1
0
mirror of https://github.com/samba-team/samba.git synced 2025-01-11 05:18:09 +03:00
samba-mirror/lib/compression/tests/test_lzxpress_plain.c
Andreas Schneider 3d409c16ee lib:compression: Fix code spelling
Best reviewed with: `git show --word-diff`.

Signed-off-by: Andreas Schneider <asn@samba.org>
Reviewed-by: Andrew Bartlett <abartlet@samba.org>
2023-04-03 03:56:35 +00:00

1195 lines
33 KiB
C

/*
Unix SMB/CIFS implementation.
test suite for the compression functions
Copyright (C) Jelmer Vernooij 2007
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdarg.h>
#include <stddef.h>
#include <setjmp.h>
#include <sys/stat.h>
#include <cmocka.h>
#include "includes.h"
#include "talloc.h"
#include "lzxpress.h"
#include "lib/util/base64.h"
/* set LZX_DEBUG_FILES to true to save round-trip files in /tmp. */
#define LZX_DEBUG_FILES false
/* set LZX_DEBUG_VERBOSE to true to print more. */
#define LZX_DEBUG_VERBOSE false
#if LZX_DEBUG_VERBOSE
#define debug_message(...) print_message(__VA_ARGS__)
#include <time.h>
struct timespec start = {0};
struct timespec end = {0};
static void debug_start_timer(void)
{
clock_gettime(CLOCK_MONOTONIC, &start);
}
static void debug_end_timer(const char *name, size_t len)
{
uint64_t ns;
double secs;
double rate;
clock_gettime(CLOCK_MONOTONIC, &end);
ns = end.tv_nsec;
ns += end.tv_sec * 1000 * 1000 * 1000;
ns -= start.tv_nsec;
ns -= start.tv_sec * 1000 * 1000 * 1000;
secs = ns / 1e9;
rate = len / (secs * 1024 * 1024);
debug_message("%s %zu bytes in %.2g: \033[1;35m%.2f\033[0m MB per second\n",
name, len, secs, rate);
}
#else
#define debug_message(...) /* debug_message */
#define debug_start_timer(...) /* debug_start_timer */
#define debug_end_timer(...) /* debug_end_timer */
#endif
struct lzx_pair {
const char *name;
DATA_BLOB compressed;
DATA_BLOB decompressed;
};
struct lzx_file_pair {
const char *name;
const char *compressed_file;
const char *decompressed_file;
};
#define DECOMP_DIR "testdata/compression/decompressed"
#define COMP_DIR "testdata/compression/compressed-plain"
#define MORE_COMP_DIR "testdata/compression/compressed-more-plain"
#define BLOB_FROM_ARRAY(...) \
{ \
.data = (uint8_t[]){__VA_ARGS__}, \
.length = sizeof((uint8_t[]){__VA_ARGS__}) \
}
#define BLOB_FROM_STRING(s) \
{ \
.data = discard_const_p(uint8_t, s), \
.length = (sizeof(s) - 1) \
}
const char * file_names[] = {
"generate-windows-test-vectors.c",
"fib_shuffle-128k+",
"fuzzing-0fc2d461b56cd8103c91",
"fuzzing-3ec3bca27bb9eb40c128",
"fuzzing-a3115a81d1ac500318f9",
"fuzzing-3591f9dc02bb00a54b60",
"27826-8.txt",
"5d049b4cb1bd933f5e8ex19",
"638e61e96d54279981c3x5",
"64k-minus-one-zeros",
"64k-plus-one-zeros",
"64k-zeros",
"96f696a4e5ce56c61a3dx10",
"9e0b6a12febf38e98f13",
"abc-times-101",
"abc-times-105",
"abc-times-200",
"b63289ccc7f218c0d56b",
"beta-variate1-128k+",
"beta-variate3-128k+",
"decayed_alphabet_128k+",
"decayed_alphabet_64k",
"f00842317dc6d5695b02",
"fib_shuffle",
"midsummer-nights-dream.txt",
"notes-on-the-underground.txt",
"pg22009.txt",
"repeating",
"repeating-exactly-64k",
"setup.log",
"slow-015ddc36a71412ccc50d",
"slow-100e9f966a7feb9ca40a",
"slow-2a671c3cff4f1574cbab",
"slow-33d90a24e70515b14cd0",
"slow-49d8c05261e3f412fc72",
"slow-50a249d2fe56873e56a0",
"slow-63e9f0b52235fb0129fa",
"slow-73b7f971d65908ac0095",
