|
if (!(tc->flags & TALLOC_FLAG_POOLMEM)) {
|
|
if (tc->flags & TALLOC_FLAG_POOL) {
|
|
/*
|
|
* If this is a pool, the allocated
|
|
* size is in the pool header, and
|
|
* remember to add in the prefix
|
|
* length.
|
|
*/
|
|
struct talloc_pool_hdr *pool_hdr
|
|
= talloc_pool_from_chunk(tc);
|
|
total = pool_hdr->poolsize +
|
|
TC_HDR_SIZE +
|
|
TP_HDR_SIZE;
|
|
} else {
|
|
total = tc->size + TC_HDR_SIZE;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
for (c = tc->child; c; c = c->next) {
|
|
total += _talloc_total_mem_internal(TC_PTR_FROM_CHUNK(c), type,
|
|
old_limit, new_limit);
|
|
}
|
|
|
|
tc->flags &= ~TALLOC_FLAG_LOOP;
|
|
|
|
return total;
|
|
}
|
|
|
|
/*
|
|
return the total size of a talloc pool (subtree)
|
|
*/
|
|
_PUBLIC_ size_t talloc_total_size(const void *ptr)
|
|
{
|
|
return _talloc_total_mem_internal(ptr, TOTAL_MEM_SIZE, NULL, NULL);
|
|
}
|
|
|
|
/*
|
|
return the total number of blocks in a talloc pool (subtree)
|
|
*/
|
|
_PUBLIC_ size_t talloc_total_blocks(const void *ptr)
|
|
{
|
|
return _talloc_total_mem_internal(ptr, TOTAL_MEM_BLOCKS, NULL, NULL);
|
|
}
|
|
|
|
/*
|
|
return the number of external references to a pointer
|
|
*/
|
|
_PUBLIC_ size_t talloc_reference_count(const void *ptr)
|
|
{
|
|
struct talloc_chunk *tc = talloc_chunk_from_ptr(ptr);
|
|
struct talloc_reference_handle *h;
|
|
size_t ret = 0;
|
|
|
|
for (h=tc->refs;h;h=h->next) {
|
|
ret++;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
report on memory usage by all children of a pointer, giving a full tree view
|
|
*/
|
|
_PUBLIC_ void talloc_report_depth_cb(const void *ptr, int depth, int max_depth,
|
|
void (*callback)(const void *ptr,
|
|
int depth, int max_depth,
|
|
int is_ref,
|
|
void *private_data),
|
|
void *private_data)
|
|
{
|
|
struct talloc_chunk *c, *tc;
|
|
|
|
if (ptr == NULL) {
|
|
ptr = null_context;
|
|
}
|
|
if (ptr == NULL) return;
|
|
|
|
tc = talloc_chunk_from_ptr(ptr);
|
|
|
|
if (tc->flags & TALLOC_FLAG_LOOP) {
|
|
return;
|
|
}
|
|
|
|
callback(ptr, depth, max_depth, 0, private_data);
|
|
|
|
if (max_depth >= 0 && depth >= max_depth) {
|
|
return;
|
|
}
|
|
|
|
tc->flags |= TALLOC_FLAG_LOOP;
|
|
for (c=tc->child;c;c=c->next) {
|
|
if (c->name == TALLOC_MAGIC_REFERENCE) {
|
|
struct talloc_reference_handle *h = (struct talloc_reference_handle *)TC_PTR_FROM_CHUNK(c);
|
|
callback(h->ptr, depth + 1, max_depth, 1, private_data);
|
|
} else {
|
|
talloc_report_depth_cb(TC_PTR_FROM_CHUNK(c), depth + 1, max_depth, callback, private_data);
|
|
}
|
|
}
|
|
tc->flags &= ~TALLOC_FLAG_LOOP;
|
|
}
|
|
|
|
static void talloc_report_depth_FILE_helper(const void *ptr, int depth, int max_depth, int is_ref, void *_f)
|
|
{
|
|
const char *name = __talloc_get_name(ptr);
|
|
struct talloc_chunk *tc;
|
|
FILE *f = (FILE *)_f;
|
|
|
|
if (is_ref) {
|
|
fprintf(f, "%*sreference to: %s\n", depth*4, "", name);
