mirror of
https://github.com/samba-team/samba.git
synced 2024-12-22 13:34:15 +03:00
3fd1a41f68
Reported-by: David Disseldorp <ddiss@samba.org> Signed-off-by: Ralph Boehme <slow@samba.org> Reviewed-by: David Disseldorp <ddiss@samba.org> Reviewed-by: Stefan Metzmacher <metze@samba.org>
1183 lines
23 KiB
C
1183 lines
23 KiB
C
/*
|
|
* Unix SMB/CIFS implementation.
|
|
* thread pool implementation
|
|
* Copyright (C) Volker Lendecke 2009
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "replace.h"
|
|
#include "system/time.h"
|
|
#include "system/wait.h"
|
|
#include "system/threads.h"
|
|
#include "system/filesys.h"
|
|
#include "pthreadpool.h"
|
|
#include "lib/util/dlinklist.h"
|
|
#include "lib/util/blocking.h"
|
|
|
|
#ifdef NDEBUG
|
|
#undef NDEBUG
|
|
#endif
|
|
|
|
#include <assert.h>
|
|
|
|
struct pthreadpool_job {
|
|
int id;
|
|
void (*fn)(void *private_data);
|
|
void *private_data;
|
|
};
|
|
|
|
struct pthreadpool {
|
|
/*
|
|
* List pthreadpools for fork safety
|
|
*/
|
|
struct pthreadpool *prev, *next;
|
|
|
|
/*
|
|
* Control access to this struct
|
|
*/
|
|
pthread_mutex_t mutex;
|
|
|
|
/*
|
|
* Threads waiting for work do so here
|
|
*/
|
|
pthread_cond_t condvar;
|
|
|
|
int check_pipefd[2];
|
|
|
|
/*
|
|
* Array of jobs
|
|
*/
|
|
size_t jobs_array_len;
|
|
struct pthreadpool_job *jobs;
|
|
|
|
size_t head;
|
|
size_t num_jobs;
|
|
|
|
/*
|
|
* Indicate job completion
|
|
*/
|
|
int (*signal_fn)(int jobid,
|
|
void (*job_fn)(void *private_data),
|
|
void *job_fn_private_data,
|
|
void *private_data);
|
|
void *signal_fn_private_data;
|
|
|
|
/*
|
|
* indicator to worker threads to stop processing further jobs
|
|
* and exit.
|
|
*/
|
|
bool stopped;
|
|
|
|
/*
|
|
* indicator to the last worker thread to free the pool
|
|
* resources.
|
|
*/
|
|
bool destroyed;
|
|
|
|
/*
|
|
* maximum number of threads
|
|
* 0 means no real thread, only strict sync processing.
|
|
*/
|
|
unsigned max_threads;
|
|
|
|
/*
|
|
* Number of threads
|
|
*/
|
|
unsigned num_threads;
|
|
|
|
/*
|
|
* Number of idle threads
|
|
*/
|
|
unsigned num_idle;
|
|
|
|
/*
|
|
* Condition variable indicating that helper threads should
|
|
* quickly go away making way for fork() without anybody
|
|
* waiting on pool->condvar.
|
|
*/
|
|
pthread_cond_t *prefork_cond;
|
|
|
|
/*
|
|
* Waiting position for helper threads while fork is
|
|
* running. The forking thread will have locked it, and all
|
|
* idle helper threads will sit here until after the fork,
|
|
* where the forking thread will unlock it again.
