1
0
mirror of https://github.com/samba-team/samba.git synced 2024-12-23 17:34:34 +03:00
samba-mirror/libcli/smb/smbXcli_base.c
2011-11-24 19:02:31 +01:00

3297 lines
76 KiB
C

/*
Unix SMB/CIFS implementation.
Infrastructure for async SMB client requests
Copyright (C) Volker Lendecke 2008
Copyright (C) Stefan Metzmacher 2011
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "includes.h"
#include "system/network.h"
#include "../lib/async_req/async_sock.h"
#include "../lib/util/tevent_ntstatus.h"
#include "../lib/util/tevent_unix.h"
#include "lib/util/util_net.h"
#include "../libcli/smb/smb_common.h"
#include "../libcli/smb/smb_seal.h"
#include "../libcli/smb/smb_signing.h"
#include "../libcli/smb/read_smb.h"
#include "smbXcli_base.h"
#include "librpc/ndr/libndr.h"
struct smbXcli_conn {
int fd;
struct sockaddr_storage local_ss;
struct sockaddr_storage remote_ss;
const char *remote_name;
struct tevent_queue *outgoing;
struct tevent_req **pending;
struct tevent_req *read_smb_req;
enum protocol_types protocol;
bool allow_signing;
bool desire_signing;
bool mandatory_signing;
/*
* The incoming dispatch function should return:
* - NT_STATUS_RETRY, if more incoming PDUs are expected.
* - NT_STATUS_OK, if no more processing is desired, e.g.
* the dispatch function called
* tevent_req_done().
* - All other return values disconnect the connection.
*/
NTSTATUS (*dispatch_incoming)(struct smbXcli_conn *conn,
TALLOC_CTX *tmp_mem,
uint8_t *inbuf);
struct {
struct {
uint32_t capabilities;
uint32_t max_xmit;
} client;
struct {
uint32_t capabilities;
uint32_t max_xmit;
uint16_t max_mux;
uint16_t security_mode;
bool readbraw;
bool writebraw;
bool lockread;
bool writeunlock;
uint32_t session_key;
struct GUID guid;
DATA_BLOB gss_blob;
uint8_t challenge[8];
const char *workgroup;
const char *name;
int time_zone;
NTTIME system_time;
} server;
uint32_t capabilities;
uint32_t max_xmit;
uint16_t mid;
struct smb_signing_state *signing;
struct smb_trans_enc_state *trans_enc;
} smb1;
struct {
struct {
uint16_t security_mode;
struct GUID guid;
} client;
struct {
uint32_t capabilities;
uint16_t security_mode;
struct GUID guid;
uint32_t max_trans_size;
uint32_t max_read_size;
uint32_t max_write_size;
NTTIME system_time;
NTTIME start_time;
DATA_BLOB gss_blob;
} server;
uint64_t mid;
} smb2;
};
struct smbXcli_req_state {
struct tevent_context *ev;
struct smbXcli_conn *conn;
uint8_t length_hdr[4];
bool one_way;
uint8_t *inbuf;
struct {
/* Space for the header including the wct */
uint8_t hdr[HDR_VWV];
/*
* For normal requests, smb1cli_req_send chooses a mid.
* SecondaryV trans requests need to use the mid of the primary
* request, so we need a place to store it.
* Assume it is set if != 0.
*/
uint16_t mid;
uint16_t *vwv;
uint8_t bytecount_buf[2];
#define MAX_SMB_IOV 5
/* length_hdr, hdr, words, byte_count, buffers */
struct iovec iov[1 + 3 + MAX_SMB_IOV];
int iov_count;
uint32_t seqnum;
struct tevent_req **chained_requests;
uint8_t recv_cmd;
NTSTATUS recv_status;
/* always an array of 3 talloc elements */
struct iovec *recv_iov;
} smb1;
struct {
const uint8_t *fixed;
uint16_t fixed_len;
const uint8_t *dyn;
uint32_t dyn_len;
uint8_t hdr[64];
uint8_t pad[7]; /* padding space for compounding */
/* always an array of 3 talloc elements */
struct iovec *recv_iov;
} smb2;
};
static int smbXcli_conn_destructor(struct smbXcli_conn *conn)
{
/*
* NT_STATUS_OK, means we do not notify the callers
*/
smbXcli_conn_disconnect(conn, NT_STATUS_OK);
if (conn->smb1.trans_enc) {
common_free_encryption_state(&conn->smb1.trans_enc);
}
return 0;
}
struct smbXcli_conn *smbXcli_conn_create(TALLOC_CTX *mem_ctx,
int fd,
const char *remote_name,
enum smb_signing_setting signing_state,
uint32_t smb1_capabilities,
struct GUID *client_guid)
{
struct smbXcli_conn *conn = NULL;
void *ss = NULL;
struct sockaddr *sa = NULL;
socklen_t sa_length;
int ret;
conn = talloc_zero(mem_ctx, struct smbXcli_conn);
if (!conn) {
return NULL;
}
conn->remote_name = talloc_strdup(conn, remote_name);
if (conn->remote_name == NULL) {
goto error;
}
conn->fd = fd;
ss = (void *)&conn->local_ss;
sa = (struct sockaddr *)ss;
sa_length = sizeof(conn->local_ss);
ret = getsockname(fd, sa, &sa_length);
if (ret == -1) {
goto error;
}
ss = (void *)&conn->remote_ss;
sa = (struct sockaddr *)ss;
sa_length = sizeof(conn->remote_ss);
ret = getpeername(fd, sa, &sa_length);
if (ret == -1) {
goto error;
}
conn->outgoing = tevent_queue_create(conn, "smbXcli_outgoing");
if (conn->outgoing == NULL) {
goto error;
}
conn->pending = NULL;
conn->protocol = PROTOCOL_NONE;
switch (signing_state) {
case SMB_SIGNING_OFF:
/* never */
conn->allow_signing = false;
conn->desire_signing = false;
conn->mandatory_signing = false;
break;
case SMB_SIGNING_DEFAULT:
case SMB_SIGNING_IF_REQUIRED:
/* if the server requires it */
conn->allow_signing = true;
conn->desire_signing = false;
conn->mandatory_signing = false;
break;
case SMB_SIGNING_REQUIRED:
/* always */
conn->allow_signing = true;
conn->desire_signing = true;
conn->mandatory_signing = true;
break;
}
conn->smb1.client.capabilities = smb1_capabilities;
conn->smb1.client.max_xmit = UINT16_MAX;
conn->smb1.capabilities = conn->smb1.client.capabilities;
conn->smb1.max_xmit = 1024;
conn->smb1.mid = 1;
/* initialise signing */
conn->smb1.signing = smb_signing_init(conn,
conn->allow_signing,
conn->desire_signing,
conn->mandatory_signing);
if (!conn->smb1.signing) {
goto error;
}
conn->smb2.client.security_mode = SMB2_NEGOTIATE_SIGNING_ENABLED;
if (conn->mandatory_signing) {
conn->smb2.client.security_mode |= SMB2_NEGOTIATE_SIGNING_REQUIRED;
}
if (client_guid) {
conn->smb2.client.guid = *client_guid;
}
talloc_set_destructor(conn, smbXcli_conn_destructor);
return conn;
error:
TALLOC_FREE(conn);
return NULL;
}
bool smbXcli_conn_is_connected(struct smbXcli_conn *conn)
{
if (conn == NULL) {
return false;
}
if (conn->fd == -1) {
return false;
}
return true;
}
enum protocol_types smbXcli_conn_protocol(struct smbXcli_conn *conn)
{
return conn->protocol;
}
bool smbXcli_conn_use_unicode(struct smbXcli_conn *conn)
{
if (conn->protocol >= PROTOCOL_SMB2_02) {
return true;
}
if (conn->smb1.capabilities & CAP_UNICODE) {
return true;
}
return false;
}
void smbXcli_conn_set_sockopt(struct smbXcli_conn *conn, const char *options)
{
set_socket_options(conn->fd, options);
}
const struct sockaddr_storage *smbXcli_conn_local_sockaddr(struct smbXcli_conn *conn)
{
return &conn->local_ss;
}
const struct sockaddr_storage *smbXcli_conn_remote_sockaddr(struct smbXcli_conn *conn)
{
return &conn->remote_ss;
}
const char *smbXcli_conn_remote_name(struct smbXcli_conn *conn)
{
return conn->remote_name;
}
uint16_t smbXcli_conn_max_requests(struct smbXcli_conn *conn)
{
if (conn->protocol >= PROTOCOL_SMB2_02) {
/*
* TODO...
*/
return 1;
}
return conn->smb1.server.max_mux;
}
NTTIME smbXcli_conn_server_system_time(struct smbXcli_conn *conn)
{
if (conn->protocol >= PROTOCOL_SMB2_02) {
return conn->smb2.server.system_time;
}
return conn->smb1.server.system_time;
}
const DATA_BLOB *smbXcli_conn_server_gss_blob(struct smbXcli_conn *conn)
{
if (conn->protocol >= PROTOCOL_SMB2_02) {
return &conn->smb2.server.gss_blob;
}
return &conn->smb1.server.gss_blob;
}
const struct GUID *smbXcli_conn_server_guid(struct smbXcli_conn *conn)
{
if (conn->protocol >= PROTOCOL_SMB2_02) {
return &conn->smb2.server.guid;
}
return &conn->smb1.server.guid;
}
uint32_t smb1cli_conn_capabilities(struct smbXcli_conn *conn)
{
return conn->smb1.capabilities;
}
uint32_t smb1cli_conn_max_xmit(struct smbXcli_conn *conn)
{
return conn->smb1.max_xmit;
}
uint32_t smb1cli_conn_server_session_key(struct smbXcli_conn *conn)
{
return conn->smb1.server.session_key;
}
const uint8_t *smb1cli_conn_server_challenge(struct smbXcli_conn *conn)
{
return conn->smb1.server.challenge;
}
uint16_t smb1cli_conn_server_security_mode(struct smbXcli_conn *conn)
{
return conn->smb1.server.security_mode;
}
int smb1cli_conn_server_time_zone(struct smbXcli_conn *conn)
{
return conn->smb1.server.time_zone;
}
bool smb1cli_conn_activate_signing(struct smbXcli_conn *conn,
const DATA_BLOB user_session_key,
const DATA_BLOB response)
{
return smb_signing_activate(conn->smb1.signing,
user_session_key,
response);
}
bool smb1cli_conn_check_signing(struct smbXcli_conn *conn,
const uint8_t *buf, uint32_t seqnum)
{
return smb_signing_check_pdu(conn->smb1.signing, buf, seqnum);
}
bool smb1cli_conn_signing_is_active(struct smbXcli_conn *conn)
{
return smb_signing_is_active(conn->smb1.signing);
}
void smb1cli_conn_set_encryption(struct smbXcli_conn *conn,
struct smb_trans_enc_state *es)
{
/* Replace the old state, if any. */
if (conn->smb1.trans_enc) {
common_free_encryption_state(&conn->smb1.trans_enc);
}
conn->smb1.trans_enc = es;
}
bool smb1cli_conn_encryption_on(struct smbXcli_conn *conn)
{
return common_encryption_on(conn->smb1.trans_enc);
}
static NTSTATUS smb1cli_pull_raw_error(const uint8_t *hdr)
{
uint32_t flags2 = SVAL(hdr, HDR_FLG2);
NTSTATUS status = NT_STATUS(IVAL(hdr, HDR_RCLS));
if (NT_STATUS_IS_OK(status)) {
return NT_STATUS_OK;
}
if (flags2 & FLAGS2_32_BIT_ERROR_CODES) {
return status;
}
return NT_STATUS_DOS(CVAL(hdr, HDR_RCLS), SVAL(hdr, HDR_ERR));
}
/**
* Is the SMB command able to hold an AND_X successor
* @param[in] cmd The SMB command in question
* @retval Can we add a chained request after "cmd"?