|
|
return;
|
|
}
|
|
|
|
tc = talloc_chunk_from_ptr(ptr);
|
|
if (tc->limit && tc->limit->parent == tc) {
|
|
fprintf(f, "%*s%-30s is a memlimit context"
|
|
" (max_size = %lu bytes, cur_size = %lu bytes)\n",
|
|
depth*4, "",
|
|
name,
|
|
(unsigned long)tc->limit->max_size,
|
|
(unsigned long)tc->limit->cur_size);
|
|
}
|
|
|
|
if (depth == 0) {
|
|
fprintf(f,"%stalloc report on '%s' (total %6lu bytes in %3lu blocks)\n",
|
|
(max_depth < 0 ? "full " :""), name,
|
|
(unsigned long)talloc_total_size(ptr),
|
|
(unsigned long)talloc_total_blocks(ptr));
|
|
return;
|
|
}
|
|
|
|
fprintf(f, "%*s%-30s contains %6lu bytes in %3lu blocks (ref %d) %p\n",
|
|
depth*4, "",
|
|
name,
|
|
(unsigned long)talloc_total_size(ptr),
|
|
(unsigned long)talloc_total_blocks(ptr),
|
|
(int)talloc_reference_count(ptr), ptr);
|
|
|
|
#if 0
|
|
fprintf(f, "content: ");
|
|
if (talloc_total_size(ptr)) {
|
|
int tot = talloc_total_size(ptr);
|
|
int i;
|
|
|
|
for (i = 0; i < tot; i++) {
|
|
if ((((char *)ptr)[i] > 31) && (((char *)ptr)[i] < 126)) {
|
|
fprintf(f, "%c", ((char *)ptr)[i]);
|
|
} else {
|
|
fprintf(f, "~%02x", ((char *)ptr)[i]);
|
|
}
|
|
}
|
|
}
|
|
fprintf(f, "\n");
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
report on memory usage by all children of a pointer, giving a full tree view
|
|
*/
|
|
_PUBLIC_ void talloc_report_depth_file(const void *ptr, int depth, int max_depth, FILE *f)
|
|
{
|
|
if (f) {
|
|
talloc_report_depth_cb(ptr, depth, max_depth, talloc_report_depth_FILE_helper, f);
|
|
fflush(f);
|
|
}
|
|
}
|
|
|
|
/*
|
|
report on memory usage by all children of a pointer, giving a full tree view
|
|
*/
|
|
_PUBLIC_ void talloc_report_full(const void *ptr, FILE *f)
|
|
{
|
|
talloc_report_depth_file(ptr, 0, -1, f);
|
|
}
|
|
|
|
/*
|
|
report on memory usage by all children of a pointer
|
|
*/
|
|
_PUBLIC_ void talloc_report(const void *ptr, FILE *f)
|
|
{
|
|
talloc_report_depth_file(ptr, 0, 1, f);
|
|
}
|
|
|
|
/*
|
|
enable tracking of the NULL context
|
|
*/
|
|
_PUBLIC_ void talloc_enable_null_tracking(void)
|
|
{
|
|
if (null_context == NULL) {
|
|
null_context = _talloc_named_const(NULL, 0, "null_context");
|
|
if (autofree_context != NULL) {
|
|
talloc_reparent(NULL, null_context, autofree_context);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
enable tracking of the NULL context, not moving the autofree context
|
|
into the NULL context. This is needed for the talloc testsuite
|
|
*/
|
|
_PUBLIC_ void talloc_enable_null_tracking_no_autofree(void)
|
|
{
|
|
if (null_context == NULL) {
|
|
null_context = _talloc_named_const(NULL, 0, "null_context");
|
|
}
|
|
}
|
|
|
|
/*
|
|
disable tracking of the NULL context
|
|
*/
|
|
_PUBLIC_ void talloc_disable_null_tracking(void)
|
|
{
|
|
if (null_context != NULL) {
|
|
/* we have to move any children onto the real NULL