|
|
*/
|
|
pthread_mutex_t fork_mutex;
|
|
|
|
bool per_thread_cwd;
|
|
};
|
|
|
|
static pthread_mutex_t pthreadpools_mutex = PTHREAD_MUTEX_INITIALIZER;
|
|
static struct pthreadpool *pthreadpools = NULL;
|
|
static bool pthreadpool_support_thread_cwd = false;
|
|
static pthread_once_t pthreadpool_atfork_initialized = PTHREAD_ONCE_INIT;
|
|
|
|
static void pthreadpool_prep_atfork(void);
|
|
|
|
/*
|
|
* Initialize a thread pool
|
|
*/
|
|
|
|
int pthreadpool_init(unsigned max_threads, struct pthreadpool **presult,
|
|
int (*signal_fn)(int jobid,
|
|
void (*job_fn)(void *private_data),
|
|
void *job_fn_private_data,
|
|
void *private_data),
|
|
void *signal_fn_private_data)
|
|
{
|
|
struct pthreadpool *pool;
|
|
int ret;
|
|
bool ok;
|
|
|
|
pool = (struct pthreadpool *)malloc(sizeof(struct pthreadpool));
|
|
if (pool == NULL) {
|
|
return ENOMEM;
|
|
}
|
|
pool->signal_fn = signal_fn;
|
|
pool->signal_fn_private_data = signal_fn_private_data;
|
|
|
|
pool->jobs_array_len = 4;
|
|
pool->jobs = calloc(
|
|
pool->jobs_array_len, sizeof(struct pthreadpool_job));
|
|
|
|
if (pool->jobs == NULL) {
|
|
free(pool);
|
|
return ENOMEM;
|
|
}
|
|
|
|
ret = pipe(pool->check_pipefd);
|
|
if (ret != 0) {
|
|
free(pool->jobs);
|
|
free(pool);
|
|
return ENOMEM;
|
|
}
|
|
|
|
ok = smb_set_close_on_exec(pool->check_pipefd[0]);
|
|
if (!ok) {
|
|
close(pool->check_pipefd[0]);
|
|
close(pool->check_pipefd[1]);
|
|
free(pool->jobs);
|
|
free(pool);
|
|
return EINVAL;
|
|
}
|
|
ok = smb_set_close_on_exec(pool->check_pipefd[1]);
|
|
if (!ok) {
|
|
close(pool->check_pipefd[0]);
|
|
close(pool->check_pipefd[1]);
|
|
free(pool->jobs);
|
|
free(pool);
|
|
return EINVAL;
|
|
}
|
|
ret = set_blocking(pool->check_pipefd[0], true);
|
|
if (ret == -1) {
|
|
close(pool->check_pipefd[0]);
|
|
close(pool->check_pipefd[1]);
|
|
free(pool->jobs);
|
|
free(pool);
|
|
return EINVAL;
|
|
}
|
|
ret = set_blocking(pool->check_pipefd[1], false);
|
|
if (ret == -1) {
|
|
close(pool->check_pipefd[0]);
|
|
close(pool->check_pipefd[1]);
|
|
free(pool->jobs);
|
|
free(pool);
|
|
return EINVAL;
|
|
}
|
|
|
|
pool->head = pool->num_jobs = 0;
|
|
|
|
ret = pthread_mutex_init(&pool->mutex, NULL);
|
|
if (ret != 0) {
|
|
close(pool->check_pipefd[0]);
|
|
close(pool->check_pipefd[1]);
|
|
free(pool->jobs);
|
|
free(pool);
|
|
return ret;
|
|
}
|
|
|
|
ret = pthread_cond_init(&pool->condvar, NULL);
|
|
if (ret != 0) {
|
|
pthread_mutex_destroy(&pool->mutex);
|
|
close(pool->check_pipefd[0]);
|
|
close(pool->check_pipefd[1]);
|
|
free(pool->jobs);
|
|
free(pool);
|
|
return ret;
|
|
}
|
|
|
|
ret = pthread_mutex_init(&pool->fork_mutex, NULL);
|
|
if (ret != 0) {
|
|
pthread_cond_destroy(&pool->condvar);
|
|
pthread_mutex_destroy(&pool->mutex);
|
|
close(pool->check_pipefd[0]);
|
|
close(pool->check_pipefd[1]);
|
|
free(pool->jobs);
|
|
free(pool);
|
|
return ret;
|
|
}
|
|
|
|
pool->stopped = false;
|
|
pool->destroyed = false;
|
|
pool->num_threads = 0;
|
|
pool->max_threads = max_threads;
|
|
pool->num_idle = 0;
|
|
pool->prefork_cond = NULL;
|
|
if (max_threads != 0) {
|
|
pool->per_thread_cwd = pthreadpool_support_thread_cwd;
|
|
} else {
|
|
pool->per_thread_cwd = false;
|
|
}
|
|
|
|
ret = pthread_mutex_lock(&pthreadpools_mutex);
|
|
if (ret != 0) {
|
|
pthread_mutex_destroy(&pool->fork_mutex);
|
|
pthread_cond_destroy(&pool->condvar);
|
|
pthread_mutex_destroy(&pool->mutex);
|
|