*/
bool smb1cli_is_andx_req(uint8_t cmd)
{
switch (cmd) {
case SMBtconX:
case SMBlockingX:
case SMBopenX:
case SMBreadX:
case SMBwriteX:
case SMBsesssetupX:
case SMBulogoffX:
case SMBntcreateX:
return true;
break;
default:
break;
}
return false;
}
static uint16_t smb1cli_alloc_mid(struct smbXcli_conn *conn)
{
size_t num_pending = talloc_array_length(conn->pending);
uint16_t result;
while (true) {
size_t i;
result = conn->smb1.mid++;
if ((result == 0) || (result == 0xffff)) {
continue;
}
for (i=0; i<num_pending; i++) {
if (result == smb1cli_req_mid(conn->pending[i])) {
break;
}
}
if (i == num_pending) {
return result;
}
}
}
void smbXcli_req_unset_pending(struct tevent_req *req)
{
struct smbXcli_req_state *state =
tevent_req_data(req,
struct smbXcli_req_state);
struct smbXcli_conn *conn = state->conn;
size_t num_pending = talloc_array_length(conn->pending);
size_t i;
if (state->smb1.mid != 0) {
/*
* This is a [nt]trans[2] request which waits
* for more than one reply.
*/
return;
}
talloc_set_destructor(req, NULL);
if (num_pending == 1) {
/*
* The pending read_smb tevent_req is a child of
* conn->pending. So if nothing is pending anymore, we need to
* delete the socket read fde.
*/
TALLOC_FREE(conn->pending);
conn->read_smb_req = NULL;
return;
}
for (i=0; i<num_pending; i++) {
if (req == conn->pending[i]) {
break;
}
}
if (i == num_pending) {
/*
* Something's seriously broken. Just returning here is the
* right thing nevertheless, the point of this routine is to
* remove ourselves from conn->pending.
*/
return;
}
/*
* Remove ourselves from the conn->pending array
*/
for (; i < (num_pending - 1); i++) {
conn->pending[i] = conn->pending[i+1];
}
/*
* No NULL check here, we're shrinking by sizeof(void *), and
* talloc_realloc just adjusts the size for this.
*/
conn->pending = talloc_realloc(NULL, conn->pending, struct tevent_req *,
num_pending - 1);
return;
}
static int smbXcli_req_destructor(struct tevent_req *req)
{
struct smbXcli_req_state *state =
tevent_req_data(req,
struct smbXcli_req_state);
/*
* Make sure we really remove it from
* the pending array on destruction.
*/
state->smb1.mid = 0;
smbXcli_req_unset_pending(req);
return 0;
}
static bool smbXcli_conn_receive_next(struct smbXcli_conn *conn);
bool smbXcli_req_set_pending(struct tevent_req *req)
{
struct smbXcli_req_state *state =
tevent_req_data(req,
struct smbXcli_req_state);
struct smbXcli_conn *conn;
struct tevent_req **pending;
size_t num_pending;
conn = state->conn;
if (!smbXcli_conn_is_connected(conn)) {
return false;
}
num_pending = talloc_array_length(conn->pending);
pending = talloc_realloc(conn, conn->pending, struct tevent_req *,
num_pending+1);
if (pending == NULL) {
return false;
}
pending[num_pending] = req;
conn->pending = pending;
talloc_set_destructor(req, smbXcli_req_destructor);
if (!smbXcli_conn_receive_next(conn)) {
/*
* the caller should notify the current request
*
* And all other pending requests get notified
* by smbXcli_conn_disconnect().
*/
smbXcli_req_unset_pending(req);
smbXcli_conn_disconnect(conn, NT_STATUS_NO_MEMORY);
return false;
}
return true;
}
static void smbXcli_conn_received(struct tevent_req *subreq);
static bool smbXcli_conn_receive_next(struct smbXcli_conn *conn)
{
size_t num_pending = talloc_array_length(conn->pending);
struct tevent_req *req;
struct smbXcli_req_state *state;
if (conn->read_smb_req != NULL) {
return true;
}
if (num_pending == 0) {
if (conn->smb2.mid < UINT64_MAX) {
/* no more pending requests, so we are done for now */
return true;
}
/*
* If there are no more SMB2 requests possible,
* because we are out of message ids,
* we need to disconnect.
*/
smbXcli_conn_disconnect(conn, NT_STATUS_CONNECTION_ABORTED);
return true;
}
req = conn->pending[0];
state = tevent_req_data(req, struct smbXcli_req_state);
/*
* We're the first ones, add the read_smb request that waits for the
* answer from the server
*/
conn->read_smb_req = read_smb_send(conn->pending, state->ev, conn->fd);
if (conn->read_smb_req == NULL) {
return false;
}
tevent_req_set_callback(conn->read_smb_req, smbXcli_conn_received, conn);
return true;
}
void smbXcli_conn_disconnect(struct smbXcli_conn *conn, NTSTATUS status)
{
if (conn->fd != -1) {
close(conn->fd);
}
conn->fd = -1;
/*
* Cancel all pending requests. We do not do a for-loop walking
* conn->pending because that array changes in
* smbXcli_req_unset_pending.
*/
while (talloc_array_length(conn->pending) > 0) {
struct tevent_req *req;
struct smbXcli_req_state *state;
struct tevent_req **chain;
size_t num_chained;
size_t i;
req = conn->pending[0];
state = tevent_req_data(req, struct smbXcli_req_state);
if (state->smb1.chained_requests == NULL) {
/*
* We're dead. No point waiting for trans2
* replies.
*/
state->smb1.mid = 0;
smbXcli_req_unset_pending(req);
if (NT_STATUS_IS_OK(status)) {
/* do not notify the callers */
continue;
}
/*
* we need to defer the callback, because we may notify
* more then one caller.
*/
tevent_req_defer_callback(req, state->ev);
tevent_req_nterror(req, status);
continue;
}
chain = talloc_move(conn, &state->smb1.chained_requests);
num_chained = talloc_array_length(chain);
for (i=0; i<num_chained; i++) {
req = chain[i];
state = tevent_req_data(req, struct smbXcli_req_state);
/*
* We're dead. No point waiting for trans2
* replies.
*/
state->smb1.mid = 0;
smbXcli_req_unset_pending(req);
if (NT_STATUS_IS_OK(status)) {
/* do not notify the callers */
continue;
}
/*
* we need to defer the callback, because we may notify
* more then one caller.
*/
tevent_req_defer_callback(req, state->ev);
tevent_req_nterror(req, status);
}
TALLOC_FREE(chain);
}
}
/*
* Fetch a smb request's mid. Only valid after the request has been sent by
* smb1cli_req_send().
*/
uint16_t smb1cli_req_mid(struct tevent_req *req)
{
struct smbXcli_req_state *state =
tevent_req_data(req,
struct smbXcli_req_state);
if (state->smb1.mid != 0) {
return state->smb1.mid;
}
return SVAL(state->smb1.hdr, HDR_MID);
}
void smb1cli_req_set_mid(struct tevent_req *req, uint16_t mid)
{
struct smbXcli_req_state *state =
tevent_req_data(req,
struct smbXcli_req_state);
state->smb1.mid = mid;
}
uint32_t smb1cli_req_seqnum(struct tevent_req *req)
{
struct smbXcli_req_state *state =
tevent_req_data(req,
struct smbXcli_req_state);
return state->smb1.seqnum;
}
void smb1cli_req_set_seqnum(struct tevent_req *req, uint32_t seqnum)
{
struct smbXcli_req_state *state =
tevent_req_data(req,
struct smbXcli_req_state);
state->smb1.seqnum = seqnum;
}
static size_t smbXcli_iov_len(const struct iovec *iov, int count)
{
size_t result = 0;
int i;
for (i=0; i<count; i++) {
result += iov[i].iov_len;
}
return result;
}
static uint8_t *smbXcli_iov_concat(TALLOC_CTX *mem_ctx,
const struct iovec *iov,
int count)
{
size_t len = smbXcli_iov_len(iov, count);
size_t copied;
uint8_t *buf;
int i;
buf = talloc_array(mem_ctx, uint8_t, len);
if (buf == NULL) {
return NULL;
}
copied = 0;
for (i=0; i<count; i++) {
memcpy(buf+copied, iov[i].iov_base, iov[i].iov_len);
copied += iov[i].iov_len;
}
return buf;
}
static void smb1cli_req_flags(enum protocol_types protocol,
uint32_t smb1_capabilities,
uint8_t smb_command,
uint8_t additional_flags,
uint8_t clear_flags,
uint8_t *_flags,
uint16_t additional_flags2,
uint16_t clear_flags2,
uint16_t *_flags2)
{
uint8_t flags = 0;
uint16_t flags2 = 0;
if (protocol >= PROTOCOL_LANMAN1) {
flags |= FLAG_CASELESS_PATHNAMES;
flags |= FLAG_CANONICAL_PATHNAMES;
}
if (protocol >= PROTOCOL_LANMAN2) {
flags2 |= FLAGS2_LONG_PATH_COMPONENTS;
flags2 |= FLAGS2_EXTENDED_ATTRIBUTES;
}
if (protocol >= PROTOCOL_NT1) {
flags2 |= FLAGS2_IS_LONG_NAME;
if (smb1_capabilities & CAP_UNICODE) {
flags2 |= FLAGS2_UNICODE_STRINGS;
}
if (smb1_capabilities & CAP_STATUS32) {
flags2 |= FLAGS2_32_BIT_ERROR_CODES;
}
if (smb1_capabilities & CAP_EXTENDED_SECURITY) {
flags2 |= FLAGS2_EXTENDED_SECURITY;
}
}
flags |= additional_flags;
flags &= ~clear_flags;
flags2 |= additional_flags2;
flags2 &= ~clear_flags2;
*_flags = flags;
*_flags2 = flags2;
}
struct tevent_req *smb1cli_req_create(TALLOC_CTX *mem_ctx,
struct tevent_context *ev,
struct smbXcli_conn *conn,
uint8_t smb_command,
uint8_t additional_flags,
uint8_t clear_flags,
uint16_t additional_flags2,
uint16_t clear_flags2,
uint32_t timeout_msec,
uint32_t pid,
uint16_t tid,
uint16_t uid,
uint8_t wct, uint16_t *vwv,
int iov_count,
struct iovec *bytes_iov)
{
struct tevent_req *req;
struct smbXcli_req_state *state;
uint8_t flags = 0;
uint16_t flags2 = 0;
if (iov_count > MAX_SMB_IOV) {
/*
* Should not happen :-)
*/
return NULL;
}
req = tevent_req_create(mem_ctx, &state,
struct smbXcli_req_state);
if (req == NULL) {
return NULL;
}
state->ev = ev;
state->conn = conn;
state->smb1.recv_cmd = 0xFF;
state->smb1.recv_status = NT_STATUS_INTERNAL_ERROR;
state->smb1.recv_iov = talloc_zero_array(state, struct iovec, 3);
if (state->smb1.recv_iov == NULL) {
TALLOC_FREE(req);
return NULL;
}
smb1cli_req_flags(conn->protocol,
conn->smb1.capabilities,
smb_command,
additional_flags,
clear_flags,
&flags,
additional_flags2,
clear_flags2,
&flags2);
SIVAL(state->smb1.hdr, 0, SMB_MAGIC);
SCVAL(state->smb1.hdr, HDR_COM, smb_command);
SIVAL(state->smb1.hdr, HDR_RCLS, NT_STATUS_V(NT_STATUS_OK));
SCVAL(state->smb1.hdr, HDR_FLG, flags);
SSVAL(state->smb1.hdr, HDR_FLG2, flags2);
SSVAL(state->smb1.hdr, HDR_PIDHIGH, pid >> 16);
SSVAL(state->smb1.hdr, HDR_TID, tid);
SSVAL(state->smb1.hdr, HDR_PID, pid);
SSVAL(state->smb1.hdr, HDR_UID, uid);
SSVAL(state->smb1.hdr, HDR_MID, 0); /* this comes later */
SSVAL(state->smb1.hdr, HDR_WCT, wct);
state->smb1.vwv = vwv;
SSVAL(state->smb1.bytecount_buf, 0, smbXcli_iov_len(bytes_iov, iov_count));
state->smb1.iov[0].iov_base = (void *)state->length_hdr;
state->smb1.iov[0].iov_len = sizeof(state->length_hdr);
state->smb1.iov[1].iov_base = (void *)state->smb1.hdr;
state->smb1.iov[1].iov_len = sizeof(state->smb1.hdr);
state->smb1.iov[2].iov_base = (void *)state->smb1.vwv;
state->smb1.iov[2].iov_len = wct * sizeof(uint16_t);
state->smb1.iov[3].iov_base = (void *)state->smb1.bytecount_buf;
state->smb1.iov[3].iov_len = sizeof(uint16_t);
if (iov_count != 0) {
memcpy(&state->smb1.iov[4], bytes_iov,
iov_count * sizeof(*bytes_iov));
}
state->smb1.iov_count = iov_count + 4;
if (timeout_msec > 0) {
struct timeval endtime;
endtime = timeval_current_ofs_msec(timeout_msec);
if (!tevent_req_set_endtime(req, ev, endtime)) {
return req;
}
}
switch (smb_command) {
case SMBtranss:
case SMBtranss2:
case SMBnttranss:
case SMBntcancel:
state->one_way = true;
break;
case SMBlockingX:
if ((wct == 8) &&
(CVAL(vwv+3, 0) == LOCKING_ANDX_OPLOCK_RELEASE)) {
state->one_way = true;
}
break;
}
return req;
}
static NTSTATUS smb1cli_conn_signv(struct smbXcli_conn *conn,
struct iovec *iov, int iov_count,
uint32_t *seqnum)
{
uint8_t *buf;
/*
* Obvious optimization: Make cli_calculate_sign_mac work with struct
* iovec directly. MD5Update would do that just fine.