|
|
context */
|
|
struct talloc_chunk *tc, *tc2;
|
|
tc = talloc_chunk_from_ptr(null_context);
|
|
for (tc2 = tc->child; tc2; tc2=tc2->next) {
|
|
if (tc2->parent == tc) tc2->parent = NULL;
|
|
if (tc2->prev == tc) tc2->prev = NULL;
|
|
}
|
|
for (tc2 = tc->next; tc2; tc2=tc2->next) {
|
|
if (tc2->parent == tc) tc2->parent = NULL;
|
|
if (tc2->prev == tc) tc2->prev = NULL;
|
|
}
|
|
tc->child = NULL;
|
|
tc->next = NULL;
|
|
}
|
|
talloc_free(null_context);
|
|
null_context = NULL;
|
|
}
|
|
|
|
/*
|
|
enable leak reporting on exit
|
|
*/
|
|
_PUBLIC_ void talloc_enable_leak_report(void)
|
|
{
|
|
talloc_enable_null_tracking();
|
|
talloc_report_null = true;
|
|
talloc_setup_atexit();
|
|
}
|
|
|
|
/*
|
|
enable full leak reporting on exit
|
|
*/
|
|
_PUBLIC_ void talloc_enable_leak_report_full(void)
|
|
{
|
|
talloc_enable_null_tracking();
|
|
talloc_report_null_full = true;
|
|
talloc_setup_atexit();
|
|
}
|
|
|
|
/*
|
|
talloc and zero memory.
|
|
*/
|
|
_PUBLIC_ void *_talloc_zero(const void *ctx, size_t size, const char *name)
|
|
{
|
|
void *p = _talloc_named_const(ctx, size, name);
|
|
|
|
if (p) {
|
|
memset(p, '\0', size);
|
|
}
|
|
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
memdup with a talloc.
|
|
*/
|
|
_PUBLIC_ void *_talloc_memdup(const void *t, const void *p, size_t size, const char *name)
|
|
{
|
|
void *newp = NULL;
|
|
|
|
if (likely(size > 0) && unlikely(p == NULL)) {
|
|
return NULL;
|
|
}
|
|
|
|
newp = _talloc_named_const(t, size, name);
|
|
if (likely(newp != NULL) && likely(size > 0)) {
|
|
memcpy(newp, p, size);
|
|
}
|
|
|
|
return newp;
|
|
}
|
|
|
|
static inline char *__talloc_strlendup(const void *t, const char *p, size_t len)
|
|
{
|
|
char *ret;
|
|
struct talloc_chunk *tc = NULL;
|
|
|
|
ret = (char *)__talloc(t, len + 1, &tc);
|
|
if (unlikely(!ret)) return NULL;
|
|
|
|
memcpy(ret, p, len);
|
|
ret[len] = 0;
|
|
|
|
_tc_set_name_const(tc, ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
strdup with a talloc
|
|
*/
|
|
_PUBLIC_ char *talloc_strdup(const void *t, const char *p)
|
|
{
|
|
if (unlikely(!p)) return NULL;
|
|
return __talloc_strlendup(t, p, strlen(p));
|
|
}
|
|
|
|
/*
|
|
strndup with a talloc
|
|
*/
|
|
_PUBLIC_ char *talloc_strndup(const void *t, const char *p, size_t n)
|
|
{
|
|
if (unlikely(!p)) return NULL;
|
|
return __talloc_strlendup(t, p, strnlen(p, n));
|
|
}
|
|
|
|
static inline char *__talloc_strlendup_append(char *s, size_t slen,
|
|
const char *a, size_t alen)
|
|
{
|
|
char *ret;
|
|
|
|
ret = talloc_realloc(NULL, s, char, slen + alen + 1);
|
|
if (unlikely(!ret)) return NULL;
|
|
|
|
/* append the string and the trailing \0 */
|
|
memcpy(&ret[slen], a, alen);
|
|
ret[slen+alen] = 0;
|
|
|
|
_tc_set_name_const(talloc_chunk_from_ptr(ret), ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Appends at the end of the string.