"slow-8b61e3dd267908544531",
"slow-9d1c5a079b0462986f1f",
"slow-aa7262a821dabdcf04a6",
"slow-b8a91d142b0d2af7f5ca",
"slow-c79142457734bbc8d575",
"slow-d736544545b90d83fe75",
"slow-e3b9bdfaed7d1a606fdb",
"slow-f3f1c02a9d006e5e1703",
"trigram_128k+",
"trigram_64k",
"trigram_sum_128k+",
"trigram_sum_64k",
NULL
};
static DATA_BLOB datablob_from_file(TALLOC_CTX *mem_ctx,
const char *filename)
{
DATA_BLOB b = {0};
FILE *fh = fopen(filename, "rb");
int ret;
struct stat s;
size_t len;
if (fh == NULL) {
debug_message("could not open '%s'\n", filename);
return b;
}
ret = fstat(fileno(fh), &s);
if (ret != 0) {
fclose(fh);
return b;
}
b.data = talloc_array(mem_ctx, uint8_t, s.st_size);
if (b.data == NULL) {
fclose(fh);
return b;
}
len = fread(b.data, 1, s.st_size, fh);
if (ferror(fh) || len != s.st_size) {
TALLOC_FREE(b.data);
} else {
b.length = len;
}
fclose(fh);
return b;
}
static void test_lzxpress_plain_decompress_files(void **state)
{
size_t i;
int score = 0;
TALLOC_CTX *mem_ctx = talloc_new(NULL);
for (i = 0; file_names[i] != NULL; i++) {
char filename[200];
uint8_t *dest = NULL;
ssize_t written;
TALLOC_CTX *tmp_ctx = talloc_new(mem_ctx);
struct lzx_pair p = {
.name = file_names[i]
};
debug_message("%s\n", p.name);
snprintf(filename, sizeof(filename),
"%s/%s.decomp", DECOMP_DIR, p.name);
p.decompressed = datablob_from_file(tmp_ctx, filename);
assert_non_null(p.decompressed.data);
snprintf(filename, sizeof(filename),
"%s/%s.lzplain", COMP_DIR, p.name);
p.compressed = datablob_from_file(tmp_ctx, filename);
assert_non_null(p.compressed.data);
dest = talloc_array(tmp_ctx, uint8_t, p.decompressed.length);
debug_start_timer();
written = lzxpress_decompress(p.compressed.data,
p.compressed.length,
dest,
p.decompressed.length);
debug_end_timer("decompress", p.decompressed.length);
if (written == p.decompressed.length &&
memcmp(dest, p.decompressed.data, p.decompressed.length) == 0) {
debug_message("\033[1;32mdecompressed %s!\033[0m\n", p.name);
score++;
} else {
debug_message("\033[1;31mfailed to decompress %s!\033[0m\n",
p.name);
debug_message("size %zd vs reference %zu\n",
written, p.decompressed.length);
}
talloc_free(tmp_ctx);
}
debug_message("%d/%zu correct\n", score, i);
assert_int_equal(score, i);
}
static void test_lzxpress_plain_decompress_more_compressed_files(void **state)
{
/*
* This tests the decompression of files that have been compressed on
* Windows with the level turned up (to 1, default for MS-XCA is 0).
*
* The format is identical, but it will have tried harder to find
* matches.
*/
size_t i;
int score = 0;
int found = 0;
TALLOC_CTX *mem_ctx = talloc_new(NULL);
for (i = 0; file_names[i] != NULL; i++) {
char filename[200];
uint8_t *dest = NULL;
ssize_t written;
TALLOC_CTX *tmp_ctx = talloc_new(mem_ctx);
struct lzx_pair p = {
.name = file_names[i]
};
debug_message("%s\n", p.name);
snprintf(filename, sizeof(filename),
"%s/%s.decomp", DECOMP_DIR, p.name);
p.decompressed = datablob_from_file(tmp_ctx, filename);
assert_non_null(p.decompressed.data);
snprintf(filename, sizeof(filename),
"%s/%s.lzplain", MORE_COMP_DIR, p.name);
p.compressed = datablob_from_file(tmp_ctx, filename);
if (p.compressed.data == NULL) {
/*
* We don't have all the vectors in the
* more-compressed directory, which is OK, we skip
* them.