*/
if (iov_count < 4) {
return NT_STATUS_INVALID_PARAMETER_MIX;
}
if (iov[0].iov_len != NBT_HDR_SIZE) {
return NT_STATUS_INVALID_PARAMETER_MIX;
}
if (iov[1].iov_len != (MIN_SMB_SIZE-sizeof(uint16_t))) {
return NT_STATUS_INVALID_PARAMETER_MIX;
}
if (iov[2].iov_len > (0xFF * sizeof(uint16_t))) {
return NT_STATUS_INVALID_PARAMETER_MIX;
}
if (iov[3].iov_len != sizeof(uint16_t)) {
return NT_STATUS_INVALID_PARAMETER_MIX;
}
buf = smbXcli_iov_concat(talloc_tos(), iov, iov_count);
if (buf == NULL) {
return NT_STATUS_NO_MEMORY;
}
*seqnum = smb_signing_next_seqnum(conn->smb1.signing, false);
smb_signing_sign_pdu(conn->smb1.signing, buf, *seqnum);
memcpy(iov[1].iov_base, buf+4, iov[1].iov_len);
TALLOC_FREE(buf);
return NT_STATUS_OK;
}
static void smb1cli_req_writev_done(struct tevent_req *subreq);
static NTSTATUS smb1cli_conn_dispatch_incoming(struct smbXcli_conn *conn,
TALLOC_CTX *tmp_mem,
uint8_t *inbuf);
static NTSTATUS smb1cli_req_writev_submit(struct tevent_req *req,
struct smbXcli_req_state *state,
struct iovec *iov, int iov_count)
{
struct tevent_req *subreq;
NTSTATUS status;
uint16_t mid;
if (!smbXcli_conn_is_connected(state->conn)) {
return NT_STATUS_CONNECTION_DISCONNECTED;
}
if (state->conn->protocol > PROTOCOL_NT1) {
return NT_STATUS_REVISION_MISMATCH;
}
if (iov_count < 4) {
return NT_STATUS_INVALID_PARAMETER_MIX;
}
if (iov[0].iov_len != NBT_HDR_SIZE) {
return NT_STATUS_INVALID_PARAMETER_MIX;
}
if (iov[1].iov_len != (MIN_SMB_SIZE-sizeof(uint16_t))) {
return NT_STATUS_INVALID_PARAMETER_MIX;
}
if (iov[2].iov_len > (0xFF * sizeof(uint16_t))) {
return NT_STATUS_INVALID_PARAMETER_MIX;
}
if (iov[3].iov_len != sizeof(uint16_t)) {
return NT_STATUS_INVALID_PARAMETER_MIX;
}
if (state->smb1.mid != 0) {
mid = state->smb1.mid;
} else {
mid = smb1cli_alloc_mid(state->conn);
}
SSVAL(iov[1].iov_base, HDR_MID, mid);
_smb_setlen_nbt(iov[0].iov_base, smbXcli_iov_len(&iov[1], iov_count-1));
status = smb1cli_conn_signv(state->conn, iov, iov_count,
&state->smb1.seqnum);
if (!NT_STATUS_IS_OK(status)) {
return status;
}
/*
* If we supported multiple encrytion contexts
* here we'd look up based on tid.
*/
if (common_encryption_on(state->conn->smb1.trans_enc)) {
char *buf, *enc_buf;
buf = (char *)smbXcli_iov_concat(talloc_tos(), iov, iov_count);
if (buf == NULL) {
return NT_STATUS_NO_MEMORY;
}
status = common_encrypt_buffer(state->conn->smb1.trans_enc,
(char *)buf, &enc_buf);
TALLOC_FREE(buf);
if (!NT_STATUS_IS_OK(status)) {
DEBUG(0, ("Error in encrypting client message: %s\n",
nt_errstr(status)));
return status;
}
buf = (char *)talloc_memdup(state, enc_buf,
smb_len_nbt(enc_buf)+4);
SAFE_FREE(enc_buf);
if (buf == NULL) {
return NT_STATUS_NO_MEMORY;
}
iov[0].iov_base = (void *)buf;
iov[0].iov_len = talloc_get_size(buf);
iov_count = 1;
}
if (state->conn->dispatch_incoming == NULL) {
state->conn->dispatch_incoming = smb1cli_conn_dispatch_incoming;
}
subreq = writev_send(state, state->ev, state->conn->outgoing,
state->conn->fd, false, iov, iov_count);
if (subreq == NULL) {
return NT_STATUS_NO_MEMORY;
}
tevent_req_set_callback(subreq, smb1cli_req_writev_done, req);
return NT_STATUS_OK;
}
struct tevent_req *smb1cli_req_send(TALLOC_CTX *mem_ctx,
struct tevent_context *ev,
struct smbXcli_conn *conn,
uint8_t smb_command,
uint8_t additional_flags,
uint8_t clear_flags,
uint16_t additional_flags2,
uint16_t clear_flags2,
uint32_t timeout_msec,
uint32_t pid,
uint16_t tid,
uint16_t uid,
uint8_t wct, uint16_t *vwv,
uint32_t num_bytes,
const uint8_t *bytes)
{
struct tevent_req *req;
struct iovec iov;
NTSTATUS status;
iov.iov_base = discard_const_p(void, bytes);
iov.iov_len = num_bytes;
req = smb1cli_req_create(mem_ctx, ev, conn, smb_command,
additional_flags, clear_flags,
additional_flags2, clear_flags2,
timeout_msec,
pid, tid, uid,
wct, vwv, 1, &iov);
if (req == NULL) {
return NULL;
}
if (!tevent_req_is_in_progress(req)) {
return tevent_req_post(req, ev);
}
status = smb1cli_req_chain_submit(&req, 1);
if (tevent_req_nterror(req, status)) {
return tevent_req_post(req, ev);
}
return req;
}
static void smb1cli_req_writev_done(struct tevent_req *subreq)
{
struct tevent_req *req =
tevent_req_callback_data(subreq,
struct tevent_req);
struct smbXcli_req_state *state =
tevent_req_data(req,
struct smbXcli_req_state);
ssize_t nwritten;
int err;
nwritten = writev_recv(subreq, &err);
TALLOC_FREE(subreq);
if (nwritten == -1) {
NTSTATUS status = map_nt_error_from_unix_common(err);
smbXcli_conn_disconnect(state->conn, status);
return;
}
if (state->one_way) {
state->inbuf = NULL;
tevent_req_done(req);
return;
}
if (!smbXcli_req_set_pending(req)) {
tevent_req_nterror(req, NT_STATUS_NO_MEMORY);
return;
}
}
static void smbXcli_conn_received(struct tevent_req *subreq)
{
struct smbXcli_conn *conn =
tevent_req_callback_data(subreq,
struct smbXcli_conn);
TALLOC_CTX *frame = talloc_stackframe();
NTSTATUS status;
uint8_t *inbuf;
ssize_t received;
int err;
if (subreq != conn->read_smb_req) {
DEBUG(1, ("Internal error: cli_smb_received called with "
"unexpected subreq\n"));
status = NT_STATUS_INTERNAL_ERROR;
smbXcli_conn_disconnect(conn, status);
TALLOC_FREE(frame);
return;
}
conn->read_smb_req = NULL;
received = read_smb_recv(subreq, frame, &inbuf, &err);
TALLOC_FREE(subreq);
if (received == -1) {
status = map_nt_error_from_unix_common(err);
smbXcli_conn_disconnect(conn, status);
TALLOC_FREE(frame);
return;
}
status = conn->dispatch_incoming(conn, frame, inbuf);
TALLOC_FREE(frame);
if (NT_STATUS_IS_OK(status)) {
/*
* We should not do any more processing
* as the dispatch function called
* tevent_req_done().
*/
return;
} else if (!NT_STATUS_EQUAL(status, NT_STATUS_RETRY)) {
/*
* We got an error, so notify all pending requests
*/
smbXcli_conn_disconnect(conn, status);
return;
}
/*
* We got NT_STATUS_RETRY, so we may ask for a
* next incoming pdu.
*/
if (!smbXcli_conn_receive_next(conn)) {
smbXcli_conn_disconnect(conn, NT_STATUS_NO_MEMORY);
}
}
static NTSTATUS smb1cli_inbuf_parse_chain(uint8_t *buf, TALLOC_CTX *mem_ctx,
struct iovec **piov, int *pnum_iov)
{
struct iovec *iov;
int num_iov;
size_t buflen;
size_t taken;
size_t remaining;
uint8_t *hdr;
uint8_t cmd;
uint32_t wct_ofs;
buflen = smb_len_nbt(buf);
taken = 0;
hdr = buf + NBT_HDR_SIZE;
if (buflen < MIN_SMB_SIZE) {
return NT_STATUS_INVALID_NETWORK_RESPONSE;
}
/*
* This returns iovec elements in the following order:
*
* - SMB header
*
* - Parameter Block
* - Data Block
*
* - Parameter Block
* - Data Block
*
* - Parameter Block
* - Data Block
*/
num_iov = 1;
iov = talloc_array(mem_ctx, struct iovec, num_iov);
if (iov == NULL) {
return NT_STATUS_NO_MEMORY;
}
iov[0].iov_base = hdr;
iov[0].iov_len = HDR_WCT;
taken += HDR_WCT;
cmd = CVAL(hdr, HDR_COM);
wct_ofs = HDR_WCT;
while (true) {
size_t len = buflen - taken;
struct iovec *cur;
struct iovec *iov_tmp;
uint8_t wct;
uint32_t bcc_ofs;
uint16_t bcc;
size_t needed;
/*
* we need at least WCT and BCC
*/
needed = sizeof(uint8_t) + sizeof(uint16_t);
if (len < needed) {
DEBUG(10, ("%s: %d bytes left, expected at least %d\n",
__location__, (int)len, (int)needed));
goto inval;
}
/*
* Now we check if the specified words are there
*/
wct = CVAL(hdr, wct_ofs);
needed += wct * sizeof(uint16_t);
if (len < needed) {
DEBUG(10, ("%s: %d bytes left, expected at least %d\n",
__location__, (int)len, (int)needed));
goto inval;
}
/*
* Now we check if the specified bytes are there
*/
bcc_ofs = wct_ofs + sizeof(uint8_t) + wct * sizeof(uint16_t);
bcc = SVAL(hdr, bcc_ofs);
needed += bcc * sizeof(uint8_t);
if (len < needed) {
DEBUG(10, ("%s: %d bytes left, expected at least %d\n",
__location__, (int)len, (int)needed));
goto inval;
}
/*
* we allocate 2 iovec structures for words and bytes
*/
iov_tmp = talloc_realloc(mem_ctx, iov, struct iovec,
num_iov + 2);
if (iov_tmp == NULL) {
TALLOC_FREE(iov);
return NT_STATUS_NO_MEMORY;
}
iov = iov_tmp;
cur = &iov[num_iov];
num_iov += 2;
cur[0].iov_len = wct * sizeof(uint16_t);
cur[0].iov_base = hdr + (wct_ofs + sizeof(uint8_t));
cur[1].iov_len = bcc * sizeof(uint8_t);
cur[1].iov_base = hdr + (bcc_ofs + sizeof(uint16_t));
taken += needed;
if (!smb1cli_is_andx_req(cmd)) {
/*
* If the current command does not have AndX chanining
* we are done.