|
|
*/
|
|
_PUBLIC_ char *talloc_strdup_append(char *s, const char *a)
|
|
{
|
|
if (unlikely(!s)) {
|
|
return talloc_strdup(NULL, a);
|
|
}
|
|
|
|
if (unlikely(!a)) {
|
|
return s;
|
|
}
|
|
|
|
return __talloc_strlendup_append(s, strlen(s), a, strlen(a));
|
|
}
|
|
|
|
/*
|
|
* Appends at the end of the talloc'ed buffer,
|
|
* not the end of the string.
|
|
*/
|
|
_PUBLIC_ char *talloc_strdup_append_buffer(char *s, const char *a)
|
|
{
|
|
size_t slen;
|
|
|
|
if (unlikely(!s)) {
|
|
return talloc_strdup(NULL, a);
|
|
}
|
|
|
|
if (unlikely(!a)) {
|
|
return s;
|
|
}
|
|
|
|
slen = talloc_get_size(s);
|
|
if (likely(slen > 0)) {
|
|
slen--;
|
|
}
|
|
|
|
return __talloc_strlendup_append(s, slen, a, strlen(a));
|
|
}
|
|
|
|
/*
|
|
* Appends at the end of the string.
|
|
*/
|
|
_PUBLIC_ char *talloc_strndup_append(char *s, const char *a, size_t n)
|
|
{
|
|
if (unlikely(!s)) {
|
|
return talloc_strndup(NULL, a, n);
|
|
}
|
|
|
|
if (unlikely(!a)) {
|
|
return s;
|
|
}
|
|
|
|
return __talloc_strlendup_append(s, strlen(s), a, strnlen(a, n));
|
|
}
|
|
|
|
/*
|
|
* Appends at the end of the talloc'ed buffer,
|
|
* not the end of the string.
|
|
*/
|
|
_PUBLIC_ char *talloc_strndup_append_buffer(char *s, const char *a, size_t n)
|
|
{
|
|
size_t slen;
|
|
|
|
if (unlikely(!s)) {
|
|
return talloc_strndup(NULL, a, n);
|
|
}
|
|
|
|
if (unlikely(!a)) {
|
|
return s;
|
|
}
|
|
|
|
slen = talloc_get_size(s);
|
|
if (likely(slen > 0)) {
|
|
slen--;
|
|
}
|
|
|
|
return __talloc_strlendup_append(s, slen, a, strnlen(a, n));
|
|
}
|
|
|
|
#ifndef HAVE_VA_COPY
|
|
#ifdef HAVE___VA_COPY
|
|
#define va_copy(dest, src) __va_copy(dest, src)
|
|
#else
|
|
#define va_copy(dest, src) (dest) = (src)
|
|
#endif
|
|
#endif
|
|
|
|
static struct talloc_chunk *_vasprintf_tc(const void *t,
|
|
const char *fmt,
|
|
va_list ap) PRINTF_ATTRIBUTE(2,0);
|
|
|
|
static struct talloc_chunk *_vasprintf_tc(const void *t,
|
|
const char *fmt,
|
|
va_list ap)
|
|
{
|
|
int vlen;
|
|
size_t len;
|
|
char *ret;
|
|
va_list ap2;
|
|
struct talloc_chunk *tc = NULL;
|
|
char buf[1024];
|
|
|
|
va_copy(ap2, ap);
|
|
vlen = vsnprintf(buf, sizeof(buf), fmt, ap2);
|
|
va_end(ap2);
|
|
if (unlikely(vlen < 0)) {
|
|
return NULL;
|
|
}
|
|
len = vlen;
|
|
if (unlikely(len + 1 < len)) {
|
|
return NULL;
|
|
}
|
|
|
|
ret = (char *)__talloc(t, len+1, &tc);
|
|
if (unlikely(!ret)) return NULL;
|
|
|
|
if (len < sizeof(buf)) {
|
|
memcpy(ret, buf, len+1);
|
|