*/
continue;
}
found++;
dest = talloc_array(tmp_ctx, uint8_t, p.decompressed.length);
debug_start_timer();
written = lzxpress_decompress(p.compressed.data,
p.compressed.length,
dest,
p.decompressed.length);
debug_end_timer("decompress", p.decompressed.length);
if (written != -1 &&
written == p.decompressed.length &&
memcmp(dest, p.decompressed.data, p.decompressed.length) == 0) {
debug_message("\033[1;32mdecompressed %s!\033[0m\n", p.name);
score++;
} else {
debug_message("\033[1;31mfailed to decompress %s!\033[0m\n",
p.name);
debug_message("size %zd vs reference %zu\n",
written, p.decompressed.length);
}
talloc_free(tmp_ctx);
}
debug_message("%d/%d correct\n", score, found);
assert_int_equal(score, found);
}
/*
* attempt_round_trip() tests whether a data blob can survive a compression
* and decompression cycle. If save_name is not NULL and LZX_DEBUG_FILES
* evals to true, the various stages are saved in files with that name and the
* '-original', '-compressed', and '-decompressed' suffixes. If ref_compressed
* has data, it'll print a message saying whether the compressed data matches
* that.
*/
static ssize_t attempt_round_trip(TALLOC_CTX *mem_ctx,
DATA_BLOB original,
const char *save_name,
DATA_BLOB ref_compressed)
{
TALLOC_CTX *tmp_ctx = talloc_new(mem_ctx);
DATA_BLOB compressed = data_blob_talloc(tmp_ctx, NULL,
original.length * 8 / 7 + 8);
DATA_BLOB decompressed = data_blob_talloc(tmp_ctx, NULL,
original.length);
ssize_t comp_written, decomp_written;
debug_start_timer();
comp_written = lzxpress_compress(original.data,
original.length,
compressed.data,
compressed.length);
debug_end_timer("compress", original.length);
if (comp_written <= 0) {
talloc_free(tmp_ctx);
return -1;
}
if (ref_compressed.data != NULL) {
/*
* This is informational, not an assertion; there are
* ~infinite legitimate ways to compress the data, many as
* good as each other (think of compression as a language, not
* a format).
*/
debug_message("compressed size %zd vs reference %zu\n",
comp_written, ref_compressed.length);
if (comp_written == compressed.length &&
memcmp(compressed.data, ref_compressed.data, comp_written) == 0) {
debug_message("\033[1;32mbyte identical!\033[0m\n");
}
}
debug_start_timer();
decomp_written = lzxpress_decompress(compressed.data,
comp_written,
decompressed.data,
decompressed.length);
debug_end_timer("decompress", original.length);
if (save_name != NULL && LZX_DEBUG_FILES) {
char s[300];
FILE *fh = NULL;
snprintf(s, sizeof(s), "%s-original", save_name);
fprintf(stderr, "Saving %zu bytes to %s\n", original.length, s);
fh = fopen(s, "w");
fwrite(original.data, 1, original.length, fh);
fclose(fh);
snprintf(s, sizeof(s), "%s-compressed", save_name);
fprintf(stderr, "Saving %zu bytes to %s\n", comp_written, s);
fh = fopen(s, "w");
fwrite(compressed.data, 1, comp_written, fh);
fclose(fh);
/*
* We save the decompressed file using original.length, not
* the returned size. If these differ, the returned size will
* be -1. By saving the whole buffer we can see at what point
* it went haywire.
*/
snprintf(s, sizeof(s), "%s-decompressed", save_name);
fprintf(stderr, "Saving %zu bytes to %s\n", original.length, s);
fh = fopen(s, "w");
fwrite(decompressed.data, 1, original.length, fh);
fclose(fh);
}
if (original.length != decomp_written ||
memcmp(decompressed.data,
original.data,
original.length) != 0) {
debug_message("\033[1;31mgot %zd, expected %zu\033[0m\n",
decomp_written,
original.length);
talloc_free(tmp_ctx);
return -1;
}
talloc_free(tmp_ctx);
return comp_written;
}
static void test_lzxpress_plain_round_trip_files(void **state)
{
size_t i;
int score = 0;
ssize_t compressed_total = 0;
ssize_t reference_total = 0;
TALLOC_CTX *mem_ctx = talloc_new(NULL);
for (i = 0; file_names[i] != NULL; i++) {
char filename[200];
char *debug_files = NULL;
TALLOC_CTX *tmp_ctx = talloc_new(mem_ctx);
ssize_t comp_size;
struct lzx_pair p = {
.name = file_names[i]
};
debug_message("-------------------\n");
debug_message("%s\n", p.name);
snprintf(filename, sizeof(filename),
"%s/%s.decomp", DECOMP_DIR, p.name);
p.decompressed = datablob_from_file(tmp_ctx, filename);
assert_non_null(p.decompressed.data);
snprintf(filename, sizeof(filename),
"%s/%s.lzplain", COMP_DIR, p.name);
p.compressed = datablob_from_file(tmp_ctx, filename);
if (p.compressed.data == NULL) {
debug_message(
"Could not load %s reference file %s\n",
p.name, filename);
debug_message("%s decompressed %zu\n", p.name,
p.decompressed.length);
} else {
debug_message("%s: reference compressed %zu decomp %zu\n",
p.name,
p.compressed.length,
p.decompressed.length);
}
if (1) {
/*
* We're going to save copies in /tmp.