*/
break;
}
if (wct == 0 && bcc == 0) {
/*
* An empty response also ends the chain,
* most likely with an error.
*/
break;
}
if (wct < 2) {
DEBUG(10, ("%s: wct[%d] < 2 for cmd[0x%02X]\n",
__location__, (int)wct, (int)cmd));
goto inval;
}
cmd = CVAL(cur[0].iov_base, 0);
if (cmd == 0xFF) {
/*
* If it is the end of the chain we are also done.
*/
break;
}
wct_ofs = SVAL(cur[0].iov_base, 2);
if (wct_ofs < taken) {
return NT_STATUS_INVALID_NETWORK_RESPONSE;
}
if (wct_ofs > buflen) {
return NT_STATUS_INVALID_NETWORK_RESPONSE;
}
/*
* we consumed everything up to the start of the next
* parameter block.
*/
taken = wct_ofs;
}
remaining = buflen - taken;
if (remaining > 0 && num_iov >= 3) {
/*
* The last DATA block gets the remaining
* bytes, this is needed to support
* CAP_LARGE_WRITEX and CAP_LARGE_READX.
*/
iov[num_iov-1].iov_len += remaining;
}
*piov = iov;
*pnum_iov = num_iov;
return NT_STATUS_OK;
inval:
TALLOC_FREE(iov);
return NT_STATUS_INVALID_NETWORK_RESPONSE;
}
static NTSTATUS smb1cli_conn_dispatch_incoming(struct smbXcli_conn *conn,
TALLOC_CTX *tmp_mem,
uint8_t *inbuf)
{
struct tevent_req *req;
struct smbXcli_req_state *state;
NTSTATUS status;
size_t num_pending;
size_t i;
uint8_t cmd;
uint16_t mid;
bool oplock_break;
const uint8_t *inhdr = inbuf + NBT_HDR_SIZE;
struct iovec *iov = NULL;
int num_iov = 0;
struct tevent_req **chain = NULL;
size_t num_chained = 0;
size_t num_responses = 0;
if ((IVAL(inhdr, 0) != SMB_MAGIC) /* 0xFF"SMB" */
&& (SVAL(inhdr, 0) != 0x45ff)) /* 0xFF"E" */ {
DEBUG(10, ("Got non-SMB PDU\n"));
return NT_STATUS_INVALID_NETWORK_RESPONSE;
}
/*
* If we supported multiple encrytion contexts
* here we'd look up based on tid.
*/
if (common_encryption_on(conn->smb1.trans_enc)
&& (CVAL(inbuf, 0) == 0)) {
uint16_t enc_ctx_num;
status = get_enc_ctx_num(inbuf, &enc_ctx_num);
if (!NT_STATUS_IS_OK(status)) {
DEBUG(10, ("get_enc_ctx_num returned %s\n",
nt_errstr(status)));
return status;
}
if (enc_ctx_num != conn->smb1.trans_enc->enc_ctx_num) {
DEBUG(10, ("wrong enc_ctx %d, expected %d\n",
enc_ctx_num,
conn->smb1.trans_enc->enc_ctx_num));
return NT_STATUS_INVALID_HANDLE;
}
status = common_decrypt_buffer(conn->smb1.trans_enc,
(char *)inbuf);
if (!NT_STATUS_IS_OK(status)) {
DEBUG(10, ("common_decrypt_buffer returned %s\n",
nt_errstr(status)));
return status;
}
}
mid = SVAL(inhdr, HDR_MID);
num_pending = talloc_array_length(conn->pending);
for (i=0; i<num_pending; i++) {
if (mid == smb1cli_req_mid(conn->pending[i])) {
break;
}
}
if (i == num_pending) {
/* Dump unexpected reply */
return NT_STATUS_RETRY;
}
oplock_break = false;
if (mid == 0xffff) {
/*
* Paranoia checks that this is really an oplock break request.
*/
oplock_break = (smb_len_nbt(inbuf) == 51); /* hdr + 8 words */
oplock_break &= ((CVAL(inhdr, HDR_FLG) & FLAG_REPLY) == 0);
oplock_break &= (CVAL(inhdr, HDR_COM) == SMBlockingX);
oplock_break &= (SVAL(inhdr, HDR_VWV+VWV(6)) == 0);
oplock_break &= (SVAL(inhdr, HDR_VWV+VWV(7)) == 0);
if (!oplock_break) {
/* Dump unexpected reply */
return NT_STATUS_RETRY;
}
}
req = conn->pending[i];
state = tevent_req_data(req, struct smbXcli_req_state);
if (!oplock_break /* oplock breaks are not signed */
&& !smb_signing_check_pdu(conn->smb1.signing,
inbuf, state->smb1.seqnum+1)) {
DEBUG(10, ("cli_check_sign_mac failed\n"));
return NT_STATUS_ACCESS_DENIED;
}
status = smb1cli_inbuf_parse_chain(inbuf, tmp_mem,
&iov, &num_iov);
if (!NT_STATUS_IS_OK(status)) {
DEBUG(10,("smb1cli_inbuf_parse_chain - %s\n",
nt_errstr(status)));
return status;
}
cmd = CVAL(inhdr, HDR_COM);
status = smb1cli_pull_raw_error(inhdr);
if (state->smb1.chained_requests == NULL) {
if (num_iov != 3) {
return NT_STATUS_INVALID_NETWORK_RESPONSE;
}
smbXcli_req_unset_pending(req);
state->smb1.recv_cmd = cmd;
state->smb1.recv_status = status;
state->inbuf = talloc_move(state->smb1.recv_iov, &inbuf);
state->smb1.recv_iov[0] = iov[0];
state->smb1.recv_iov[1] = iov[1];
state->smb1.recv_iov[2] = iov[2];
if (talloc_array_length(conn->pending) == 0) {
tevent_req_done(req);
return NT_STATUS_OK;
}
tevent_req_defer_callback(req, state->ev);
tevent_req_done(req);
return NT_STATUS_RETRY;
}
chain = talloc_move(tmp_mem, &state->smb1.chained_requests);
num_chained = talloc_array_length(chain);
num_responses = (num_iov - 1)/2;
if (num_responses > num_chained) {
return NT_STATUS_INVALID_NETWORK_RESPONSE;
}
for (i=0; i<num_chained; i++) {
size_t iov_idx = 1 + (i*2);
struct iovec *cur = &iov[iov_idx];
uint8_t *inbuf_ref;
req = chain[i];
state = tevent_req_data(req, struct smbXcli_req_state);
smbXcli_req_unset_pending(req);
/*
* as we finish multiple requests here
* we need to defer the callbacks as
* they could destroy our current stack state.
*/
tevent_req_defer_callback(req, state->ev);
if (i >= num_responses) {
tevent_req_nterror(req, NT_STATUS_REQUEST_ABORTED);
continue;
}
state->smb1.recv_cmd = cmd;
if (i == (num_responses - 1)) {
/*
* The last request in the chain gets the status
*/
state->smb1.recv_status = status;
} else {
cmd = CVAL(cur[0].iov_base, 0);
state->smb1.recv_status = NT_STATUS_OK;
}
state->inbuf = inbuf;
/*
* Note: here we use talloc_reference() in a way
* that does not expose it to the caller.