} else {
|
|
va_copy(ap2, ap);
|
|
vsnprintf(ret, len+1, fmt, ap2);
|
|
va_end(ap2);
|
|
}
|
|
|
|
_tc_set_name_const(tc, ret);
|
|
return tc;
|
|
}
|
|
|
|
_PUBLIC_ char *talloc_vasprintf(const void *t, const char *fmt, va_list ap)
|
|
{
|
|
struct talloc_chunk *tc = _vasprintf_tc(t, fmt, ap);
|
|
if (tc == NULL) {
|
|
return NULL;
|
|
}
|
|
return TC_PTR_FROM_CHUNK(tc);
|
|
}
|
|
|
|
|
|
/*
|
|
Perform string formatting, and return a pointer to newly allocated
|
|
memory holding the result, inside a memory pool.
|
|
*/
|
|
_PUBLIC_ char *talloc_asprintf(const void *t, const char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
char *ret;
|
|
|
|
va_start(ap, fmt);
|
|
ret = talloc_vasprintf(t, fmt, ap);
|
|
va_end(ap);
|
|
return ret;
|
|
}
|
|
|
|
static inline char *__talloc_vaslenprintf_append(char *s, size_t slen,
|
|
const char *fmt, va_list ap)
|
|
PRINTF_ATTRIBUTE(3,0);
|
|
|
|
static inline char *__talloc_vaslenprintf_append(char *s, size_t slen,
|
|
const char *fmt, va_list ap)
|
|
{
|
|
ssize_t alen;
|
|
va_list ap2;
|
|
char c;
|
|
|
|
va_copy(ap2, ap);
|
|
/* this call looks strange, but it makes it work on older solaris boxes */
|
|
alen = vsnprintf(&c, 1, fmt, ap2);
|
|
va_end(ap2);
|
|
|
|
if (alen <= 0) {
|
|
/* Either the vsnprintf failed or the format resulted in
|
|
* no characters being formatted. In the former case, we
|
|
* ought to return NULL, in the latter we ought to return
|
|
* the original string. Most current callers of this
|
|
* function expect it to never return NULL.
|
|
*/
|
|
return s;
|
|
}
|
|
|
|
s = talloc_realloc(NULL, s, char, slen + alen + 1);
|
|
if (!s) return NULL;
|
|
|
|
vsnprintf(s + slen, alen + 1, fmt, ap);
|
|
|
|
_tc_set_name_const(talloc_chunk_from_ptr(s), s);
|
|
return s;
|
|
}
|
|
|
|
/**
|
|
* Realloc @p s to append the formatted result of @p fmt and @p ap,
|
|
* and return @p s, which may have moved. Good for gradually
|
|
* accumulating output into a string buffer. Appends at the end
|
|
* of the string.
|
|
**/
|
|
_PUBLIC_ char *talloc_vasprintf_append(char *s, const char *fmt, va_list ap)
|
|
{
|
|
if (unlikely(!s)) {
|
|
return talloc_vasprintf(NULL, fmt, ap);
|
|
}
|
|
|
|
return __talloc_vaslenprintf_append(s, strlen(s), fmt, ap);
|
|
}
|
|
|
|
/**
|
|
* Realloc @p s to append the formatted result of @p fmt and @p ap,
|
|
* and return @p s, which may have moved. Always appends at the
|
|
* end of the talloc'ed buffer, not the end of the string.
