1
0
mirror of https://github.com/samba-team/samba.git synced 2025-01-12 09:18:10 +03:00
samba-mirror/python/samba/kcc/graph.py
Douglas Bagnall f8a68af6ff KCC: improve docstring for kcc.graph.get_spanning_tree_edges()
Signed-off-by: Douglas Bagnall <douglas.bagnall@catalyst.net.nz>
Reviewed-by: Garming Sam <garming@catalyst.net.nz>
Reviewed-by: Andrew Bartlett <abartlet@samba.org>
2015-06-12 06:57:15 +02:00

697 lines
23 KiB
Python

# Graph functions used by KCC intersite
#
# Copyright (C) Dave Craft 2011
# Copyright (C) Andrew Bartlett 2015
#
# Andrew Bartlett's alleged work performed by his underlings Douglas
# Bagnall and Garming Sam.
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
import itertools
import heapq
from samba.kcc.graph_utils import write_dot_file, verify_and_dot, verify_graph
from samba.ndr import ndr_pack
from samba.dcerpc import misc
from samba.kcc.debug import DEBUG, DEBUG_FN
from samba.kcc.kcc_utils import MAX_DWORD
from samba.kcc.kcc_utils import ReplInfo, total_schedule
def convert_schedule_to_repltimes(schedule):
"""Convert NTDS Connection schedule to replTime schedule.
Schedule defined in MS-ADTS 6.1.4.5.2
ReplTimes defined in MS-DRSR 5.164.
"Schedule" has 168 bytes but only the lower nibble of each is
significant. There is one byte per hour. Bit 3 (0x08) represents
the first 15 minutes of the hour and bit 0 (0x01) represents the
last 15 minutes. The first byte presumably covers 12am - 1am
Sunday, though the spec doesn't define the start of a week.
"ReplTimes" has 84 bytes which are the 168 lower nibbles of
"Schedule" packed together. Thus each byte covers 2 hours. Bits 7
(i.e. 0x80) is the first 15 minutes and bit 0 is the last. The
first byte covers Sunday 12am - 2am (per spec).
Here we pack two elements of the NTDS Connection schedule slots
into one element of the replTimes list.
If no schedule appears in NTDS Connection then a default of 0x11
is set in each replTimes slot as per behaviour noted in a Windows
DC. That default would cause replication within the last 15
minutes of each hour.
"""
if schedule is None or schedule.dataArray[0] is None:
return [0x11] * 84
times = []
data = schedule.dataArray[0].slots
for i in range(84):
times.append((data[i * 2] & 0xF) << 4 | (data[i * 2 + 1] & 0xF))
return times
# Returns true if schedule intersect
def combine_repl_info(info_a, info_b, info_c):
"""Set a replInfo to be the intersection of two others
If there is any overlap in the replication times specified by the
first two parameters, the third replInfo parameter is set up with
that overlap, and True is returned. If there is no overlap, the
third parameter is unchanged and False is returned.
:param info_a: An input replInfo object
:param info_b: An input replInfo object
:param info_c: The result replInfo, set to the intersection of A and B
if the intersection is non-empty.