*/
inbuf_ref = talloc_reference(state->smb1.recv_iov, inbuf);
if (tevent_req_nomem(inbuf_ref, req)) {
continue;
}
/* copy the related buffers */
state->smb1.recv_iov[0] = iov[0];
state->smb1.recv_iov[1] = cur[0];
state->smb1.recv_iov[2] = cur[1];
tevent_req_done(req);
}
return NT_STATUS_RETRY;
}
NTSTATUS smb1cli_req_recv(struct tevent_req *req,
TALLOC_CTX *mem_ctx,
struct iovec **piov,
uint8_t **phdr,
uint8_t *pwct,
uint16_t **pvwv,
uint32_t *pvwv_offset,
uint32_t *pnum_bytes,
uint8_t **pbytes,
uint32_t *pbytes_offset,
uint8_t **pinbuf,
const struct smb1cli_req_expected_response *expected,
size_t num_expected)
{
struct smbXcli_req_state *state =
tevent_req_data(req,
struct smbXcli_req_state);
NTSTATUS status = NT_STATUS_OK;
struct iovec *recv_iov = NULL;
uint8_t *hdr = NULL;
uint8_t wct = 0;
uint32_t vwv_offset = 0;
uint16_t *vwv = NULL;
uint32_t num_bytes = 0;
uint32_t bytes_offset = 0;
uint8_t *bytes = NULL;
size_t i;
bool found_status = false;
bool found_size = false;
if (piov != NULL) {
*piov = NULL;
}
if (phdr != NULL) {
*phdr = 0;
}
if (pwct != NULL) {
*pwct = 0;
}
if (pvwv != NULL) {
*pvwv = NULL;
}
if (pvwv_offset != NULL) {
*pvwv_offset = 0;
}
if (pnum_bytes != NULL) {
*pnum_bytes = 0;
}
if (pbytes != NULL) {
*pbytes = NULL;
}
if (pbytes_offset != NULL) {
*pbytes_offset = 0;
}
if (pinbuf != NULL) {
*pinbuf = NULL;
}
if (state->inbuf != NULL) {
recv_iov = state->smb1.recv_iov;
hdr = (uint8_t *)recv_iov[0].iov_base;
wct = recv_iov[1].iov_len/2;
vwv = (uint16_t *)recv_iov[1].iov_base;
vwv_offset = PTR_DIFF(vwv, hdr);
num_bytes = recv_iov[2].iov_len;
bytes = (uint8_t *)recv_iov[2].iov_base;
bytes_offset = PTR_DIFF(bytes, hdr);
}
if (tevent_req_is_nterror(req, &status)) {
for (i=0; i < num_expected; i++) {
if (NT_STATUS_EQUAL(status, expected[i].status)) {
found_status = true;
break;
}
}
if (found_status) {
return NT_STATUS_UNEXPECTED_NETWORK_ERROR;
}
return status;
}
if (num_expected == 0) {
found_status = true;
found_size = true;
}
status = state->smb1.recv_status;
for (i=0; i < num_expected; i++) {
if (!NT_STATUS_EQUAL(status, expected[i].status)) {
continue;
}
found_status = true;
if (expected[i].wct == 0) {
found_size = true;
break;
}
if (expected[i].wct == wct) {
found_size = true;
break;
}
}
if (!found_status) {
return status;
}
if (!found_size) {
return NT_STATUS_INVALID_NETWORK_RESPONSE;
}
if (piov != NULL) {
*piov = talloc_move(mem_ctx, &recv_iov);
}
if (phdr != NULL) {
*phdr = hdr;
}
if (pwct != NULL) {
*pwct = wct;
}
if (pvwv != NULL) {
*pvwv = vwv;
}
if (pvwv_offset != NULL) {
*pvwv_offset = vwv_offset;
}
if (pnum_bytes != NULL) {
*pnum_bytes = num_bytes;
}
if (pbytes != NULL) {
*pbytes = bytes;
}
if (pbytes_offset != NULL) {
*pbytes_offset = bytes_offset;
}
if (pinbuf != NULL) {
*pinbuf = state->inbuf;
}
return status;
}
size_t smb1cli_req_wct_ofs(struct tevent_req **reqs, int num_reqs)
{
size_t wct_ofs;
int i;
wct_ofs = HDR_WCT;
for (i=0; i<num_reqs; i++) {
struct smbXcli_req_state *state;
state = tevent_req_data(reqs[i], struct smbXcli_req_state);
wct_ofs += smbXcli_iov_len(state->smb1.iov+2,
state->smb1.iov_count-2);
wct_ofs = (wct_ofs + 3) & ~3;
}
return wct_ofs;
}
NTSTATUS smb1cli_req_chain_submit(struct tevent_req **reqs, int num_reqs)
{
struct smbXcli_req_state *first_state =
tevent_req_data(reqs[0],
struct smbXcli_req_state);
struct smbXcli_req_state *state;
size_t wct_offset;
size_t chain_padding = 0;
int i, iovlen;
struct iovec *iov = NULL;
struct iovec *this_iov;
NTSTATUS status;
size_t nbt_len;
if (num_reqs == 1) {
return smb1cli_req_writev_submit(reqs[0], first_state,
first_state->smb1.iov,
first_state->smb1.iov_count);
}
iovlen = 0;
for (i=0; i<num_reqs; i++) {
if (!tevent_req_is_in_progress(reqs[i])) {
return NT_STATUS_INTERNAL_ERROR;
}
state = tevent_req_data(reqs[i], struct smbXcli_req_state);
if (state->smb1.iov_count < 4) {
return NT_STATUS_INVALID_PARAMETER_MIX;
}
if (i == 0) {
/*
* The NBT and SMB header
*/
iovlen += 2;
} else {
/*
* Chain padding
*/
iovlen += 1;
}
/*
* words and bytes
*/
iovlen += state->smb1.iov_count - 2;
}
iov = talloc_zero_array(first_state, struct iovec, iovlen);
if (iov == NULL) {
return NT_STATUS_NO_MEMORY;
}
first_state->smb1.chained_requests = (struct tevent_req **)talloc_memdup(
first_state, reqs, sizeof(*reqs) * num_reqs);
if (first_state->smb1.chained_requests == NULL) {
TALLOC_FREE(iov);
return NT_STATUS_NO_MEMORY;
}
wct_offset = HDR_WCT;
this_iov = iov;
for (i=0; i<num_reqs; i++) {
size_t next_padding = 0;
uint16_t *vwv;
state = tevent_req_data(reqs[i], struct smbXcli_req_state);
if (i < num_reqs-1) {
if (!smb1cli_is_andx_req(CVAL(state->smb1.hdr, HDR_COM))
|| CVAL(state->smb1.hdr, HDR_WCT) < 2) {
TALLOC_FREE(iov);
TALLOC_FREE(first_state->smb1.chained_requests);
return NT_STATUS_INVALID_PARAMETER_MIX;
}
}
wct_offset += smbXcli_iov_len(state->smb1.iov+2,
state->smb1.iov_count-2) + 1;
if ((wct_offset % 4) != 0) {
next_padding = 4 - (wct_offset % 4);
}
wct_offset += next_padding;
vwv = state->smb1.vwv;
if (i < num_reqs-1) {
struct smbXcli_req_state *next_state =
tevent_req_data(reqs[i+1],
struct smbXcli_req_state);
SCVAL(vwv+0, 0, CVAL(next_state->smb1.hdr, HDR_COM));
SCVAL(vwv+0, 1, 0);
SSVAL(vwv+1, 0, wct_offset);
} else if (smb1cli_is_andx_req(CVAL(state->smb1.hdr, HDR_COM))) {
/* properly end the chain */
SCVAL(vwv+0, 0, 0xff);
SCVAL(vwv+0, 1, 0xff);
SSVAL(vwv+1, 0, 0);
}
if (i == 0) {
/*
* The NBT and SMB header
*/
this_iov[0] = state->smb1.iov[0];
this_iov[1] = state->smb1.iov[1];
this_iov += 2;
} else {
/*
* This one is a bit subtle. We have to add
* chain_padding bytes between the requests, and we
* have to also include the wct field of the
* subsequent requests. We use the subsequent header
* for the padding, it contains the wct field in its
* last byte.
*/
this_iov[0].iov_len = chain_padding+1;
this_iov[0].iov_base = (void *)&state->smb1.hdr[
sizeof(state->smb1.hdr) - this_iov[0].iov_len];
memset(this_iov[0].iov_base, 0, this_iov[0].iov_len-1);
this_iov += 1;
}
/*
* copy the words and bytes
*/
memcpy(this_iov, state->smb1.iov+2,
sizeof(struct iovec) * (state->smb1.iov_count-2));
this_iov += state->smb1.iov_count - 2;
chain_padding = next_padding;
}
nbt_len = smbXcli_iov_len(&iov[1], iovlen-1);
if (nbt_len > first_state->conn->smb1.max_xmit) {
TALLOC_FREE(iov);
TALLOC_FREE(first_state->smb1.chained_requests);
return NT_STATUS_INVALID_PARAMETER_MIX;
}
status = smb1cli_req_writev_submit(reqs[0], first_state, iov, iovlen);
if (!NT_STATUS_IS_OK(status)) {
TALLOC_FREE(iov);
TALLOC_FREE(first_state->smb1.chained_requests);
return status;
}
return NT_STATUS_OK;
}
bool smbXcli_conn_has_async_calls(struct smbXcli_conn *conn)
{
return ((tevent_queue_length(conn->outgoing) != 0)
|| (talloc_array_length(conn->pending) != 0));
}
uint32_t smb2cli_conn_server_capabilities(struct smbXcli_conn *conn)
{
return conn->smb2.server.capabilities;
}
uint16_t smb2cli_conn_server_security_mode(struct smbXcli_conn *conn)
{
return conn->smb2.server.security_mode;
}
uint32_t smb2cli_conn_max_trans_size(struct smbXcli_conn *conn)
{
return conn->smb2.server.max_trans_size;
}
uint32_t smb2cli_conn_max_read_size(struct smbXcli_conn *conn)
{
return conn->smb2.server.max_read_size;
}
uint32_t smb2cli_conn_max_write_size(struct smbXcli_conn *conn)
{
return conn->smb2.server.max_write_size;
}
struct tevent_req *smb2cli_req_create(TALLOC_CTX *mem_ctx,
struct tevent_context *ev,
struct smbXcli_conn *conn,
uint16_t cmd,
uint32_t additional_flags,
uint32_t clear_flags,
uint32_t timeout_msec,
uint32_t pid,
uint32_t tid,
uint64_t uid,
const uint8_t *fixed,
uint16_t fixed_len,
const uint8_t *dyn,
uint32_t dyn_len)
{
struct tevent_req *req;
struct smbXcli_req_state *state;
uint32_t flags = 0;
req = tevent_req_create(mem_ctx, &state,
struct smbXcli_req_state);
if (req == NULL) {
return NULL;
}
state->ev = ev;
state->conn = conn;
state->smb2.recv_iov = talloc_zero_array(state, struct iovec, 3);
if (state->smb2.recv_iov == NULL) {
TALLOC_FREE(req);
return NULL;
}
flags |= additional_flags;
flags &= ~clear_flags;
state->smb2.fixed = fixed;
state->smb2.fixed_len = fixed_len;
state->smb2.dyn = dyn;
state->smb2.dyn_len = dyn_len;
SIVAL(state->smb2.hdr, SMB2_HDR_PROTOCOL_ID, SMB2_MAGIC);
SSVAL(state->smb2.hdr, SMB2_HDR_LENGTH, SMB2_HDR_BODY);
SSVAL(state->smb2.hdr, SMB2_HDR_CREDIT_CHARGE, 1);
SIVAL(state->smb2.hdr, SMB2_HDR_STATUS, NT_STATUS_V(NT_STATUS_OK));
SSVAL(state->smb2.hdr, SMB2_HDR_OPCODE, cmd);
SSVAL(state->smb2.hdr, SMB2_HDR_CREDIT, 31);
SIVAL(state->smb2.hdr, SMB2_HDR_FLAGS, flags);
SIVAL(state->smb2.hdr, SMB2_HDR_PID, pid);
SIVAL(state->smb2.hdr, SMB2_HDR_TID, tid);
SBVAL(state->smb2.hdr, SMB2_HDR_SESSION_ID, uid);
switch (cmd) {
case SMB2_OP_CANCEL:
state->one_way = true;
break;
case SMB2_OP_BREAK:
/*
* If this is a dummy request, it will have
* UINT64_MAX as message id.
* If we send on break acknowledgement,
* this gets overwritten later.