|
|
**/
|
|
_PUBLIC_ char *talloc_vasprintf_append_buffer(char *s, const char *fmt, va_list ap)
|
|
{
|
|
size_t slen;
|
|
|
|
if (unlikely(!s)) {
|
|
return talloc_vasprintf(NULL, fmt, ap);
|
|
}
|
|
|
|
slen = talloc_get_size(s);
|
|
if (likely(slen > 0)) {
|
|
slen--;
|
|
}
|
|
|
|
return __talloc_vaslenprintf_append(s, slen, fmt, ap);
|
|
}
|
|
|
|
/*
|
|
Realloc @p s to append the formatted result of @p fmt and return @p
|
|
s, which may have moved. Good for gradually accumulating output
|
|
into a string buffer.
|
|
*/
|
|
_PUBLIC_ char *talloc_asprintf_append(char *s, const char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
|
|
va_start(ap, fmt);
|
|
s = talloc_vasprintf_append(s, fmt, ap);
|
|
va_end(ap);
|
|
return s;
|
|
}
|
|
|
|
/*
|
|
Realloc @p s to append the formatted result of @p fmt and return @p
|
|
s, which may have moved. Good for gradually accumulating output
|
|
into a buffer.
|
|
*/
|
|
_PUBLIC_ char *talloc_asprintf_append_buffer(char *s, const char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
|
|
va_start(ap, fmt);
|
|
s = talloc_vasprintf_append_buffer(s, fmt, ap);
|
|
va_end(ap);
|
|
return s;
|
|
}
|
|
|
|
_PUBLIC_ void talloc_asprintf_addbuf(char **ps, const char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
char *s = *ps;
|
|
char *t = NULL;
|
|
|
|
if (s == NULL) {
|
|
return;
|
|
}
|
|
|
|
va_start(ap, fmt);
|
|
t = talloc_vasprintf_append_buffer(s, fmt, ap);
|
|
va_end(ap);
|
|
|
|
if (t == NULL) {
|
|
/* signal failure to the next caller */
|
|
TALLOC_FREE(s);
|
|
*ps = NULL;
|
|
} else {
|
|
*ps = t;
|
|
}
|
|
}
|
|
|
|
/*
|
|
alloc an array, checking for integer overflow in the array size
|
|
*/
|
|
_PUBLIC_ void *_talloc_array(const void *ctx, size_t el_size, unsigned count, const char *name)
|
|
{
|
|
if (count >= MAX_TALLOC_SIZE/el_size) {
|
|
return NULL;
|
|
}
|
|
return _talloc_named_const(ctx, el_size * count, name);
|
|
}
|
|
|
|
/*
|
|
alloc an zero array, checking for integer overflow in the array size
|
|
*/
|
|
_PUBLIC_ void *_talloc_zero_array(const void *ctx, size_t el_size, unsigned count, const char *name)
|
|
{
|
|
if (count >= MAX_TALLOC_SIZE/el_size) {
|
|
return NULL;
|
|
}
|
|
return _talloc_zero(ctx, el_size * count, name);
|
|
}
|
|
|
|
/*
|
|
realloc an array, checking for integer overflow in the array size
|
|
*/
|
|
_PUBLIC_ void *_talloc_realloc_array(const void *ctx, void *ptr, size_t el_size, unsigned count, const char *name)
|
|
{
|
|
if (count >= MAX_TALLOC_SIZE/el_size) {
|
|
return NULL;
|
|
}
|
|
return _talloc_realloc(ctx, ptr, el_size * count, name);
|
|
}
|
|
|
|
/*
|
|
a function version of talloc_realloc(), so it can be passed as a function pointer
|
|
to libraries that want a realloc function (a realloc function encapsulates
|
|
all the basic capabilities of an allocation library, which is why this is useful)
|
|
*/
|
|
_PUBLIC_ void *talloc_realloc_fn(const void *context, void *ptr, size_t size)
|
|
{
|
|
return _talloc_realloc(context, ptr, size, NULL);
|
|
}
|
|
|
|
|
|
static int talloc_autofree_destructor(void *ptr)
|
|
{
|
|
autofree_context = NULL;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
return a context which will be auto-freed on exit