:return: True if info_c allows any replication at all, otherwise False
"""
info_c.interval = max(info_a.interval, info_b.interval)
info_c.options = info_a.options & info_b.options
if info_a.schedule is None:
info_a.schedule = [0xFF] * 84
if info_b.schedule is None:
info_b.schedule = [0xFF] * 84
new_info = [a & b for a, b in zip(info_a.schedule, info_b.schedule)]
if not any(new_info):
return False
info_c.schedule = new_info
# Truncate to MAX_DWORD
info_c.cost = info_a.cost + info_b.cost
if info_c.cost > MAX_DWORD:
info_c.cost = MAX_DWORD
return True
def get_spanning_tree_edges(graph, my_site, label=None, verify=False,
dot_file_dir=None):
"""Find edges for the intersite graph
:param graph: a kcc.kcc_utils.Graph object
:param my_site: the topology generator's site
:param label: a label for use in dot files and verification
:param verify: if True, try to verify that graph properties are correct
:param dot_file_dir: if not None, write Graphviz dot files here
"""
# Phase 1: Run Dijkstra's to get a list of internal edges, which are
# just the shortest-paths connecting colored vertices
internal_edges = set()
for e_set in graph.edge_set:
edgeType = None
for v in graph.vertices:
v.edges = []
# All con_type in an edge set is the same
for e in e_set.edges:
edgeType = e.con_type
for v in e.vertices:
v.edges.append(e)
if verify or dot_file_dir is not None:
graph_edges = [(a.site.site_dnstr, b.site.site_dnstr)
for a, b in
itertools.chain(
*(itertools.combinations(edge.vertices, 2)
for edge in e_set.edges))]
graph_nodes = [v.site.site_dnstr for v in graph.vertices]
if dot_file_dir is not None:
write_dot_file('edgeset_%s' % (edgeType,), graph_edges,
vertices=graph_nodes, label=label)
if verify:
verify_graph('spanning tree edge set %s' % edgeType,
graph_edges, vertices=graph_nodes,
properties=('complete', 'connected'),
debug=DEBUG)
# Run dijkstra's algorithm with just the red vertices as seeds
# Seed from the full replicas
dijkstra(graph, edgeType, False)
# Process edge set
process_edge_set(graph, e_set, internal_edges)
# Run dijkstra's algorithm with red and black vertices as the seeds
# Seed from both full and partial replicas
dijkstra(graph, edgeType, True)
# Process edge set
process_edge_set(graph, e_set, internal_edges)
# All vertices have root/component as itself
setup_vertices(graph)
process_edge_set(graph, None, internal_edges)
if verify or dot_file_dir is not None:
graph_edges = [(e.v1.site.site_dnstr, e.v2.site.site_dnstr)
for e in internal_edges]
graph_nodes = [v.site.site_dnstr for v in graph.vertices]
verify_properties = ('multi_edge_forest',)
verify_and_dot('prekruskal', graph_edges, graph_nodes, label=label,
properties=verify_properties, debug=DEBUG,
verify=verify, dot_file_dir=dot_file_dir)
# Phase 2: Run Kruskal's on the internal edges
output_edges, components = kruskal(graph, internal_edges)
# This recalculates the cost for the path connecting the
# closest red vertex. Ignoring types is fine because NO
# suboptimal edge should exist in the graph
dijkstra(graph, "EDGE_TYPE_ALL", False) # TODO rename
# Phase 3: Process the output
for v in graph.vertices:
if v.is_red():
v.dist_to_red = 0
else:
v.dist_to_red = v.repl_info.cost
if verify or dot_file_dir is not None:
graph_edges = [(e.v1.site.site_dnstr, e.v2.site.site_dnstr)
for e in internal_edges]
graph_nodes = [v.site.site_dnstr for v in graph.vertices]
verify_properties = ('multi_edge_forest',)
verify_and_dot('postkruskal', graph_edges, graph_nodes,
label=label, properties=verify_properties,
debug=DEBUG, verify=verify,
dot_file_dir=dot_file_dir)
# Ensure only one-way connections for partial-replicas,
# and make sure they point the right way.
edge_list = []
for edge in output_edges:
# We know these edges only have two endpoints because we made
# them.
v, w = edge.vertices
if v.site is my_site or w.site is my_site:
if (((v.is_black() or w.is_black()) and
v.dist_to_red != MAX_DWORD)):
edge.directed = True
if w.dist_to_red < v.dist_to_red:
edge.vertices[:] = w, v
edge_list.append(edge)
if verify or dot_file_dir is not None:
graph_edges = [[x.site.site_dnstr for x in e.vertices]
for e in edge_list]
#add the reverse edge if not directed.