close(pool->check_pipefd[0]);
|
|
close(pool->check_pipefd[1]);
|
|
free(pool->jobs);
|
|
free(pool);
|
|
return ret;
|
|
}
|
|
DLIST_ADD(pthreadpools, pool);
|
|
|
|
ret = pthread_mutex_unlock(&pthreadpools_mutex);
|
|
assert(ret == 0);
|
|
|
|
pthread_once(&pthreadpool_atfork_initialized, pthreadpool_prep_atfork);
|
|
|
|
*presult = pool;
|
|
|
|
return 0;
|
|
}
|
|
|
|
size_t pthreadpool_max_threads(struct pthreadpool *pool)
|
|
{
|
|
if (pool->stopped) {
|
|
return 0;
|
|
}
|
|
|
|
return pool->max_threads;
|
|
}
|
|
|
|
size_t pthreadpool_queued_jobs(struct pthreadpool *pool)
|
|
{
|
|
int res;
|
|
int unlock_res;
|
|
size_t ret;
|
|
|
|
if (pool->stopped) {
|
|
return 0;
|
|
}
|
|
|
|
res = pthread_mutex_lock(&pool->mutex);
|
|
if (res != 0) {
|
|
return res;
|
|
}
|
|
|
|
if (pool->stopped) {
|
|
unlock_res = pthread_mutex_unlock(&pool->mutex);
|
|
assert(unlock_res == 0);
|
|
return 0;
|
|
}
|
|
|
|
ret = pool->num_jobs;
|
|
|
|
unlock_res = pthread_mutex_unlock(&pool->mutex);
|
|
assert(unlock_res == 0);
|
|
return ret;
|
|
}
|
|
|
|
bool pthreadpool_per_thread_cwd(struct pthreadpool *pool)
|
|
{
|
|
if (pool->stopped) {
|
|
return false;
|
|
}
|
|
|
|
return pool->per_thread_cwd;
|
|
}
|
|
|
|
static void pthreadpool_prepare_pool(struct pthreadpool *pool)
|
|
{
|
|
int ret;
|
|
|
|
ret = pthread_mutex_lock(&pool->fork_mutex);
|
|
assert(ret == 0);
|
|
|
|
ret = pthread_mutex_lock(&pool->mutex);
|
|
assert(ret == 0);
|
|
|
|
while (pool->num_idle != 0) {
|
|
unsigned num_idle = pool->num_idle;
|
|
pthread_cond_t prefork_cond;
|
|
|
|
ret = pthread_cond_init(&prefork_cond, NULL);
|
|
assert(ret == 0);
|
|
|
|
/*
|
|
* Push all idle threads off pool->condvar. In the
|
|
* child we can destroy the pool, which would result
|
|
* in undefined behaviour in the
|
|
* pthread_cond_destroy(pool->condvar). glibc just
|
|
* blocks here.
|
|
*/
|
|
pool->prefork_cond = &prefork_cond;
|
|
|
|
ret = pthread_cond_signal(&pool->condvar);
|
|
assert(ret == 0);
|
|
|
|
while (pool->num_idle == num_idle) {
|
|
ret = pthread_cond_wait(&prefork_cond, &pool->mutex);
|
|
assert(ret == 0);
|
|
}
|
|
|
|
pool->prefork_cond = NULL;
|
|
|
|
ret = pthread_cond_destroy(&prefork_cond);
|
|
assert(ret == 0);
|
|
}
|
|
|
|
/*
|
|
* Probably it's well-defined somewhere: What happens to
|
|
* condvars after a fork? The rationale of pthread_atfork only
|
|
* writes about mutexes. So better be safe than sorry and
|
|
* destroy/reinit pool->condvar across a fork.
|
|
*/
|
|
|
|
ret = pthread_cond_destroy(&pool->condvar);
|
|
assert(ret == 0);
|
|
}
|
|
|
|
static void pthreadpool_prepare(void)
|
|
{
|
|
int ret;
|
|
struct pthreadpool *pool;
|
|
|
|
ret = pthread_mutex_lock(&pthreadpools_mutex);
|
|
assert(ret == 0);
|
|
|
|
pool = pthreadpools;
|
|
|
|
while (pool != NULL) {
|
|
pthreadpool_prepare_pool(pool);
|
|
pool = pool->next;
|
|
}
|
|
}
|
|
|
|
static void pthreadpool_parent(void)
|
|
{
|
|
int ret;
|
|
struct pthreadpool *pool;
|
|
|
|
for (pool = DLIST_TAIL(pthreadpools);
|
|
pool != NULL;
|
|
pool = DLIST_PREV(pool)) {
|
|
ret = pthread_cond_init(&pool->condvar, NULL);
|
|
assert(ret == 0);
|
|
ret = pthread_mutex_unlock(&pool->mutex);
|
|
assert(ret == 0);
|
|
ret = pthread_mutex_unlock(&pool->fork_mutex);
|
|
assert(ret == 0);
|
|
}
|
|
|
|
ret = pthread_mutex_unlock(&pthreadpools_mutex);
|
|
assert(ret == 0);
|
|
}
|
|
|
|
static void pthreadpool_child(void)
|
|
{
|
|