|
|
this is useful for reducing the noise in leak reports
|
|
*/
|
|
_PUBLIC_ void *talloc_autofree_context(void)
|
|
{
|
|
if (autofree_context == NULL) {
|
|
autofree_context = _talloc_named_const(NULL, 0, "autofree_context");
|
|
talloc_set_destructor(autofree_context, talloc_autofree_destructor);
|
|
talloc_setup_atexit();
|
|
}
|
|
return autofree_context;
|
|
}
|
|
|
|
_PUBLIC_ size_t talloc_get_size(const void *context)
|
|
{
|
|
struct talloc_chunk *tc;
|
|
|
|
if (context == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
tc = talloc_chunk_from_ptr(context);
|
|
|
|
return tc->size;
|
|
}
|
|
|
|
/*
|
|
find a parent of this context that has the given name, if any
|
|
*/
|
|
_PUBLIC_ void *talloc_find_parent_byname(const void *context, const char *name)
|
|
{
|
|
struct talloc_chunk *tc;
|
|
|
|
if (context == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
tc = talloc_chunk_from_ptr(context);
|
|
while (tc) {
|
|
if (tc->name && strcmp(tc->name, name) == 0) {
|
|
return TC_PTR_FROM_CHUNK(tc);
|
|
}
|
|
while (tc && tc->prev) tc = tc->prev;
|
|
if (tc) {
|
|
tc = tc->parent;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
show the parentage of a context
|
|
*/
|
|
_PUBLIC_ void talloc_show_parents(const void *context, FILE *file)
|
|
{
|
|
struct talloc_chunk *tc;
|
|
|
|
if (context == NULL) {
|
|
fprintf(file, "talloc no parents for NULL\n");
|
|
return;
|
|
}
|
|
|
|
tc = talloc_chunk_from_ptr(context);
|
|
fprintf(file, "talloc parents of '%s'\n", __talloc_get_name(context));
|
|
while (tc) {
|
|
fprintf(file, "\t'%s'\n", __talloc_get_name(TC_PTR_FROM_CHUNK(tc)));
|
|
while (tc && tc->prev) tc = tc->prev;
|
|
if (tc) {
|
|
tc = tc->parent;
|
|
}
|
|
}
|
|
fflush(file);
|
|
}
|
|
|
|
/*
|
|
return 1 if ptr is a parent of context
|
|
*/
|
|
static int _talloc_is_parent(const void *context, const void *ptr, int depth)
|
|
{
|
|
struct talloc_chunk *tc;
|
|
|
|
if (context == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
tc = talloc_chunk_from_ptr(context);
|
|
while (tc) {
|
|
if (depth <= 0) {
|
|
return 0;
|
|
}
|
|
if (TC_PTR_FROM_CHUNK(tc) == ptr) return 1;
|
|
while (tc && tc->prev) tc = tc->prev;
|
|
if (tc) {
|
|
tc = tc->parent;
|
|
depth--;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
return 1 if ptr is a parent of context
|
|
*/
|
|
_PUBLIC_ int talloc_is_parent(const void *context, const void *ptr)
|
|
{
|
|
return _talloc_is_parent(context, ptr, TALLOC_MAX_DEPTH);
|
|
}
|
|
|
|
/*
|
|
return the total size of memory used by this context and all children
|
|
*/
|
|
static inline size_t _talloc_total_limit_size(const void *ptr,
|
|
struct talloc_memlimit *old_limit,
|
|
struct talloc_memlimit *new_limit)
|
|
{
|
|
return _talloc_total_mem_internal(ptr, TOTAL_MEM_LIMIT,
|
|
old_limit, new_limit);
|
|
}
|
|
|
|
static inline bool talloc_memlimit_check(struct talloc_memlimit *limit, size_t size)
|
|
{
|
|
struct talloc_memlimit *l;
|
|
|
|
for (l = limit; l != NULL; l = l->upper) {
|
|
if (l->max_size != 0 &&
|
|
((l->max_size <= l->cur_size) ||
|
|
(l->max_size - l->cur_size < size))) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
Update memory limits when freeing a talloc_chunk.