graph_edges.extend([x.site.site_dnstr
for x in reversed(e.vertices)]
for e in edge_list if not e.directed)
graph_nodes = [x.site.site_dnstr for x in graph.vertices]
verify_properties = ()
verify_and_dot('post-one-way-partial', graph_edges, graph_nodes,
label=label, properties=verify_properties,
debug=DEBUG, verify=verify,
directed=True,
dot_file_dir=dot_file_dir)
# count the components
return edge_list, components
def create_edge(con_type, site_link, guid_to_vertex):
e = MultiEdge()
e.site_link = site_link
e.vertices = []
for site_guid in site_link.site_list:
if str(site_guid) in guid_to_vertex:
e.vertices.extend(guid_to_vertex.get(str(site_guid)))
e.repl_info.cost = site_link.cost
e.repl_info.options = site_link.options
e.repl_info.interval = site_link.interval
e.repl_info.schedule = convert_schedule_to_repltimes(site_link.schedule)
e.con_type = con_type
e.directed = False
return e
def create_auto_edge_set(graph, transport):
e_set = MultiEdgeSet()
# use a NULL guid, not associated with a SiteLinkBridge object
e_set.guid = misc.GUID()
for site_link in graph.edges:
if site_link.con_type == transport:
e_set.edges.append(site_link)
return e_set
def create_edge_set(graph, transport, site_link_bridge):
# TODO not implemented - need to store all site link bridges
e_set = MultiEdgeSet()
# e_set.guid = site_link_bridge
return e_set
def setup_vertices(graph):
for v in graph.vertices:
if v.is_white():
v.repl_info.cost = MAX_DWORD
v.root = None
v.component_id = None
else:
v.repl_info.cost = 0
v.root = v
v.component_id = v
v.repl_info.interval = 0
v.repl_info.options = 0xFFFFFFFF
v.repl_info.schedule = None # TODO highly suspicious
v.demoted = False
def dijkstra(graph, edge_type, include_black):
queue = []
setup_dijkstra(graph, edge_type, include_black, queue)
while len(queue) > 0:
cost, guid, vertex = heapq.heappop(queue)
for edge in vertex.edges:
for v in edge.vertices:
if v is not vertex:
# add new path from vertex to v
try_new_path(graph, queue, vertex, edge, v)
def setup_dijkstra(graph, edge_type, include_black, queue):
setup_vertices(graph)
for vertex in graph.vertices:
if vertex.is_white():
continue
if (((vertex.is_black() and not include_black)
or edge_type not in vertex.accept_black
or edge_type not in vertex.accept_red_red)):
vertex.repl_info.cost = MAX_DWORD
vertex.root = None # NULL GUID
vertex.demoted = True # Demoted appears not to be used
else:
heapq.heappush(queue, (vertex.repl_info.cost, vertex.guid, vertex))
def try_new_path(graph, queue, vfrom, edge, vto):
newRI = ReplInfo()
#This function combines the repl_info and checks is that there is
# a valid time frame for which replication can actually occur,
# despite being adequately connected
intersect = combine_repl_info(vfrom.repl_info, edge.repl_info, newRI)
# If the new path costs more than the current, then ignore the edge
if newRI.cost > vto.repl_info.cost:
return
if newRI.cost < vto.repl_info.cost and not intersect:
return
new_duration = total_schedule(newRI.schedule)
old_duration = total_schedule(vto.repl_info.schedule)
# Cheaper or longer schedule
if newRI.cost < vto.repl_info.cost or new_duration > old_duration:
vto.root = vfrom.root
vto.component_id = vfrom.component_id
vto.repl_info = newRI
heapq.heappush(queue, (vto.repl_info.cost, vto.guid, vto))
def check_demote_vertex(vertex, edge_type):
if vertex.is_white():
return
# Accepts neither red-red nor black edges, demote
if ((edge_type not in vertex.accept_black and
edge_type not in vertex.accept_red_red)):
vertex.repl_info.cost = MAX_DWORD
vertex.root = None
vertex.demoted = True # Demoted appears not to be used
def undemote_vertex(vertex):
if vertex.is_white():
return
vertex.repl_info.cost = 0
vertex.root = vertex
vertex.demoted = False
def process_edge_set(graph, e_set, internal_edges):