int ret;
|
|
struct pthreadpool *pool;
|
|
|
|
for (pool = DLIST_TAIL(pthreadpools);
|
|
pool != NULL;
|
|
pool = DLIST_PREV(pool)) {
|
|
|
|
pool->num_threads = 0;
|
|
pool->num_idle = 0;
|
|
pool->head = 0;
|
|
pool->num_jobs = 0;
|
|
pool->stopped = true;
|
|
if (pool->check_pipefd[0] != -1) {
|
|
close(pool->check_pipefd[0]);
|
|
pool->check_pipefd[0] = -1;
|
|
}
|
|
if (pool->check_pipefd[1] != -1) {
|
|
close(pool->check_pipefd[1]);
|
|
pool->check_pipefd[1] = -1;
|
|
}
|
|
|
|
ret = pthread_cond_init(&pool->condvar, NULL);
|
|
assert(ret == 0);
|
|
|
|
ret = pthread_mutex_unlock(&pool->mutex);
|
|
assert(ret == 0);
|
|
|
|
ret = pthread_mutex_unlock(&pool->fork_mutex);
|
|
assert(ret == 0);
|
|
}
|
|
|
|
ret = pthread_mutex_unlock(&pthreadpools_mutex);
|
|
assert(ret == 0);
|
|
}
|
|
|
|
static void pthreadpool_prep_atfork(void)
|
|
{
|
|
#ifdef HAVE_UNSHARE_CLONE_FS
|
|
int res;
|
|
|
|
/* remember if unshare(CLONE_FS) works. */
|
|
res = unshare(CLONE_FS);
|
|
if (res == 0) {
|
|
pthreadpool_support_thread_cwd = true;
|
|
}
|
|
#endif
|
|
|
|
pthread_atfork(pthreadpool_prepare, pthreadpool_parent,
|
|
pthreadpool_child);
|
|
}
|
|
|
|
static int pthreadpool_free(struct pthreadpool *pool)
|
|
{
|
|
int ret, ret1, ret2;
|
|
|
|
ret = pthread_mutex_lock(&pthreadpools_mutex);
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
DLIST_REMOVE(pthreadpools, pool);
|
|
ret = pthread_mutex_unlock(&pthreadpools_mutex);
|
|
assert(ret == 0);
|
|
|
|
ret = pthread_mutex_lock(&pool->mutex);
|
|
assert(ret == 0);
|
|
ret = pthread_mutex_unlock(&pool->mutex);
|
|
assert(ret == 0);
|
|
|
|
ret = pthread_mutex_destroy(&pool->mutex);
|
|
ret1 = pthread_cond_destroy(&pool->condvar);
|
|
ret2 = pthread_mutex_destroy(&pool->fork_mutex);
|
|
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
if (ret1 != 0) {
|
|
return ret1;
|
|
}
|
|
if (ret2 != 0) {
|
|
return ret2;
|
|
}
|
|
|
|
if (pool->check_pipefd[0] != -1) {
|
|
close(pool->check_pipefd[0]);
|
|
pool->check_pipefd[0] = -1;
|
|
}
|
|
if (pool->check_pipefd[1] != -1) {
|
|
close(pool->check_pipefd[1]);
|
|
pool->check_pipefd[1] = -1;
|
|
}
|
|
free(pool->jobs);
|
|
free(pool);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Stop a thread pool. Wake up all idle threads for exit.
|
|
*/
|
|
|
|
static int pthreadpool_stop_locked(struct pthreadpool *pool)
|
|
{
|
|
int ret;
|
|
|
|
pool->stopped = true;
|
|
|
|
if (pool->check_pipefd[0] != -1) {
|
|
close(pool->check_pipefd[0]);
|
|
pool->check_pipefd[0] = -1;
|
|
}
|
|
if (pool->check_pipefd[1] != -1) {
|
|
close(pool->check_pipefd[1]);
|
|
pool->check_pipefd[1] = -1;
|
|
}
|
|
|
|
if (pool->num_threads == 0) {
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* We have active threads, tell them to finish.
|
|
*/
|
|
|
|
ret = pthread_cond_broadcast(&pool->condvar);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Stop a thread pool. Wake up all idle threads for exit.
|
|
*/
|
|
|
|
int pthreadpool_stop(struct pthreadpool *pool)
|
|
{
|
|
int ret, ret1;
|
|
|
|
ret = pthread_mutex_lock(&pool->mutex);
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
|
|
if (!pool->stopped) {
|
|
ret = pthreadpool_stop_locked(pool);
|
|
}
|
|
|
|
ret1 = pthread_mutex_unlock(&pool->mutex);
|
|
assert(ret1 == 0);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Destroy a thread pool. Wake up all idle threads for exit. The last
|
|
* one will free the pool.
