mirror of
https://github.com/samba-team/samba.git
synced 2024-12-22 13:34:15 +03:00
ffa84f2e5d
This does not fix bug 15127, but it improves reporting. https://bugzilla.samba.org/show_bug.cgi?id=15127 Signed-off-by: Douglas Bagnall <douglas.bagnall@catalyst.net.nz> Reviewed-by: Andreas Schneider <asn@samba.org> Autobuild-User(master): Andreas Schneider <asn@cryptomilk.org> Autobuild-Date(master): Thu Jul 28 06:18:43 UTC 2022 on sn-devel-184
202 lines
6.6 KiB
Python
202 lines
6.6 KiB
Python
# Uptodateness utils
|
|
#
|
|
# Copyright (C) Andrew Bartlett 2015, 2018
|
|
# Copyright (C) Douglas Bagnall <douglas.bagnall@catalyst.net.nz>
|
|
# Copyright (C) Joe Guo <joeg@catalyst.net.nz>
|
|
#
|
|
# This program is free software; you can redistribute it and/or modify
|
|
# it under the terms of the GNU General Public License as published by
|
|
# the Free Software Foundation; either version 3 of the License, or
|
|
# (at your option) any later version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License
|
|
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
import sys
|
|
import time
|
|
|
|
from ldb import SCOPE_BASE, LdbError
|
|
|
|
from samba import nttime2unix, dsdb
|
|
from samba.netcmd import CommandError
|
|
from samba.samdb import SamDB
|
|
from samba.kcc import KCC
|
|
|
|
|
|
def get_kcc_and_dsas(url, lp, creds):
|
|
"""Get a readonly KCC object and the list of DSAs it knows about."""
|
|
unix_now = int(time.time())
|
|
kcc = KCC(unix_now, readonly=True)
|
|
kcc.load_samdb(url, lp, creds)
|
|
|
|
dsa_list = kcc.list_dsas()
|
|
dsas = set(dsa_list)
|
|
if len(dsas) != len(dsa_list):
|
|
print("There seem to be duplicate dsas", file=sys.stderr)
|
|
|
|
return kcc, dsas
|
|
|
|
|
|
def get_partition_maps(samdb):
|
|
"""Generate dictionaries mapping short partition names to the
|
|
appropriate DNs."""
|
|
base_dn = samdb.domain_dn()
|
|
short_to_long = {
|
|
"DOMAIN": base_dn,
|
|
"CONFIGURATION": str(samdb.get_config_basedn()),
|
|
"SCHEMA": "CN=Schema,%s" % samdb.get_config_basedn(),
|
|
"DNSDOMAIN": "DC=DomainDnsZones,%s" % base_dn,
|
|
"DNSFOREST": "DC=ForestDnsZones,%s" % base_dn
|
|
}
|
|
|
|
long_to_short = {}
|
|
for s, l in short_to_long.items():
|
|
long_to_short[l] = s
|
|
|
|
return short_to_long, long_to_short
|
|
|
|
|
|
def get_partition(samdb, part):
|
|
# Allow people to say "--partition=DOMAIN" rather than
|
|
# "--partition=DC=blah,DC=..."
|
|
if part is not None:
|
|
short_partitions, long_partitions = get_partition_maps(samdb)
|
|
part = short_partitions.get(part.upper(), part)
|
|
if part not in long_partitions:
|
|
raise CommandError("unknown partition %s" % part)
|
|
return part
|
|
|
|
|
|
def get_utdv(samdb, dn):
|
|
"""This finds the uptodateness vector in the database."""