*/
SBVAL(state->smb2.hdr, SMB2_HDR_MESSAGE_ID, UINT64_MAX);
break;
}
if (timeout_msec > 0) {
struct timeval endtime;
endtime = timeval_current_ofs_msec(timeout_msec);
if (!tevent_req_set_endtime(req, ev, endtime)) {
return req;
}
}
return req;
}
static void smb2cli_writev_done(struct tevent_req *subreq);
static NTSTATUS smb2cli_conn_dispatch_incoming(struct smbXcli_conn *conn,
TALLOC_CTX *tmp_mem,
uint8_t *inbuf);
NTSTATUS smb2cli_req_compound_submit(struct tevent_req **reqs,
int num_reqs)
{
struct smbXcli_req_state *state;
struct tevent_req *subreq;
struct iovec *iov;
int i, num_iov, nbt_len;
/*
* 1 for the nbt length
* per request: HDR, fixed, dyn, padding
* -1 because the last one does not need padding
*/
iov = talloc_array(reqs[0], struct iovec, 1 + 4*num_reqs - 1);
if (iov == NULL) {
return NT_STATUS_NO_MEMORY;
}
num_iov = 1;
nbt_len = 0;
for (i=0; i<num_reqs; i++) {
size_t reqlen;
bool ret;
uint64_t mid;
if (!tevent_req_is_in_progress(reqs[i])) {
return NT_STATUS_INTERNAL_ERROR;
}
state = tevent_req_data(reqs[i], struct smbXcli_req_state);
if (!smbXcli_conn_is_connected(state->conn)) {
return NT_STATUS_CONNECTION_DISCONNECTED;
}
if ((state->conn->protocol != PROTOCOL_NONE) &&
(state->conn->protocol < PROTOCOL_SMB2_02)) {
return NT_STATUS_REVISION_MISMATCH;
}
if (state->conn->smb2.mid == UINT64_MAX) {
return NT_STATUS_CONNECTION_ABORTED;
}
mid = state->conn->smb2.mid;
state->conn->smb2.mid += 1;
SBVAL(state->smb2.hdr, SMB2_HDR_MESSAGE_ID, mid);
iov[num_iov].iov_base = state->smb2.hdr;
iov[num_iov].iov_len = sizeof(state->smb2.hdr);
num_iov += 1;
iov[num_iov].iov_base = discard_const(state->smb2.fixed);
iov[num_iov].iov_len = state->smb2.fixed_len;
num_iov += 1;
if (state->smb2.dyn != NULL) {
iov[num_iov].iov_base = discard_const(state->smb2.dyn);
iov[num_iov].iov_len = state->smb2.dyn_len;
num_iov += 1;
}
reqlen = sizeof(state->smb2.hdr);
reqlen += state->smb2.fixed_len;
reqlen += state->smb2.dyn_len;
if (i < num_reqs-1) {
if ((reqlen % 8) > 0) {
uint8_t pad = 8 - (reqlen % 8);
iov[num_iov].iov_base = state->smb2.pad;
iov[num_iov].iov_len = pad;
num_iov += 1;
reqlen += pad;
}
SIVAL(state->smb2.hdr, SMB2_HDR_NEXT_COMMAND, reqlen);
}
nbt_len += reqlen;
ret = smbXcli_req_set_pending(reqs[i]);
if (!ret) {
return NT_STATUS_NO_MEMORY;
}
}
/*
* TODO: Do signing here
*/
state = tevent_req_data(reqs[0], struct smbXcli_req_state);
_smb_setlen_tcp(state->length_hdr, nbt_len);
iov[0].iov_base = state->length_hdr;
iov[0].iov_len = sizeof(state->length_hdr);
if (state->conn->dispatch_incoming == NULL) {
state->conn->dispatch_incoming = smb2cli_conn_dispatch_incoming;
}
subreq = writev_send(state, state->ev, state->conn->outgoing,
state->conn->fd, false, iov, num_iov);
if (subreq == NULL) {
return NT_STATUS_NO_MEMORY;
}
tevent_req_set_callback(subreq, smb2cli_writev_done, reqs[0]);
return NT_STATUS_OK;
}
struct tevent_req *smb2cli_req_send(TALLOC_CTX *mem_ctx,
struct tevent_context *ev,
struct smbXcli_conn *conn,
uint16_t cmd,
uint32_t additional_flags,
uint32_t clear_flags,
uint32_t timeout_msec,
uint32_t pid,
uint32_t tid,
uint64_t uid,
const uint8_t *fixed,
uint16_t fixed_len,
const uint8_t *dyn,
uint32_t dyn_len)
{
struct tevent_req *req;
NTSTATUS status;
req = smb2cli_req_create(mem_ctx, ev, conn, cmd,
additional_flags, clear_flags,
timeout_msec,
pid, tid, uid,
fixed, fixed_len, dyn, dyn_len);
if (req == NULL) {
return NULL;
}
if (!tevent_req_is_in_progress(req)) {
return tevent_req_post(req, ev);
}
status = smb2cli_req_compound_submit(&req, 1);
if (tevent_req_nterror(req, status)) {
return tevent_req_post(req, ev);
}
return req;
}
static void smb2cli_writev_done(struct tevent_req *subreq)
{
struct tevent_req *req =
tevent_req_callback_data(subreq,
struct tevent_req);
struct smbXcli_req_state *state =
tevent_req_data(req,
struct smbXcli_req_state);
ssize_t nwritten;
int err;
nwritten = writev_recv(subreq, &err);
TALLOC_FREE(subreq);
if (nwritten == -1) {
/* here, we need to notify all pending requests */
NTSTATUS status = map_nt_error_from_unix_common(err);
smbXcli_conn_disconnect(state->conn, status);
return;
}
}
static NTSTATUS smb2cli_inbuf_parse_compound(uint8_t *buf, TALLOC_CTX *mem_ctx,
struct iovec **piov, int *pnum_iov)
{
struct iovec *iov;
int num_iov;
size_t buflen;
size_t taken;
uint8_t *first_hdr;
num_iov = 0;
iov = talloc_array(mem_ctx, struct iovec, num_iov);
if (iov == NULL) {
return NT_STATUS_NO_MEMORY;
}
buflen = smb_len_tcp(buf);
taken = 0;
first_hdr = buf + NBT_HDR_SIZE;
while (taken < buflen) {
size_t len = buflen - taken;
uint8_t *hdr = first_hdr + taken;
struct iovec *cur;
size_t full_size;
size_t next_command_ofs;
uint16_t body_size;
struct iovec *iov_tmp;
/*
* We need the header plus the body length field
*/
if (len < SMB2_HDR_BODY + 2) {
DEBUG(10, ("%d bytes left, expected at least %d\n",
(int)len, SMB2_HDR_BODY));
goto inval;
}
if (IVAL(hdr, 0) != SMB2_MAGIC) {
DEBUG(10, ("Got non-SMB2 PDU: %x\n",
IVAL(hdr, 0)));
goto inval;
}
if (SVAL(hdr, 4) != SMB2_HDR_BODY) {
DEBUG(10, ("Got HDR len %d, expected %d\n",
SVAL(hdr, 4), SMB2_HDR_BODY));
goto inval;
}
full_size = len;
next_command_ofs = IVAL(hdr, SMB2_HDR_NEXT_COMMAND);
body_size = SVAL(hdr, SMB2_HDR_BODY);
if (next_command_ofs != 0) {
if (next_command_ofs < (SMB2_HDR_BODY + 2)) {
goto inval;
}
if (next_command_ofs > full_size) {
goto inval;
}
full_size = next_command_ofs;
}
if (body_size < 2) {
goto inval;
}
body_size &= 0xfffe;
if (body_size > (full_size - SMB2_HDR_BODY)) {
goto inval;
}
iov_tmp = talloc_realloc(mem_ctx, iov, struct iovec,
num_iov + 3);
if (iov_tmp == NULL) {
TALLOC_FREE(iov);
return NT_STATUS_NO_MEMORY;
}
iov = iov_tmp;
cur = &iov[num_iov];
num_iov += 3;
cur[0].iov_base = hdr;
cur[0].iov_len = SMB2_HDR_BODY;
cur[1].iov_base = hdr + SMB2_HDR_BODY;
cur[1].iov_len = body_size;
cur[2].iov_base = hdr + SMB2_HDR_BODY + body_size;
cur[2].iov_len = full_size - (SMB2_HDR_BODY + body_size);
taken += full_size;
}
*piov = iov;
*pnum_iov = num_iov;
return NT_STATUS_OK;
inval:
TALLOC_FREE(iov);
return NT_STATUS_INVALID_NETWORK_RESPONSE;
}
static struct tevent_req *smb2cli_conn_find_pending(struct smbXcli_conn *conn,
uint64_t mid)
{
size_t num_pending = talloc_array_length(conn->pending);
size_t i;
for (i=0; i<num_pending; i++) {
struct tevent_req *req = conn->pending[i];
struct smbXcli_req_state *state =
tevent_req_data(req,
struct smbXcli_req_state);
if (mid == BVAL(state->smb2.hdr, SMB2_HDR_MESSAGE_ID)) {
return req;
}
}
return NULL;
}
static NTSTATUS smb2cli_conn_dispatch_incoming(struct smbXcli_conn *conn,
TALLOC_CTX *tmp_mem,
uint8_t *inbuf)
{
struct tevent_req *req;
struct smbXcli_req_state *state = NULL;
struct iovec *iov;
int i, num_iov;
NTSTATUS status;
bool defer = true;
status = smb2cli_inbuf_parse_compound(inbuf, tmp_mem,
&iov, &num_iov);
if (!NT_STATUS_IS_OK(status)) {
return status;
}
for (i=0; i<num_iov; i+=3) {
uint8_t *inbuf_ref = NULL;
struct iovec *cur = &iov[i];
uint8_t *inhdr = (uint8_t *)cur[0].iov_base;
uint16_t opcode = SVAL(inhdr, SMB2_HDR_OPCODE);
uint32_t flags = IVAL(inhdr, SMB2_HDR_FLAGS);
uint64_t mid = BVAL(inhdr, SMB2_HDR_MESSAGE_ID);
uint16_t req_opcode;
req = smb2cli_conn_find_pending(conn, mid);
if (req == NULL) {
return NT_STATUS_INVALID_NETWORK_RESPONSE;
}
state = tevent_req_data(req, struct smbXcli_req_state);
req_opcode = SVAL(state->smb2.hdr, SMB2_HDR_OPCODE);
if (opcode != req_opcode) {
return NT_STATUS_INVALID_NETWORK_RESPONSE;
}
if (!(flags & SMB2_HDR_FLAG_REDIRECT)) {
return NT_STATUS_INVALID_NETWORK_RESPONSE;
}
status = NT_STATUS(IVAL(inhdr, SMB2_HDR_STATUS));
if ((flags & SMB2_HDR_FLAG_ASYNC) &&
NT_STATUS_EQUAL(status, STATUS_PENDING)) {
uint32_t req_flags = IVAL(state->smb2.hdr, SMB2_HDR_FLAGS);
uint64_t async_id = BVAL(inhdr, SMB2_HDR_ASYNC_ID);
req_flags |= SMB2_HDR_FLAG_ASYNC;
SBVAL(state->smb2.hdr, SMB2_HDR_FLAGS, req_flags);
SBVAL(state->smb2.hdr, SMB2_HDR_ASYNC_ID, async_id);
continue;
}
smbXcli_req_unset_pending(req);
/*
* There might be more than one response
* we need to defer the notifications
*/
if ((num_iov == 4) && (talloc_array_length(conn->pending) == 0)) {
defer = false;
}
if (defer) {
tevent_req_defer_callback(req, state->ev);
}
/*
* Note: here we use talloc_reference() in a way
* that does not expose it to the caller.
*/
inbuf_ref = talloc_reference(state->smb2.recv_iov, inbuf);
if (tevent_req_nomem(inbuf_ref, req)) {
continue;
}
/* copy the related buffers */
state->smb2.recv_iov[0] = cur[0];
state->smb2.recv_iov[1] = cur[1];
state->smb2.recv_iov[2] = cur[2];
tevent_req_done(req);
}
if (defer) {
return NT_STATUS_RETRY;
}
return NT_STATUS_OK;
}
NTSTATUS smb2cli_req_recv(struct tevent_req *req, TALLOC_CTX *mem_ctx,
struct iovec **piov,
const struct smb2cli_req_expected_response *expected,
size_t num_expected)
{
struct smbXcli_req_state *state =
tevent_req_data(req,
struct smbXcli_req_state);
NTSTATUS status;
size_t body_size;
bool found_status = false;
bool found_size = false;
size_t i;
if (piov != NULL) {
*piov = NULL;
}
if (tevent_req_is_nterror(req, &status)) {
for (i=0; i < num_expected; i++) {
if (NT_STATUS_EQUAL(status, expected[i].status)) {
found_status = true;
break;
}
}
if (found_status) {
return NT_STATUS_UNEXPECTED_NETWORK_ERROR;
}
return status;
}
if (num_expected == 0) {
found_status = true;
found_size = true;
}
status = NT_STATUS(IVAL(state->smb2.recv_iov[0].iov_base, SMB2_HDR_STATUS));
body_size = SVAL(state->smb2.recv_iov[1].iov_base, 0);
for (i=0; i < num_expected; i++) {
if (!NT_STATUS_EQUAL(status, expected[i].status)) {
continue;
}
found_status = true;
if (expected[i].body_size == 0) {
found_size = true;
break;
}
if (expected[i].body_size == body_size) {
found_size = true;
break;
}
}
if (!found_status) {
return status;
}
if (!found_size) {
return NT_STATUS_INVALID_NETWORK_RESPONSE;
}
if (piov != NULL) {
*piov = talloc_move(mem_ctx, &state->smb2.recv_iov);
}
return status;
}
static const struct {
enum protocol_types proto;
const char *smb1_name;
} smb1cli_prots[] = {
{PROTOCOL_CORE, "PC NETWORK PROGRAM 1.0"},
{PROTOCOL_COREPLUS, "MICROSOFT NETWORKS 1.03"},
{PROTOCOL_LANMAN1, "MICROSOFT NETWORKS 3.0"},
{PROTOCOL_LANMAN1, "LANMAN1.0"},
{PROTOCOL_LANMAN2, "LM1.2X002"},
{PROTOCOL_LANMAN2, "DOS LANMAN2.1"},
{PROTOCOL_LANMAN2, "LANMAN2.1"},
{PROTOCOL_LANMAN2, "Samba"},
{PROTOCOL_NT1, "NT LANMAN 1.0"},
{PROTOCOL_NT1, "NT LM 0.12"},
{PROTOCOL_SMB2_02, "SMB 2.002"},
};
static const struct {
enum protocol_types proto;
uint16_t smb2_dialect;
} smb2cli_prots[] = {
{PROTOCOL_SMB2_02, SMB2_DIALECT_REVISION_202},
};
struct smbXcli_negprot_state {
struct smbXcli_conn *conn;
struct tevent_context *ev;
uint32_t timeout_msec;
enum protocol_types min_protocol;
enum protocol_types max_protocol;
struct {
uint8_t fixed[36];
uint8_t dyn[ARRAY_SIZE(smb2cli_prots)*2];
} smb2;
};
static void smbXcli_negprot_invalid_done(struct tevent_req *subreq);
static struct tevent_req *smbXcli_negprot_smb1_subreq(struct smbXcli_negprot_state *state);
static void smbXcli_negprot_smb1_done(struct tevent_req *subreq);
static struct tevent_req *smbXcli_negprot_smb2_subreq(struct smbXcli_negprot_state *state);
static void smbXcli_negprot_smb2_done(struct tevent_req *subreq);
static NTSTATUS smbXcli_negprot_dispatch_incoming(struct smbXcli_conn *conn,
TALLOC_CTX *frame,
uint8_t *inbuf);
struct tevent_req *smbXcli_negprot_send(TALLOC_CTX *mem_ctx,
struct tevent_context *ev,
struct smbXcli_conn *conn,
uint32_t timeout_msec,
enum protocol_types min_protocol,
enum protocol_types max_protocol)
{
struct tevent_req *req, *subreq;
struct smbXcli_negprot_state *state;
req = tevent_req_create(mem_ctx, &state,
struct smbXcli_negprot_state);
if (req == NULL) {
return NULL;
}
state->conn = conn;
state->ev = ev;
state->timeout_msec = timeout_msec;
state->min_protocol = min_protocol;
state->max_protocol = max_protocol;
if (min_protocol == PROTOCOL_NONE) {
tevent_req_nterror(req, NT_STATUS_INVALID_PARAMETER_MIX);
return tevent_req_post(req, ev);
}
if (max_protocol == PROTOCOL_NONE) {
tevent_req_nterror(req, NT_STATUS_INVALID_PARAMETER_MIX);
return tevent_req_post(req, ev);
}
if (min_protocol > max_protocol) {
tevent_req_nterror(req, NT_STATUS_INVALID_PARAMETER_MIX);
return tevent_req_post(req, ev);
}
if ((min_protocol < PROTOCOL_SMB2_02) &&
(max_protocol < PROTOCOL_SMB2_02)) {
/*
* SMB1 only...