|
|
*/
|
|
|
|
int pthreadpool_destroy(struct pthreadpool *pool)
|
|
{
|
|
int ret, ret1;
|
|
bool free_it;
|
|
|
|
assert(!pool->destroyed);
|
|
|
|
ret = pthread_mutex_lock(&pool->mutex);
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
|
|
pool->destroyed = true;
|
|
|
|
if (!pool->stopped) {
|
|
ret = pthreadpool_stop_locked(pool);
|
|
}
|
|
|
|
free_it = (pool->num_threads == 0);
|
|
|
|
ret1 = pthread_mutex_unlock(&pool->mutex);
|
|
assert(ret1 == 0);
|
|
|
|
if (free_it) {
|
|
pthreadpool_free(pool);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
/*
|
|
* Prepare for pthread_exit(), pool->mutex must be locked and will be
|
|
* unlocked here. This is a bit of a layering violation, but here we
|
|
* also take care of removing the pool if we're the last thread.
|
|
*/
|
|
static void pthreadpool_server_exit(struct pthreadpool *pool)
|
|
{
|
|
int ret;
|
|
bool free_it;
|
|
|
|
pool->num_threads -= 1;
|
|
|
|
free_it = (pool->destroyed && (pool->num_threads == 0));
|
|
|
|
while (true) {
|
|
uint8_t c = 0;
|
|
ssize_t nwritten = 0;
|
|
|
|
if (pool->check_pipefd[1] == -1) {
|
|
break;
|
|
}
|
|
|
|
nwritten = write(pool->check_pipefd[1], &c, 1);
|
|
if (nwritten == -1) {
|
|
if (errno == EINTR) {
|
|
continue;
|
|
}
|
|
if (errno == EAGAIN) {
|
|
break;
|
|
}
|
|
#ifdef EWOULDBLOCK
|
|
if (errno == EWOULDBLOCK) {
|
|
break;
|
|
}
|
|
#endif
|
|
/* ignore ... */
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
ret = pthread_mutex_unlock(&pool->mutex);
|
|
assert(ret == 0);
|
|
|
|
if (free_it) {
|
|
pthreadpool_free(pool);
|
|
}
|
|
}
|
|
|
|
static bool pthreadpool_get_job(struct pthreadpool *p,
|
|
struct pthreadpool_job *job)
|
|
{
|
|
if (p->stopped) {
|
|
return false;
|
|
}
|
|
|
|
if (p->num_jobs == 0) {
|
|
return false;
|
|
}
|
|
*job = p->jobs[p->head];
|
|
p->head = (p->head+1) % p->jobs_array_len;
|
|
p->num_jobs -= 1;
|
|
return true;
|
|
}
|
|
|
|
static bool pthreadpool_put_job(struct pthreadpool *p,
|
|
int id,
|
|
void (*fn)(void *private_data),
|
|
void *private_data)
|
|
{
|
|
struct pthreadpool_job *job;
|
|
|
|
if (p->num_jobs == p->jobs_array_len) {
|
|
struct pthreadpool_job *tmp;
|
|
size_t new_len = p->jobs_array_len * 2;
|
|
|
|
tmp = realloc(
|
|
p->jobs, sizeof(struct pthreadpool_job) * new_len);
|
|
if (tmp == NULL) {
|
|
return false;
|
|
}
|
|
p->jobs = tmp;
|
|
|
|
/*
|
|
* We just doubled the jobs array. The array implements a FIFO
|
|
* queue with a modulo-based wraparound, so we have to memcpy
|
|
* the jobs that are logically at the queue end but physically
|
|
* before the queue head into the reallocated area. The new
|
|
* space starts at the current jobs_array_len, and we have to
|
|
* copy everything before the current head job into the new
|
|
* area.
|
|
*/
|
|
memcpy(&p->jobs[p->jobs_array_len], p->jobs,
|
|
sizeof(struct pthreadpool_job) * p->head);
|
|
|
|
p->jobs_array_len = new_len;
|
|
}
|
|
|
|
job = &p->jobs[(p->head + p->num_jobs) % p->jobs_array_len];
|
|
job->id = id;
|
|
job->fn = fn;
|
|
job->private_data = private_data;
|
|
|
|
p->num_jobs += 1;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void pthreadpool_undo_put_job(struct pthreadpool *p)
|
|
{
|
|
p->num_jobs -= 1;
|
|
}
|
|
|
|
static void *pthreadpool_server(void *arg)
|
|
{
|
|
struct pthreadpool *pool = (struct pthreadpool *)arg;
|
|
int res;
|
|
|
|
#ifdef HAVE_UNSHARE_CLONE_FS
|
|
if (pool->per_thread_cwd) {
|
|
res = unshare(CLONE_FS);
|
|
assert(res == 0);
|
|
}
|
|
#endif
|
|
|
|
res = pthread_mutex_lock(&pool->mutex);
|
|
if (res != 0) {
|
|
return NULL;
|
|
}
|
|
|
|
while (1) {
|
|
struct timespec ts;
|
|
struct pthreadpool_job job;
|
|
|
|
/*
|
|
* idle-wait at most 1 second. If nothing happens in that
|
|
* time, exit this thread.