if e_set is None:
for edge in graph.edges:
for vertex in edge.vertices:
check_demote_vertex(vertex, edge.con_type)
process_edge(graph, edge, internal_edges)
for vertex in edge.vertices:
undemote_vertex(vertex)
else:
for edge in e_set.edges:
process_edge(graph, edge, internal_edges)
def process_edge(graph, examine, internal_edges):
# Find the set of all vertices touches the edge to examine
vertices = []
for v in examine.vertices:
# Append a 4-tuple of color, repl cost, guid and vertex
vertices.append((v.color, v.repl_info.cost, v.ndrpacked_guid, v))
# Sort by color, lower
DEBUG("vertices is %s" % vertices)
vertices.sort()
color, cost, guid, bestv = vertices[0]
# Add to internal edges an edge from every colored vertex to bestV
for v in examine.vertices:
if v.component_id is None or v.root is None:
continue
# Only add edge if valid inter-tree edge - needs a root and
# different components
if ((bestv.component_id is not None and
bestv.root is not None and
v.component_id is not None and
v.root is not None and
bestv.component_id != v.component_id)):
add_int_edge(graph, internal_edges, examine, bestv, v)
# Add internal edge, endpoints are roots of the vertices to pass in
# and are always red or black
def add_int_edge(graph, internal_edges, examine, v1, v2):
root1 = v1.root
root2 = v2.root
red_red = False
if root1.is_red() and root2.is_red():
red_red = True
if red_red:
if ((examine.con_type not in root1.accept_red_red
or examine.con_type not in root2.accept_red_red)):
return
elif (examine.con_type not in root1.accept_black
or examine.con_type not in root2.accept_black):
return
ri = ReplInfo()
ri2 = ReplInfo()
# Create the transitive replInfo for the two trees and this edge
if not combine_repl_info(v1.repl_info, v2.repl_info, ri):
return
# ri is now initialized
if not combine_repl_info(ri, examine.repl_info, ri2):
return
newIntEdge = InternalEdge(root1, root2, red_red, ri2, examine.con_type,
examine.site_link)
# Order by vertex guid
#XXX guid comparison using ndr_pack
if newIntEdge.v1.ndrpacked_guid > newIntEdge.v2.ndrpacked_guid:
newIntEdge.v1 = root2
newIntEdge.v2 = root1
internal_edges.add(newIntEdge)
def kruskal(graph, edges):
for v in graph.vertices:
v.edges = []
components = set([x for x in graph.vertices if not x.is_white()])
edges = list(edges)
# Sorted based on internal comparison function of internal edge
edges.sort()
#XXX expected_num_tree_edges is never used
expected_num_tree_edges = 0 # TODO this value makes little sense
count_edges = 0
output_edges = []
index = 0
while index < len(edges): # TODO and num_components > 1
e = edges[index]
parent1 = find_component(e.v1)
parent2 = find_component(e.v2)
if parent1 is not parent2:
count_edges += 1
add_out_edge(graph, output_edges, e)
parent1.component_id = parent2
components.discard(parent1)
index += 1
return output_edges, len(components)
def find_component(vertex):
if vertex.component_id is vertex:
return vertex
current = vertex
while current.component_id is not current:
current = current.component_id
root = current
current = vertex
while current.component_id is not root:
n = current.component_id
current.component_id = root
current = n
return root
def add_out_edge(graph, output_edges, e):
v1 = e.v1
v2 = e.v2
# This multi-edge is a 'real' edge with no GUID
ee = MultiEdge()
ee.directed = False
ee.site_link = e.site_link
ee.vertices.append(v1)
ee.vertices.append(v2)
ee.con_type = e.e_type
ee.repl_info = e.repl_info
output_edges.append(ee)
v1.edges.append(ee)
v2.edges.append(ee)
def setup_graph(part, site_table, transport_table, sitelink_table,
bridges_required):
"""Set up a GRAPH, populated with a VERTEX for each site
object, a MULTIEDGE for each siteLink object, and a
MUTLIEDGESET for each siteLinkBridge object (or implied
siteLinkBridge).