|
|
cursors = []
|
|
config_dn = samdb.get_config_basedn()
|
|
for c in dsdb._dsdb_load_udv_v2(samdb, dn):
|
|
inv_id = str(c.source_dsa_invocation_id)
|
|
res = samdb.search(base=config_dn,
|
|
expression=("(&(invocationId=%s)"
|
|
"(objectClass=nTDSDSA))" % inv_id),
|
|
attrs=["distinguishedName", "invocationId"])
|
|
try:
|
|
settings_dn = str(res[0]["distinguishedName"][0])
|
|
prefix, dsa_dn = settings_dn.split(',', 1)
|
|
except IndexError as e:
|
|
continue
|
|
if prefix != 'CN=NTDS Settings':
|
|
raise CommandError("Expected NTDS Settings DN, got %s" %
|
|
settings_dn)
|
|
|
|
cursors.append((dsa_dn,
|
|
inv_id,
|
|
int(c.highest_usn),
|
|
nttime2unix(c.last_sync_success)))
|
|
return cursors
|
|
|
|
|
|
def get_own_cursor(samdb):
|
|
res = samdb.search(base="",
|
|
scope=SCOPE_BASE,
|
|
attrs=["highestCommittedUSN"])
|
|
usn = int(res[0]["highestCommittedUSN"][0])
|
|
now = int(time.time())
|
|
return (usn, now)
|
|
|
|
|
|
def get_utdv_edges(local_kcc, dsas, part_dn, lp, creds):
|
|
# we talk to each remote and make a matrix of the vectors
|
|
# for each partition
|
|
# normalise by oldest
|
|
utdv_edges = {}
|
|
for dsa_dn in dsas:
|
|
res = local_kcc.samdb.search(dsa_dn,
|
|
scope=SCOPE_BASE,
|
|
attrs=["dNSHostName"])
|
|
ldap_url = "ldap://%s" % res[0]["dNSHostName"][0]
|
|
try:
|
|
samdb = SamDB(url=ldap_url, credentials=creds, lp=lp)
|
|
cursors = get_utdv(samdb, part_dn)
|
|
own_usn, own_time = get_own_cursor(samdb)
|
|
remotes = {dsa_dn: own_usn}
|
|
for dn, guid, usn, t in cursors:
|
|
remotes[dn] = usn
|
|
except LdbError as e:
|
|
print("Could not contact %s (%s)" % (ldap_url, e),
|
|
file=sys.stderr)
|
|
continue
|
|
utdv_edges[dsa_dn] = remotes
|
|
return utdv_edges
|
|
|
|
|
|
def get_utdv_distances(utdv_edges, dsas):
|
|
distances = {}
|
|
for dn1 in dsas:
|
|
try:
|
|
peak = utdv_edges[dn1][dn1]
|
|
except KeyError as e:
|
|
peak = 0
|
|
d = {}
|
|
distances[dn1] = d
|
|
for dn2 in dsas:
|
|
if dn2 in utdv_edges:
|
|
if dn1 in utdv_edges[dn2]:
|
|
dist = peak - utdv_edges[dn2][dn1]
|
|
d[dn2] = dist
|
|
else:
|
|
print(f"Missing dn {dn1} from UTD vector for dsa {dn2}",
|
|
file=sys.stderr)
|
|
else:
|
|
print("missing dn %s from UTD vector list" % dn2,
|
|
file=sys.stderr)
|
|
return distances
|
|
|
|
|
|
def get_utdv_max_distance(distances):
|
|
max_distance = 0
|
|
for vector in distances.values():
|
|
for distance in vector.values():
|
|
max_distance = max(max_distance, distance)
|
|
return max_distance
|
|
|
|
|
|
def get_utdv_summary(distances, filters=None):
|
|
maximum = failure = 0
|
|
median = 0.0 # could be average of 2 median values
|
|
values = []
|
|
# put all values into a list, exclude self to self ones
|
|
for dn_outer, vector in distances.items():
|
|
for dn_inner, distance in vector.items():
|
|
if dn_outer != dn_inner:
|
|
values.append(distance)
|
|
|
|
if values:
|
|
values.sort()
|
|
maximum = values[-1]
|
|
length = len(values)
|
|
if length % 2 == 0:
|
|
index = length//2 - 1
|
|
median = (values[index] + values[index+1])/2.0
|
|
median = round(median, 1) # keep only 1 decimal digit like 2.5
|
|
else:
|
|
index = (length - 1)//2
|
|
median = values[index]
|
|
median = float(median) # ensure median is always a float like 1.0
|
|
# if value not exist, that's a failure
|
|
expected_length = len(distances) * (len(distances) - 1)
|
|
failure = expected_length - length
|
|
|
|
summary = {
|
|
'maximum': maximum,
|
|
'median': median,
|
|
'failure': failure,
|
|
}
|
|
|
|
if filters:
|
|
return {key: summary[key] for key in filters}
|
|
else:
|
|
return summary
|