|
|
*/
|
|
|
|
clock_gettime(CLOCK_REALTIME, &ts);
|
|
ts.tv_sec += 1;
|
|
|
|
while ((pool->num_jobs == 0) && !pool->stopped) {
|
|
|
|
pool->num_idle += 1;
|
|
res = pthread_cond_timedwait(
|
|
&pool->condvar, &pool->mutex, &ts);
|
|
pool->num_idle -= 1;
|
|
|
|
if (pool->prefork_cond != NULL) {
|
|
/*
|
|
* Me must allow fork() to continue
|
|
* without anybody waiting on
|
|
* &pool->condvar. Tell
|
|
* pthreadpool_prepare_pool that we
|
|
* got that message.
|
|
*/
|
|
|
|
res = pthread_cond_signal(pool->prefork_cond);
|
|
assert(res == 0);
|
|
|
|
res = pthread_mutex_unlock(&pool->mutex);
|
|
assert(res == 0);
|
|
|
|
/*
|
|
* pthreadpool_prepare_pool has
|
|
* already locked this mutex across
|
|
* the fork. This makes us wait
|
|
* without sitting in a condvar.
|
|
*/
|
|
res = pthread_mutex_lock(&pool->fork_mutex);
|
|
assert(res == 0);
|
|
res = pthread_mutex_unlock(&pool->fork_mutex);
|
|
assert(res == 0);
|
|
|
|
res = pthread_mutex_lock(&pool->mutex);
|
|
assert(res == 0);
|
|
}
|
|
|
|
if (res == ETIMEDOUT) {
|
|
|
|
if (pool->num_jobs == 0) {
|
|
/*
|
|
* we timed out and still no work for
|
|
* us. Exit.
|
|
*/
|
|
pthreadpool_server_exit(pool);
|
|
return NULL;
|
|
}
|
|
|
|
break;
|
|
}
|
|
assert(res == 0);
|
|
}
|
|
|
|
if (pthreadpool_get_job(pool, &job)) {
|
|
int ret;
|
|
|
|
/*
|
|
* Do the work with the mutex unlocked
|
|
*/
|
|
|
|
res = pthread_mutex_unlock(&pool->mutex);
|
|
assert(res == 0);
|
|
|
|
job.fn(job.private_data);
|
|
|
|
ret = pool->signal_fn(job.id,
|
|
job.fn, job.private_data,
|
|
pool->signal_fn_private_data);
|
|
|
|
res = pthread_mutex_lock(&pool->mutex);
|
|
assert(res == 0);
|
|
|
|
if (ret != 0) {
|
|
pthreadpool_server_exit(pool);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
if (pool->stopped) {
|
|
/*
|
|
* we're asked to stop processing jobs, so exit
|
|
*/
|
|
pthreadpool_server_exit(pool);
|
|
return NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int pthreadpool_create_thread(struct pthreadpool *pool)
|
|
{
|
|
pthread_attr_t thread_attr;
|
|
pthread_t thread_id;
|
|
int res;
|
|
sigset_t mask, omask;
|
|
|
|
/*
|
|
* Create a new worker thread. It should not receive any signals.
|
|
*/
|
|
|
|
sigfillset(&mask);
|
|
|
|
res = pthread_attr_init(&thread_attr);
|
|
if (res != 0) {
|
|
return res;
|
|
}
|
|
|
|
res = pthread_attr_setdetachstate(
|
|
&thread_attr, PTHREAD_CREATE_DETACHED);
|
|
if (res != 0) {
|
|
pthread_attr_destroy(&thread_attr);
|
|
return res;
|
|
}
|
|
|
|
res = pthread_sigmask(SIG_BLOCK, &mask, &omask);
|
|
if (res != 0) {
|
|
pthread_attr_destroy(&thread_attr);
|
|
return res;
|
|
}
|
|
|
|
res = pthread_create(&thread_id, &thread_attr, pthreadpool_server,
|
|
(void *)pool);
|
|
|
|
assert(pthread_sigmask(SIG_SETMASK, &omask, NULL) == 0);
|
|
|
|
pthread_attr_destroy(&thread_attr);
|
|
|
|
if (res == 0) {
|
|
pool->num_threads += 1;
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
int pthreadpool_add_job(struct pthreadpool *pool, int job_id,
|
|
void (*fn)(void *private_data), void *private_data)
|
|
{
|
|
int res;
|
|
int unlock_res;
|
|
|
|
assert(!pool->destroyed);
|
|
|
|
res = pthread_mutex_lock(&pool->mutex);
|
|
if (res != 0) {
|
|
return res;
|
|
}
|
|
|
|
if (pool->stopped) {
|
|
/*
|
|
* Protect against the pool being shut down while
|
|
* trying to add a job
|
|
*/
|
|
unlock_res = pthread_mutex_unlock(&pool->mutex);
|
|
assert(unlock_res == 0);
|
|
return EINVAL;
|
|
}
|
|
|
|
if (pool->max_threads == 0) {
|
|
unlock_res = pthread_mutex_unlock(&pool->mutex);
|
|
assert(unlock_res == 0);
|
|
|
|
/*
|
|
* If no thread are allowed we do strict sync processing.