::returns: a new graph
"""
guid_to_vertex = {}
# Create graph
g = IntersiteGraph()
# Add vertices
for site_guid, site in site_table.items():
vertex = Vertex(site, part)
vertex.guid = site_guid
vertex.ndrpacked_guid = ndr_pack(site.site_guid)
g.vertices.add(vertex)
guid_vertices = guid_to_vertex.setdefault(site_guid, [])
guid_vertices.append(vertex)
connected_vertices = set()
for transport_guid, transport in transport_table.items():
# Currently only ever "IP"
if transport.name != 'IP':
DEBUG_FN("setup_graph is ignoring transport %s" %
transport.name)
continue
for site_link_dn, site_link in sitelink_table.items():
new_edge = create_edge(transport_guid, site_link,
guid_to_vertex)
connected_vertices.update(new_edge.vertices)
g.edges.add(new_edge)
# If 'Bridge all site links' is enabled and Win2k3 bridges required
# is not set
# NTDSTRANSPORT_OPT_BRIDGES_REQUIRED 0x00000002
# No documentation for this however, ntdsapi.h appears to have:
# NTDSSETTINGS_OPT_W2K3_BRIDGES_REQUIRED = 0x00001000
if bridges_required:
g.edge_set.add(create_auto_edge_set(g, transport_guid))
else:
# TODO get all site link bridges
for site_link_bridge in []:
g.edge_set.add(create_edge_set(g, transport_guid,
site_link_bridge))
g.connected_vertices = connected_vertices
return g
class VertexColor(object):
(red, black, white, unknown) = range(0, 4)
class Vertex(object):
"""Class encapsulation of a Site Vertex in the
intersite topology replication algorithm
"""
def __init__(self, site, part):
self.site = site
self.part = part
self.color = VertexColor.unknown
self.edges = []
self.accept_red_red = []
self.accept_black = []
self.repl_info = ReplInfo()
self.root = self
self.guid = None
self.component_id = self
self.demoted = False
self.options = 0
self.interval = 0
def color_vertex(self):
"""Color each vertex to indicate which kind of NC
replica it contains
"""
# IF s contains one or more DCs with full replicas of the
# NC cr!nCName
# SET v.Color to COLOR.RED
# ELSEIF s contains one or more partial replicas of the NC
# SET v.Color to COLOR.BLACK
#ELSE
# SET v.Color to COLOR.WHITE
# set to minimum (no replica)
self.color = VertexColor.white
for dnstr, dsa in self.site.dsa_table.items():
rep = dsa.get_current_replica(self.part.nc_dnstr)
if rep is None:
continue
# We have a full replica which is the largest
# value so exit
if not rep.is_partial():
self.color = VertexColor.red
break
else:
self.color = VertexColor.black
def is_red(self):
assert(self.color != VertexColor.unknown)
return (self.color == VertexColor.red)
def is_black(self):
assert(self.color != VertexColor.unknown)
return (self.color == VertexColor.black)
def is_white(self):
assert(self.color != VertexColor.unknown)
return (self.color == VertexColor.white)
class IntersiteGraph(object):
"""Graph for representing the intersite"""
def __init__(self):
self.vertices = set()
self.edges = set()
self.edge_set = set()
# All vertices that are endpoints of edges
self.connected_vertices = None
class MultiEdgeSet(object):
"""Defines a multi edge set"""
def __init__(self):
self.guid = 0 # objectGuid siteLinkBridge
self.edges = []
class MultiEdge(object):
def __init__(self):
self.site_link = None # object siteLink
self.vertices = []
self.con_type = None # interSiteTransport GUID
self.repl_info = ReplInfo()
self.directed = True
class InternalEdge(object):
def __init__(self, v1, v2, redred, repl, eType, site_link):
self.v1 = v1
self.v2 = v2
self.red_red = redred
self.repl_info = repl
self.e_type = eType
self.site_link = site_link
def __eq__(self, other):
return not self < other and not other < self
def __ne__(self, other):
return self < other or other < self
def __gt__(self, other):
return other < self
def __ge__(self, other):
return not self < other
def __le__(self, other):
return not other < self
# TODO compare options and interval
def __lt__(self, other):
if self.red_red != other.red_red:
return self.red_red
if self.repl_info.cost != other.repl_info.cost:
return self.repl_info.cost < other.repl_info.cost
self_time = total_schedule(self.repl_info.schedule)
other_time = total_schedule(other.repl_info.schedule)
if self_time != other_time:
return self_time > other_time
#XXX guid comparison using ndr_pack
if self.v1.guid != other.v1.guid:
return self.v1.ndrpacked_guid < other.v1.ndrpacked_guid
if self.v2.guid != other.v2.guid:
return self.v2.ndrpacked_guid < other.v2.ndrpacked_guid
return self.e_type < other.e_type