*/
snprintf(filename, sizeof(filename),
"/tmp/lzxplain-%s", p.name);
debug_files = filename;
}
comp_size = attempt_round_trip(mem_ctx, p.decompressed,
debug_files,
p.compressed);
if (comp_size > 0) {
debug_message("\033[1;32mround trip!\033[0m\n");
score++;
if (p.compressed.length) {
compressed_total += comp_size;
reference_total += p.compressed.length;
}
}
talloc_free(tmp_ctx);
}
debug_message("%d/%zu correct\n", score, i);
print_message("\033[1;34mtotal compressed size: %zu\033[0m\n",
compressed_total);
print_message("total reference size: %zd \n", reference_total);
print_message("diff: %7zd \n",
reference_total - compressed_total);
assert_true(reference_total != 0);
print_message("ratio: \033[1;3%dm%.2f\033[0m \n",
2 + (compressed_total >= reference_total),
((double)compressed_total) / reference_total);
/*
* Assert that the compression is better than Windows. Unlike the
* Huffman variant, where things are very even, here we do much better
* than Windows without especially trying.
*/
assert_true(compressed_total <= reference_total);
assert_int_equal(score, i);
talloc_free(mem_ctx);
}
/*
* Bob Jenkins' Small Fast RNG.
*
* We don't need it to be this good, but we do need it to be reproduceable
* across platforms, which rand() etc aren't.
*
* http://burtleburtle.net/bob/rand/smallprng.html
*/
struct jsf_rng {
uint32_t a;
uint32_t b;
uint32_t c;
uint32_t d;
};
#define ROTATE32(x, k) (((x) << (k)) | ((x) >> (32 - (k))))
static uint32_t jsf32(struct jsf_rng *x) {
uint32_t e = x->a - ROTATE32(x->b, 27);
x->a = x->b ^ ROTATE32(x->c, 17);
x->b = x->c + x->d;
x->c = x->d + e;
x->d = e + x->a;
return x->d;
}
static void jsf32_init(struct jsf_rng *x, uint32_t seed) {
size_t i;
x->a = 0xf1ea5eed;
x->b = x->c = x->d = seed;
for (i = 0; i < 20; ++i) {
jsf32(x);
}
}
static void test_lzxpress_plain_long_gpl_round_trip(void **state)
{
/*
* We use a kind of model-free Markov model to generate a massively
* extended pastiche of the GPLv3 (chosen because it is right there in
* "COPYING" and won't change often).
*
* The point is to check a round trip of a very long message with
* multiple repetitions on many scales, without having to add a very
* large file.
*/
size_t i, j, k;
uint8_t c;
TALLOC_CTX *mem_ctx = talloc_new(NULL);
DATA_BLOB gpl = datablob_from_file(mem_ctx, "COPYING");
DATA_BLOB original = data_blob_talloc(mem_ctx, NULL, 5 * 1024 * 1024);
DATA_BLOB ref = {0};
ssize_t comp_size;
struct jsf_rng rng;
jsf32_init(&rng, 1);
j = 1;
original.data[0] = gpl.data[0];
for (i = 1; i < original.length; i++) {
size_t m;
char p = original.data[i - 1];
c = gpl.data[j];
original.data[i] = c;
j++;
m = (j + jsf32(&rng)) % (gpl.length - 50);
for (k = m; k < m + 30; k++) {
if (p == gpl.data[k] &&
c == gpl.data[k + 1]) {
j = k + 2;
break;
}
}
if (j == gpl.length) {
j = 1;
}
}
comp_size = attempt_round_trip(mem_ctx, original, "/tmp/gpl", ref);
assert_true(comp_size > 0);
assert_true(comp_size < original.length);
talloc_free(mem_ctx);
}
static void test_lzxpress_plain_long_random_graph_round_trip(void **state)
{
size_t i;
TALLOC_CTX *mem_ctx = talloc_new(NULL);
DATA_BLOB original = data_blob_talloc(mem_ctx, NULL, 5 * 1024 * 1024);
DATA_BLOB ref = {0};
/*
* There's a random trigram graph, with each pair of sequential bytes
* pointing to a successor. This would probably fall into a fairly
* simple loop, but we introduce damage into the system, randomly
* flipping about 1 bit in 64.