*/
conn->dispatch_incoming = smb1cli_conn_dispatch_incoming;
subreq = smbXcli_negprot_smb1_subreq(state);
if (tevent_req_nomem(subreq, req)) {
return tevent_req_post(req, ev);
}
tevent_req_set_callback(subreq, smbXcli_negprot_smb1_done, req);
return req;
}
if ((min_protocol >= PROTOCOL_SMB2_02) &&
(max_protocol >= PROTOCOL_SMB2_02)) {
/*
* SMB2 only...
*/
conn->dispatch_incoming = smb2cli_conn_dispatch_incoming;
subreq = smbXcli_negprot_smb2_subreq(state);
if (tevent_req_nomem(subreq, req)) {
return tevent_req_post(req, ev);
}
tevent_req_set_callback(subreq, smbXcli_negprot_smb2_done, req);
return req;
}
/*
* We send an SMB1 negprot with the SMB2 dialects
* and expect a SMB1 or a SMB2 response.
*
* smbXcli_negprot_dispatch_incoming() will fix the
* callback to match protocol of the response.
*/
conn->dispatch_incoming = smbXcli_negprot_dispatch_incoming;
subreq = smbXcli_negprot_smb1_subreq(state);
if (tevent_req_nomem(subreq, req)) {
return tevent_req_post(req, ev);
}
tevent_req_set_callback(subreq, smbXcli_negprot_invalid_done, req);
return req;
}
static void smbXcli_negprot_invalid_done(struct tevent_req *subreq)
{
struct tevent_req *req =
tevent_req_callback_data(subreq,
struct tevent_req);
NTSTATUS status;
/*
* we just want the low level error
*/
status = tevent_req_simple_recv_ntstatus(subreq);
TALLOC_FREE(subreq);
if (tevent_req_nterror(req, status)) {
return;
}
/* this should never happen */
tevent_req_nterror(req, NT_STATUS_INTERNAL_ERROR);
}
static struct tevent_req *smbXcli_negprot_smb1_subreq(struct smbXcli_negprot_state *state)
{
size_t i;
DATA_BLOB bytes = data_blob_null;
uint8_t flags;
uint16_t flags2;
/* setup the protocol strings */
for (i=0; i < ARRAY_SIZE(smb1cli_prots); i++) {
uint8_t c = 2;
bool ok;
if (smb1cli_prots[i].proto < state->min_protocol) {
continue;
}
if (smb1cli_prots[i].proto > state->max_protocol) {
continue;
}
ok = data_blob_append(state, &bytes, &c, sizeof(c));
if (!ok) {
return NULL;
}
/*
* We now it is already ascii and
* we want NULL termination.
*/
ok = data_blob_append(state, &bytes,
smb1cli_prots[i].smb1_name,
strlen(smb1cli_prots[i].smb1_name)+1);
if (!ok) {
return NULL;
}
}
smb1cli_req_flags(state->max_protocol,
state->conn->smb1.client.capabilities,
SMBnegprot,
0, 0, &flags,
0, 0, &flags2);
return smb1cli_req_send(state, state->ev, state->conn,
SMBnegprot,
flags, ~flags,
flags2, ~flags2,
state->timeout_msec,
0xFFFE, 0, 0, /* pid, tid, uid */
0, NULL, /* wct, vwv */
bytes.length, bytes.data);
}
static void smbXcli_negprot_smb1_done(struct tevent_req *subreq)
{
struct tevent_req *req =
tevent_req_callback_data(subreq,
struct tevent_req);
struct smbXcli_negprot_state *state =
tevent_req_data(req,
struct smbXcli_negprot_state);
struct smbXcli_conn *conn = state->conn;
struct iovec *recv_iov = NULL;
uint8_t *inhdr;
uint8_t wct;
uint16_t *vwv;
uint32_t num_bytes;
uint8_t *bytes;
NTSTATUS status;
uint16_t protnum;
size_t i;
size_t num_prots = 0;
uint8_t flags;
uint32_t client_capabilities = conn->smb1.client.capabilities;
uint32_t both_capabilities;
uint32_t server_capabilities = 0;
uint32_t capabilities;
uint32_t client_max_xmit = conn->smb1.client.max_xmit;
uint32_t server_max_xmit = 0;
uint32_t max_xmit;
uint32_t server_max_mux = 0;
uint16_t server_security_mode = 0;
uint32_t server_session_key = 0;
bool server_readbraw = false;
bool server_writebraw = false;
bool server_lockread = false;
bool server_writeunlock = false;
struct GUID server_guid = GUID_zero();
DATA_BLOB server_gss_blob = data_blob_null;
uint8_t server_challenge[8];
char *server_workgroup = NULL;
char *server_name = NULL;
int server_time_zone = 0;
NTTIME server_system_time = 0;
static const struct smb1cli_req_expected_response expected[] = {
{
.status = NT_STATUS_OK,
.wct = 0x11, /* NT1 */
},
{
.status = NT_STATUS_OK,
.wct = 0x0D, /* LM */
},
{
.status = NT_STATUS_OK,
.wct = 0x01, /* CORE */
}
};
ZERO_STRUCT(server_challenge);
status = smb1cli_req_recv(subreq, state,
&recv_iov,
&inhdr,
&wct,
&vwv,
NULL, /* pvwv_offset */
&num_bytes,
&bytes,
NULL, /* pbytes_offset */
NULL, /* pinbuf */
expected, ARRAY_SIZE(expected));
TALLOC_FREE(subreq);
if (tevent_req_nterror(req, status)) {
return;
}
flags = CVAL(inhdr, HDR_FLG);
protnum = SVAL(vwv, 0);
for (i=0; i < ARRAY_SIZE(smb1cli_prots); i++) {
if (smb1cli_prots[i].proto < state->min_protocol) {
continue;
}
if (smb1cli_prots[i].proto > state->max_protocol) {
continue;
}
if (protnum != num_prots) {
num_prots++;
continue;
}
conn->protocol = smb1cli_prots[i].proto;
break;
}
if (conn->protocol == PROTOCOL_NONE) {
tevent_req_nterror(req, NT_STATUS_INVALID_NETWORK_RESPONSE);
return;
}
if ((conn->protocol < PROTOCOL_NT1) && conn->mandatory_signing) {
DEBUG(0,("smbXcli_negprot: SMB signing is mandatory "
"and the selected protocol level doesn't support it.\n"));
tevent_req_nterror(req, NT_STATUS_ACCESS_DENIED);
return;
}
if (flags & FLAG_SUPPORT_LOCKREAD) {
server_lockread = true;
server_writeunlock = true;
}
if (conn->protocol >= PROTOCOL_NT1) {
const char *client_signing = NULL;
bool server_mandatory = false;
bool server_allowed = false;
const char *server_signing = NULL;
bool ok;
uint8_t key_len;
if (wct != 0x11) {
tevent_req_nterror(req, NT_STATUS_INVALID_NETWORK_RESPONSE);
return;
}
/* NT protocol */
server_security_mode = CVAL(vwv + 1, 0);
server_max_mux = SVAL(vwv + 1, 1);
server_max_xmit = IVAL(vwv + 3, 1);
server_session_key = IVAL(vwv + 7, 1);
server_time_zone = SVALS(vwv + 15, 1);
server_time_zone *= 60;
/* this time arrives in real GMT */
server_system_time = BVAL(vwv + 11, 1);
server_capabilities = IVAL(vwv + 9, 1);
key_len = CVAL(vwv + 16, 1);
if (server_capabilities & CAP_RAW_MODE) {
server_readbraw = true;
server_writebraw = true;
}
if (server_capabilities & CAP_LOCK_AND_READ) {
server_lockread = true;
}
if (server_capabilities & CAP_EXTENDED_SECURITY) {
DATA_BLOB blob1, blob2;
if (num_bytes < 16) {
tevent_req_nterror(req, NT_STATUS_INVALID_NETWORK_RESPONSE);
return;
}
blob1 = data_blob_const(bytes, 16);
status = GUID_from_data_blob(&blob1, &server_guid);
if (tevent_req_nterror(req, status)) {
return;
}
blob1 = data_blob_const(bytes+16, num_bytes-16);
blob2 = data_blob_dup_talloc(state, blob1);
if (blob1.length > 0 &&
tevent_req_nomem(blob2.data, req)) {
return;
}
server_gss_blob = blob2;
} else {
DATA_BLOB blob1, blob2;
if (num_bytes < key_len) {
tevent_req_nterror(req, NT_STATUS_INVALID_NETWORK_RESPONSE);
return;
}
if (key_len != 0 && key_len != 8) {
tevent_req_nterror(req, NT_STATUS_INVALID_NETWORK_RESPONSE);
return;
}
if (key_len == 8) {
memcpy(server_challenge, bytes, 8);
}
blob1 = data_blob_const(bytes+key_len, num_bytes-key_len);
blob2 = data_blob_const(bytes+key_len, num_bytes-key_len);
if (blob1.length > 0) {
size_t len;
len = utf16_len_n(blob1.data,
blob1.length);
blob1.length = len;
ok = convert_string_talloc(state,
CH_UTF16LE,
CH_UNIX,
blob1.data,
blob1.length,
&server_workgroup,
&len);
if (!ok) {
status = map_nt_error_from_unix_common(errno);
tevent_req_nterror(req, status);
return;
}
}
blob2.data += blob1.length;
blob2.length -= blob1.length;
if (blob2.length > 0) {
size_t len;
len = utf16_len_n(blob1.data,
blob1.length);
blob1.length = len;
ok = convert_string_talloc(state,
CH_UTF16LE,
CH_UNIX,
blob2.data,
blob2.length,
&server_name,
&len);
if (!ok) {
status = map_nt_error_from_unix_common(errno);
tevent_req_nterror(req, status);
return;
}
}
}
client_signing = "disabled";
if (conn->allow_signing) {
client_signing = "allowed";
}
if (conn->mandatory_signing) {
client_signing = "required";
}
server_signing = "not supported";
if (server_security_mode & NEGOTIATE_SECURITY_SIGNATURES_ENABLED) {
server_signing = "supported";
server_allowed = true;
}
if (server_security_mode & NEGOTIATE_SECURITY_SIGNATURES_REQUIRED) {
server_signing = "required";
server_mandatory = true;
}
ok = smb_signing_set_negotiated(conn->smb1.signing,
server_allowed,
server_mandatory);
if (!ok) {
DEBUG(1,("cli_negprot: SMB signing is required, "
"but client[%s] and server[%s] mismatch\n",
client_signing, server_signing));
tevent_req_nterror(req, NT_STATUS_ACCESS_DENIED);
return;
}
} else if (conn->protocol >= PROTOCOL_LANMAN1) {
DATA_BLOB blob1;
uint8_t key_len;
time_t t;
if (wct != 0x0D) {