|
|
*/
|
|
static void tc_memlimit_update_on_free(struct talloc_chunk *tc)
|
|
{
|
|
size_t limit_shrink_size;
|
|
|
|
if (!tc->limit) {
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Pool entries don't count. Only the pools
|
|
* themselves are counted as part of the memory
|
|
* limits. Note that this also takes care of
|
|
* nested pools which have both flags
|
|
* TALLOC_FLAG_POOLMEM|TALLOC_FLAG_POOL set.
|
|
*/
|
|
if (tc->flags & TALLOC_FLAG_POOLMEM) {
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If we are part of a memory limited context hierarchy
|
|
* we need to subtract the memory used from the counters
|
|
*/
|
|
|
|
limit_shrink_size = tc->size+TC_HDR_SIZE;
|
|
|
|
/*
|
|
* If we're deallocating a pool, take into
|
|
* account the prefix size added for the pool.
|
|
*/
|
|
|
|
if (tc->flags & TALLOC_FLAG_POOL) {
|
|
limit_shrink_size += TP_HDR_SIZE;
|
|
}
|
|
|
|
talloc_memlimit_shrink(tc->limit, limit_shrink_size);
|
|
|
|
if (tc->limit->parent == tc) {
|
|
free(tc->limit);
|
|
}
|
|
|
|
tc->limit = NULL;
|
|
}
|
|
|
|
/*
|
|
Increase memory limit accounting after a malloc/realloc.
|
|
*/
|
|
static void talloc_memlimit_grow(struct talloc_memlimit *limit,
|
|
size_t size)
|
|
{
|
|
struct talloc_memlimit *l;
|
|
|
|
for (l = limit; l != NULL; l = l->upper) {
|
|
size_t new_cur_size = l->cur_size + size;
|
|
if (new_cur_size < l->cur_size) {
|
|
talloc_abort("logic error in talloc_memlimit_grow\n");
|
|
return;
|
|
}
|
|
l->cur_size = new_cur_size;
|
|
}
|
|
}
|
|
|
|
/*
|
|
Decrease memory limit accounting after a free/realloc.
|
|
*/
|
|
static void talloc_memlimit_shrink(struct talloc_memlimit *limit,
|
|
size_t size)
|
|
{
|
|
struct talloc_memlimit *l;
|
|
|
|
for (l = limit; l != NULL; l = l->upper) {
|
|
if (l->cur_size < size) {
|
|
talloc_abort("logic error in talloc_memlimit_shrink\n");
|
|
return;
|
|
}
|
|
l->cur_size = l->cur_size - size;
|
|
}
|
|
}
|
|
|
|
_PUBLIC_ int talloc_set_memlimit(const void *ctx, size_t max_size)
|
|
{
|
|
struct talloc_chunk *tc = talloc_chunk_from_ptr(ctx);
|
|
struct talloc_memlimit *orig_limit;
|
|
struct talloc_memlimit *limit = NULL;
|
|
|
|
if (tc->limit && tc->limit->parent == tc) {
|
|
tc->limit->max_size = max_size;
|
|
return 0;
|
|
}
|
|
orig_limit = tc->limit;
|
|
|
|
limit = malloc(sizeof(struct talloc_memlimit));
|
|
if (limit == NULL) {
|
|
return 1;
|
|
}
|
|
limit->parent = tc;
|
|
limit->max_size = max_size;
|
|
limit->cur_size = _talloc_total_limit_size(ctx, tc->limit, limit);
|
|
|
|
if (orig_limit) {
|
|
limit->upper = orig_limit;
|
|
} else {
|
|
limit->upper = NULL;
|
|
}
|
|
|
|
return 0;
|
|
}
|