*
* The result is semi-structured and compressible.
*/
uint8_t *d = original.data;
uint8_t *table = talloc_array(mem_ctx, uint8_t, 65536);
uint32_t *table32 = (void*)table;
ssize_t comp_size;
struct jsf_rng rng;
jsf32_init(&rng, 1);
for (i = 0; i < (65536 / 4); i++) {
table32[i] = jsf32(&rng);
}
d[0] = 'a';
d[1] = 'b';
for (i = 2; i < original.length; i++) {
uint16_t k = (d[i - 2] << 8) | d[i - 1];
uint32_t damage = jsf32(&rng) & jsf32(&rng) & jsf32(&rng);
damage &= (damage >> 16);
k ^= damage & 0xffff;
d[i] = table[k];
}
comp_size = attempt_round_trip(mem_ctx, original, "/tmp/random-graph", ref);
assert_true(comp_size > 0);
assert_true(comp_size < original.length);
talloc_free(mem_ctx);
}
static void test_lzxpress_plain_chaos_graph_round_trip(void **state)
{
size_t i;
TALLOC_CTX *mem_ctx = talloc_new(NULL);
DATA_BLOB original = data_blob_talloc(mem_ctx, NULL, 5 * 1024 * 1024);
DATA_BLOB ref = {0};
/*
* There's a random trigram graph, with each pair of sequential bytes
* pointing to a successor. This would probably fall into a fairly
* simple loop, but we keep changing the graph. The result is long
* periods of stability separatd by bursts of noise.
*/
uint8_t *d = original.data;
uint8_t *table = talloc_array(mem_ctx, uint8_t, 65536);
uint32_t *table32 = (void*)table;
ssize_t comp_size;
struct jsf_rng rng;
jsf32_init(&rng, 1);
for (i = 0; i < (65536 / 4); i++) {
table32[i] = jsf32(&rng);
}
d[0] = 'a';
d[1] = 'b';
for (i = 2; i < original.length; i++) {
uint16_t k = (d[i - 2] << 8) | d[i - 1];
uint32_t damage = jsf32(&rng);
d[i] = table[k];
if ((damage >> 29) == 0) {
uint16_t index = damage & 0xffff;
uint8_t value = (damage >> 16) & 0xff;
table[index] = value;
}
}
comp_size = attempt_round_trip(mem_ctx, original, "/tmp/chaos-graph", ref);
assert_true(comp_size > 0);
assert_true(comp_size < original.length);
talloc_free(mem_ctx);
}
static void test_lzxpress_plain_sparse_random_graph_round_trip(void **state)
{
size_t i;
TALLOC_CTX *mem_ctx = talloc_new(NULL);
DATA_BLOB original = data_blob_talloc(mem_ctx, NULL, 5 * 1024 * 1024);
DATA_BLOB ref = {0};
/*
* There's a random trigram graph, with each pair of sequential bytes
* pointing to a successor. This will fall into a fairly simple loops,
* but we introduce damage into the system, randomly mangling about 1
* byte in 65536.
*
* The result has very long repetitive runs, which should lead to
* oversized blocks.