|
|
*/
|
|
fn(private_data);
|
|
res = pool->signal_fn(job_id, fn, private_data,
|
|
pool->signal_fn_private_data);
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* Add job to the end of the queue
|
|
*/
|
|
if (!pthreadpool_put_job(pool, job_id, fn, private_data)) {
|
|
unlock_res = pthread_mutex_unlock(&pool->mutex);
|
|
assert(unlock_res == 0);
|
|
return ENOMEM;
|
|
}
|
|
|
|
if (pool->num_idle > 0) {
|
|
/*
|
|
* We have idle threads, wake one.
|
|
*/
|
|
res = pthread_cond_signal(&pool->condvar);
|
|
if (res != 0) {
|
|
pthreadpool_undo_put_job(pool);
|
|
}
|
|
unlock_res = pthread_mutex_unlock(&pool->mutex);
|
|
assert(unlock_res == 0);
|
|
return res;
|
|
}
|
|
|
|
if (pool->num_threads >= pool->max_threads) {
|
|
/*
|
|
* No more new threads, we just queue the request
|
|
*/
|
|
unlock_res = pthread_mutex_unlock(&pool->mutex);
|
|
assert(unlock_res == 0);
|
|
return 0;
|
|
}
|
|
|
|
res = pthreadpool_create_thread(pool);
|
|
if (res == 0) {
|
|
unlock_res = pthread_mutex_unlock(&pool->mutex);
|
|
assert(unlock_res == 0);
|
|
return 0;
|
|
}
|
|
|
|
if (pool->num_threads != 0) {
|
|
/*
|
|
* At least one thread is still available, let
|
|
* that one run the queued job.
|
|
*/
|
|
unlock_res = pthread_mutex_unlock(&pool->mutex);
|
|
assert(unlock_res == 0);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* No thread could be created to run job, fallback to sync
|
|
* call.
|
|
*/
|
|
pthreadpool_undo_put_job(pool);
|
|
|
|
unlock_res = pthread_mutex_unlock(&pool->mutex);
|
|
assert(unlock_res == 0);
|
|
|
|
return res;
|
|
}
|
|
|
|
int pthreadpool_restart_check(struct pthreadpool *pool)
|
|
{
|
|
int res;
|
|
int unlock_res;
|
|
unsigned possible_threads = 0;
|
|
unsigned missing_threads = 0;
|
|
|
|
assert(!pool->destroyed);
|
|
|
|
res = pthread_mutex_lock(&pool->mutex);
|
|
if (res != 0) {
|
|
return res;
|
|
}
|
|
|
|
if (pool->stopped) {
|
|
/*
|
|
* Protect against the pool being shut down while
|
|
* trying to add a job
|
|
*/
|
|
unlock_res = pthread_mutex_unlock(&pool->mutex);
|
|
assert(unlock_res == 0);
|
|
return EINVAL;
|
|
}
|
|
|
|
if (pool->num_jobs == 0) {
|
|
/*
|
|
* This also handles the pool->max_threads == 0 case as it never
|
|
* calls pthreadpool_put_job()
|
|
*/
|
|
unlock_res = pthread_mutex_unlock(&pool->mutex);
|
|
assert(unlock_res == 0);
|
|
return 0;
|
|
}
|
|
|
|
if (pool->num_idle > 0) {
|
|
/*
|
|
* We have idle threads and pending jobs,
|
|
* this means we better let all threads
|
|
* start and check for pending jobs.
|
|
*/
|
|
res = pthread_cond_broadcast(&pool->condvar);
|
|
assert(res == 0);
|
|
}
|
|
|
|
if (pool->num_threads < pool->max_threads) {
|
|
possible_threads = pool->max_threads - pool->num_threads;
|
|
}
|
|
|
|
if (pool->num_idle < pool->num_jobs) {
|
|
missing_threads = pool->num_jobs - pool->num_idle;
|
|
}
|
|
|
|
missing_threads = MIN(missing_threads, possible_threads);
|
|
|
|
while (missing_threads > 0) {
|
|
|
|
res = pthreadpool_create_thread(pool);
|
|
if (res != 0) {
|
|
break;
|
|
}
|
|
|
|
missing_threads--;
|
|
}
|
|
|
|
if (missing_threads == 0) {
|
|
/*
|
|
* Ok, we recreated all thread we need.