tevent_req_nterror(req, NT_STATUS_INVALID_NETWORK_RESPONSE);
return;
}
server_security_mode = SVAL(vwv + 1, 0);
server_max_xmit = SVAL(vwv + 2, 0);
server_max_mux = SVAL(vwv + 3, 0);
server_readbraw = ((SVAL(vwv + 5, 0) & 0x1) != 0);
server_writebraw = ((SVAL(vwv + 5, 0) & 0x2) != 0);
server_session_key = IVAL(vwv + 6, 0);
server_time_zone = SVALS(vwv + 10, 0);
server_time_zone *= 60;
/* this time is converted to GMT by make_unix_date */
t = pull_dos_date((const uint8_t *)(vwv + 8), server_time_zone);
unix_to_nt_time(&server_system_time, t);
key_len = SVAL(vwv + 11, 0);
if (num_bytes < key_len) {
tevent_req_nterror(req, NT_STATUS_INVALID_NETWORK_RESPONSE);
return;
}
if (key_len != 0 && key_len != 8) {
tevent_req_nterror(req, NT_STATUS_INVALID_NETWORK_RESPONSE);
return;
}
if (key_len == 8) {
memcpy(server_challenge, bytes, 8);
}
blob1 = data_blob_const(bytes+key_len, num_bytes-key_len);
if (blob1.length > 0) {
size_t len;
bool ok;
len = utf16_len_n(blob1.data,
blob1.length);
blob1.length = len;
ok = convert_string_talloc(state,
CH_DOS,
CH_UNIX,
blob1.data,
blob1.length,
&server_workgroup,
&len);
if (!ok) {
status = map_nt_error_from_unix_common(errno);
tevent_req_nterror(req, status);
return;
}
}
} else {
/* the old core protocol */
server_time_zone = get_time_zone(time(NULL));
server_max_xmit = 1024;
server_max_mux = 1;
}
if (server_max_xmit < 1024) {
tevent_req_nterror(req, NT_STATUS_INVALID_NETWORK_RESPONSE);
return;
}
if (server_max_mux < 1) {
tevent_req_nterror(req, NT_STATUS_INVALID_NETWORK_RESPONSE);
return;
}
/*
* Now calculate the negotiated capabilities
* based on the mask for:
* - client only flags
* - flags used in both directions
* - server only flags
*/
both_capabilities = client_capabilities & server_capabilities;
capabilities = client_capabilities & SMB_CAP_CLIENT_MASK;
capabilities |= both_capabilities & SMB_CAP_BOTH_MASK;
capabilities |= server_capabilities & SMB_CAP_SERVER_MASK;
max_xmit = MIN(client_max_xmit, server_max_xmit);
conn->smb1.server.capabilities = server_capabilities;
conn->smb1.capabilities = capabilities;
conn->smb1.server.max_xmit = server_max_xmit;
conn->smb1.max_xmit = max_xmit;
conn->smb1.server.max_mux = server_max_mux;
conn->smb1.server.security_mode = server_security_mode;
conn->smb1.server.readbraw = server_readbraw;
conn->smb1.server.writebraw = server_writebraw;
conn->smb1.server.lockread = server_lockread;
conn->smb1.server.writeunlock = server_writeunlock;
conn->smb1.server.session_key = server_session_key;
talloc_steal(conn, server_gss_blob.data);
conn->smb1.server.gss_blob = server_gss_blob;
conn->smb1.server.guid = server_guid;
memcpy(conn->smb1.server.challenge, server_challenge, 8);
conn->smb1.server.workgroup = talloc_move(conn, &server_workgroup);
conn->smb1.server.name = talloc_move(conn, &server_name);
conn->smb1.server.time_zone = server_time_zone;
conn->smb1.server.system_time = server_system_time;
tevent_req_done(req);
}
static struct tevent_req *smbXcli_negprot_smb2_subreq(struct smbXcli_negprot_state *state)
{
size_t i;
uint8_t *buf;
uint16_t dialect_count = 0;
buf = state->smb2.dyn;
for (i=0; i < ARRAY_SIZE(smb2cli_prots); i++) {
if (smb2cli_prots[i].proto < state->min_protocol) {
continue;
}
if (smb2cli_prots[i].proto > state->max_protocol) {
continue;
}
SSVAL(buf, dialect_count*2, smb2cli_prots[i].smb2_dialect);
dialect_count++;
}
buf = state->smb2.fixed;
SSVAL(buf, 0, 36);
SSVAL(buf, 2, dialect_count);
SSVAL(buf, 4, state->conn->smb2.client.security_mode);
SSVAL(buf, 6, 0); /* Reserved */
SSVAL(buf, 8, 0); /* Capabilities */
memset(buf+12, 0, 16); /* ClientGuid */
SBVAL(buf, 28, 0); /* ClientStartTime */
return smb2cli_req_send(state, state->ev,
state->conn, SMB2_OP_NEGPROT,
0, 0, /* flags */
state->timeout_msec,
0xFEFF, 0, 0, /* pid, tid, uid */
state->smb2.fixed, sizeof(state->smb2.fixed),
state->smb2.dyn, dialect_count*2);
}
static void smbXcli_negprot_smb2_done(struct tevent_req *subreq)
{
struct tevent_req *req =
tevent_req_callback_data(subreq,
struct tevent_req);
struct smbXcli_negprot_state *state =
tevent_req_data(req,
struct smbXcli_negprot_state);
struct smbXcli_conn *conn = state->conn;
size_t security_offset, security_length;
DATA_BLOB blob;
NTSTATUS status;
struct iovec *iov;
uint8_t *body;
size_t i;
uint16_t dialect_revision;
static const struct smb2cli_req_expected_response expected[] = {
{
.status = NT_STATUS_OK,
.body_size = 0x41
}
};
status = smb2cli_req_recv(subreq, state, &iov,
expected, ARRAY_SIZE(expected));
TALLOC_FREE(subreq);
if (tevent_req_nterror(req, status)) {
return;
}
body = (uint8_t *)iov[1].iov_base;
dialect_revision = SVAL(body, 4);
for (i=0; i < ARRAY_SIZE(smb2cli_prots); i++) {
if (smb2cli_prots[i].proto < state->min_protocol) {
continue;
}
if (smb2cli_prots[i].proto > state->max_protocol) {
continue;
}
if (smb2cli_prots[i].smb2_dialect != dialect_revision) {
continue;
}
conn->protocol = smb2cli_prots[i].proto;
break;
}
if (conn->protocol == PROTOCOL_NONE) {
tevent_req_nterror(req, NT_STATUS_INVALID_NETWORK_RESPONSE);
return;
}
conn->smb2.server.security_mode = SVAL(body, 2);
blob = data_blob_const(body + 8, 16);
status = GUID_from_data_blob(&blob, &conn->smb2.server.guid);
if (tevent_req_nterror(req, status)) {
return;
}
conn->smb2.server.capabilities = IVAL(body, 24);
conn->smb2.server.max_trans_size= IVAL(body, 28);
conn->smb2.server.max_read_size = IVAL(body, 32);
conn->smb2.server.max_write_size= IVAL(body, 36);
conn->smb2.server.system_time = BVAL(body, 40);
conn->smb2.server.start_time = BVAL(body, 48);
security_offset = SVAL(body, 56);
security_length = SVAL(body, 58);
if (security_offset != SMB2_HDR_BODY + iov[1].iov_len) {
tevent_req_nterror(req, NT_STATUS_INVALID_NETWORK_RESPONSE);
return;
}
if (security_length > iov[2].iov_len) {
tevent_req_nterror(req, NT_STATUS_INVALID_NETWORK_RESPONSE);
return;
}
conn->smb2.server.gss_blob = data_blob_talloc(conn,
iov[2].iov_base,
security_length);
if (tevent_req_nomem(conn->smb2.server.gss_blob.data, req)) {
return;
}
tevent_req_done(req);
}
static NTSTATUS smbXcli_negprot_dispatch_incoming(struct smbXcli_conn *conn,
TALLOC_CTX *tmp_mem,
uint8_t *inbuf)
{
size_t num_pending = talloc_array_length(conn->pending);
struct tevent_req *subreq;
struct smbXcli_req_state *substate;
struct tevent_req *req;
struct smbXcli_negprot_state *state;
uint32_t protocol_magic = IVAL(inbuf, 4);
if (num_pending != 1) {
return NT_STATUS_INTERNAL_ERROR;
}
subreq = conn->pending[0];
substate = tevent_req_data(subreq, struct smbXcli_req_state);
req = tevent_req_callback_data(subreq, struct tevent_req);
state = tevent_req_data(req, struct smbXcli_negprot_state);
switch (protocol_magic) {
case SMB_MAGIC:
tevent_req_set_callback(subreq, smbXcli_negprot_smb1_done, req);
conn->dispatch_incoming = smb1cli_conn_dispatch_incoming;
return smb1cli_conn_dispatch_incoming(conn, tmp_mem, inbuf);
case SMB2_MAGIC:
if (substate->smb2.recv_iov == NULL) {
/*
* For the SMB1 negprot we have move it.
*/
substate->smb2.recv_iov = substate->smb1.recv_iov;
substate->smb1.recv_iov = NULL;
}
tevent_req_set_callback(subreq, smbXcli_negprot_smb2_done, req);
conn->dispatch_incoming = smb2cli_conn_dispatch_incoming;
return smb2cli_conn_dispatch_incoming(conn, tmp_mem, inbuf);
}
DEBUG(10, ("Got non-SMB PDU\n"));
return NT_STATUS_INVALID_NETWORK_RESPONSE;
}
NTSTATUS smbXcli_negprot_recv(struct tevent_req *req)
{
return tevent_req_simple_recv_ntstatus(req);
}
NTSTATUS smbXcli_negprot(struct smbXcli_conn *conn,
uint32_t timeout_msec,
enum protocol_types min_protocol,
enum protocol_types max_protocol)
{
TALLOC_CTX *frame = talloc_stackframe();
struct tevent_context *ev;
struct tevent_req *req;
NTSTATUS status = NT_STATUS_NO_MEMORY;
bool ok;
if (smbXcli_conn_has_async_calls(conn)) {
/*
* Can't use sync call while an async call is in flight
*/
status = NT_STATUS_INVALID_PARAMETER_MIX;
goto fail;
}
ev = tevent_context_init(frame);
if (ev == NULL) {
goto fail;
}
req = smbXcli_negprot_send(frame, ev, conn, timeout_msec,
min_protocol, max_protocol);
if (req == NULL) {
goto fail;
}
ok = tevent_req_poll(req, ev);
if (!ok) {
status = map_nt_error_from_unix_common(errno);
goto fail;
}
status = smbXcli_negprot_recv(req);
fail:
TALLOC_FREE(frame);
return status;
}