*/
uint8_t *d = original.data;
uint8_t *table = talloc_array(mem_ctx, uint8_t, 65536);
uint32_t *table32 = (void*)table;
ssize_t comp_size;
struct jsf_rng rng;
jsf32_init(&rng, 3);
for (i = 0; i < (65536 / 4); i++) {
table32[i] = jsf32(&rng);
}
d[0] = 'a';
d[1] = 'b';
for (i = 2; i < original.length; i++) {
uint16_t k = (d[i - 2] << 8) | d[i - 1];
uint32_t damage = jsf32(&rng);
if ((damage & 0xffff0000) == 0) {
k ^= damage & 0xffff;
}
d[i] = table[k];
}
comp_size = attempt_round_trip(mem_ctx, original, "/tmp/sparse-random-graph", ref);
assert_true(comp_size > 0);
assert_true(comp_size < original.length);
talloc_free(mem_ctx);
}
static void test_lzxpress_plain_random_noise_round_trip(void **state)
{
size_t i;
size_t len = 10 * 1024 * 1024;
TALLOC_CTX *mem_ctx = talloc_new(NULL);
DATA_BLOB original = data_blob_talloc(mem_ctx, NULL, len);
DATA_BLOB ref = {0};
ssize_t comp_size;
/*
* We are filling this up with incompressible noise, but we can assert
* quite tight bounds on how badly it will fail to compress.
*
* There is one additional bit for each code, which says whether the
* code is a literal byte or a match. If *all* codes are literal
* bytes, the length should be 9/8 the original (with rounding
* issues regarding the indicator bit blocks).
*
* If some matches are found the length will be a bit less. We would
* expect one 3 byte match per 1 << 24 tries, but we try 8192 times
* per position. That means there'll a match 1/2048 of the time at
* best. 255 times out of 256 this will be exactly a 3 byte match,
* encoded as two bytes, so we could get a 1 / 2048 saving on top of
* the 1/8 cost. There'll be a smattering of longer matches too, and
* the potential for complicated maths to account for those, but we'll
* skimp on that by allowing for a 1/1500 saving.
*
* With the hash table, we take a shortcut in the "8192 tries", and
* the size of the table makes a difference in how we perform, with 13
* bits (8192 slots) naturally being luckier than 12. Ultimately,
* either way, the compressed file is still 12.5% bigger than the
* original.
*/
size_t limit = len * 9 / 8 + 4;
uint32_t *d32 = (uint32_t*)((void*)original.data);
struct jsf_rng rng;
jsf32_init(&rng, 2);
for (i = 0; i < (len / 4); i++) {
d32[i] = jsf32(&rng);
}
comp_size = attempt_round_trip(mem_ctx, original, "/tmp/random-noise", ref);
debug_message("original size %zu; compressed size %zd; ratio %.5f\n",
len, comp_size, ((double)comp_size) / len);
debug_message("expected range %zu - %zu\n",
limit - limit / 1500, limit);
assert_true(comp_size > 0);
assert_true(comp_size < limit);
assert_true(comp_size >= limit - limit / 1500);
talloc_free(mem_ctx);
}
/* Tests based on [MS-XCA] 3.1 Examples */
static void test_msft_data1(void **state)
{
TALLOC_CTX *tmp_ctx = talloc_new(NULL);
const char *fixed_data = "abcdefghijklmnopqrstuvwxyz";
const uint8_t fixed_out[] = {
0x3f, 0x00, 0x00, 0x00, 0x61, 0x62, 0x63, 0x64,
0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c,
0x6d, 0x6e, 0x6f, 0x70, 0x71, 0x72, 0x73, 0x74,
0x75, 0x76, 0x77, 0x78, 0x79, 0x7a };
ssize_t c_size;
uint8_t *out, *out2;
out = talloc_size(tmp_ctx, 2048);
memset(out, 0x42, talloc_get_size(out));
c_size = lzxpress_compress((const uint8_t *)fixed_data,
strlen(fixed_data),
out,
talloc_get_size(out));
assert_int_not_equal(c_size, -1);
assert_int_equal(c_size, sizeof(fixed_out));
assert_memory_equal(out, fixed_out, c_size);
out2 = talloc_size(tmp_ctx, strlen(fixed_data));
c_size = lzxpress_decompress(out,
sizeof(fixed_out),
out2,
talloc_get_size(out2));
assert_int_not_equal(c_size, -1);
assert_int_equal(c_size, strlen(fixed_data));