|
|
*/
|
|
unlock_res = pthread_mutex_unlock(&pool->mutex);
|
|
assert(unlock_res == 0);
|
|
return 0;
|
|
}
|
|
|
|
if (pool->num_threads != 0) {
|
|
/*
|
|
* At least one thread is still available, let
|
|
* that one run the queued jobs.
|
|
*/
|
|
unlock_res = pthread_mutex_unlock(&pool->mutex);
|
|
assert(unlock_res == 0);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* There's no thread available to run any pending jobs.
|
|
* The caller may want to cancel the jobs and destroy the pool.
|
|
* But that's up to the caller.
|
|
*/
|
|
unlock_res = pthread_mutex_unlock(&pool->mutex);
|
|
assert(unlock_res == 0);
|
|
|
|
return res;
|
|
}
|
|
|
|
int pthreadpool_restart_check_monitor_fd(struct pthreadpool *pool)
|
|
{
|
|
int fd;
|
|
int ret;
|
|
bool ok;
|
|
|
|
if (pool->stopped) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
if (pool->check_pipefd[0] == -1) {
|
|
errno = ENOSYS;
|
|
return -1;
|
|
}
|
|
|
|
fd = dup(pool->check_pipefd[0]);
|
|
if (fd == -1) {
|
|
return -1;
|
|
}
|
|
|
|
ok = smb_set_close_on_exec(fd);
|
|
if (!ok) {
|
|
int saved_errno = errno;
|
|
close(fd);
|
|
errno = saved_errno;
|
|
return -1;
|
|
}
|
|
|
|
ret = set_blocking(fd, false);
|
|
if (ret == -1) {
|
|
int saved_errno = errno;
|
|
close(fd);
|
|
errno = saved_errno;
|
|
return -1;
|
|
}
|
|
|
|
return fd;
|
|
}
|
|
|
|
int pthreadpool_restart_check_monitor_drain(struct pthreadpool *pool)
|
|
{
|
|
if (pool->stopped) {
|
|
return EINVAL;
|
|
}
|
|
|
|
if (pool->check_pipefd[0] == -1) {
|
|
return ENOSYS;
|
|
}
|
|
|
|
while (true) {
|
|
uint8_t buf[128];
|
|
ssize_t nread;
|
|
|
|
nread = read(pool->check_pipefd[0], buf, sizeof(buf));
|
|
if (nread == -1) {
|
|
if (errno == EINTR) {
|
|
continue;
|
|
}
|
|
if (errno == EAGAIN) {
|
|
return 0;
|
|
}
|
|
#ifdef EWOULDBLOCK
|
|
if (errno == EWOULDBLOCK) {
|
|
return 0;
|
|
}
|
|
#endif
|
|
if (errno == 0) {
|
|
errno = INT_MAX;
|
|
}
|
|
|
|
return errno;
|
|
}
|
|
|
|
if (nread < sizeof(buf)) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
abort();
|
|
return INT_MAX;
|
|
}
|
|
|
|
size_t pthreadpool_cancel_job(struct pthreadpool *pool, int job_id,
|
|
void (*fn)(void *private_data), void *private_data)
|
|
{
|
|
int res;
|
|
size_t i, j;
|
|
size_t num = 0;
|
|
|
|
assert(!pool->destroyed);
|
|
|
|
res = pthread_mutex_lock(&pool->mutex);
|
|
if (res != 0) {
|
|
return res;
|
|
}
|
|
|
|
for (i = 0, j = 0; i < pool->num_jobs; i++) {
|
|
size_t idx = (pool->head + i) % pool->jobs_array_len;
|
|
size_t new_idx = (pool->head + j) % pool->jobs_array_len;
|
|
struct pthreadpool_job *job = &pool->jobs[idx];
|
|
|
|
if ((job->private_data == private_data) &&
|
|
(job->id == job_id) &&
|
|
(job->fn == fn))
|
|
{
|
|
/*
|
|
* Just skip the entry.
|
|
*/
|
|
num++;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If we already removed one or more jobs (so j will be smaller
|
|
* then i), we need to fill possible gaps in the logical list.
|
|
*/
|
|
if (j < i) {
|
|
pool->jobs[new_idx] = *job;
|
|
}
|
|
j++;
|
|
}
|
|
|
|
pool->num_jobs -= num;
|
|
|
|
res = pthread_mutex_unlock(&pool->mutex);
|
|
assert(res == 0);
|
|
|
|
return num;
|
|
}
|