assert_memory_equal(out2, fixed_data, c_size);
talloc_free(tmp_ctx);
}
static void test_msft_data2(void **state)
{
TALLOC_CTX *tmp_ctx = talloc_new(NULL);
const char *fixed_data =
"abcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabc"
"abcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabc"
"abcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabc"
"abcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabc"
"abcabcabcabcabcabcabcabc";
const uint8_t fixed_out[] = {
0xff, 0xff, 0xff, 0x1f, 0x61, 0x62, 0x63, 0x17,
0x00, 0x0f, 0xff, 0x26, 0x01};
ssize_t c_size;
uint8_t *out, *out2;
out = talloc_size(tmp_ctx, 2048);
memset(out, 0x42, talloc_get_size(out));
c_size = lzxpress_compress((const uint8_t *)fixed_data,
strlen(fixed_data),
out,
talloc_get_size(out));
assert_int_not_equal(c_size, -1);
assert_int_equal(c_size, sizeof(fixed_out));
assert_memory_equal(out, fixed_out, c_size);
out2 = talloc_size(tmp_ctx, strlen(fixed_data));
c_size = lzxpress_decompress(out,
sizeof(fixed_out),
out2,
talloc_get_size(out2));
assert_int_not_equal(c_size, -1);
assert_int_equal(c_size, strlen(fixed_data));
assert_memory_equal(out2, fixed_data, c_size);
talloc_free(tmp_ctx);
}
/*
test lzxpress
*/
static void test_lzxpress(void **state)
{
TALLOC_CTX *tmp_ctx = talloc_new(NULL);
const char *fixed_data = "this is a test. and this is a test too";
const uint8_t fixed_out[] = {
0xff, 0x21, 0x00, 0x04, 0x74, 0x68, 0x69, 0x73,
0x20, 0x10, 0x00, 0x61, 0x20, 0x74, 0x65, 0x73,
0x74, 0x2E, 0x20, 0x61, 0x6E, 0x64, 0x20, 0x9F,
0x00, 0x04, 0x20, 0x74, 0x6F, 0x6F };
const uint8_t fixed_out_old_version[] = {
0x00, 0x20, 0x00, 0x04, 0x74, 0x68, 0x69, 0x73,
0x20, 0x10, 0x00, 0x61, 0x20, 0x74, 0x65, 0x73,
0x74, 0x2E, 0x20, 0x61, 0x6E, 0x64, 0x20, 0x9F,
0x00, 0x04, 0x20, 0x74, 0x6F, 0x6F, 0x00, 0x00,
0x00, 0x00 };
ssize_t c_size;
uint8_t *out, *out2, *out3;
out = talloc_size(tmp_ctx, 2048);
memset(out, 0x42, talloc_get_size(out));
c_size = lzxpress_compress((const uint8_t *)fixed_data,
strlen(fixed_data),
out,
talloc_get_size(out));
assert_int_not_equal(c_size, -1);
assert_int_equal(c_size, sizeof(fixed_out));
assert_memory_equal(out, fixed_out, c_size);
out2 = talloc_size(tmp_ctx, strlen(fixed_data));
c_size = lzxpress_decompress(out,
sizeof(fixed_out),
out2,
talloc_get_size(out2));
assert_int_not_equal(c_size, -1);
assert_int_equal(c_size, strlen(fixed_data));
assert_memory_equal(out2, fixed_data, c_size);
out3 = talloc_size(tmp_ctx, strlen(fixed_data));
c_size = lzxpress_decompress(fixed_out_old_version,
sizeof(fixed_out_old_version),
out3,
talloc_get_size(out3));
assert_int_not_equal(c_size, -1);
assert_int_equal(c_size, strlen(fixed_data));
assert_memory_equal(out3, fixed_data, c_size);
talloc_free(tmp_ctx);
}
static void test_lzxpress2(void **state)
{
/*
* Use two matches, separated by a literal, and each with a length
* greater than 10, to test the use of nibble_index. Both length values
* (less ten) should be stored as adjacent nibbles to form the 0x21
* byte.
*/
TALLOC_CTX *tmp_ctx = talloc_new(NULL);
const char *fixed_data = "aaaaaaaaaaaabaaaaaaaaaaaa";
const uint8_t fixed_out[] = {
0xff, 0xff, 0xff, 0x5f, 0x61, 0x07, 0x00, 0x21,
0x62, 0x67, 0x00};
ssize_t c_size;
uint8_t *out, *out2;
out = talloc_size(tmp_ctx, 2048);
memset(out, 0x42, talloc_get_size(out));
c_size = lzxpress_compress((const uint8_t *)fixed_data,
strlen(fixed_data),
out,
talloc_get_size(out));
assert_int_not_equal(c_size, -1);
assert_int_equal(c_size, sizeof(fixed_out));
assert_memory_equal(out, fixed_out, c_size);
out2 = talloc_size(tmp_ctx, strlen(fixed_data));
c_size = lzxpress_decompress(out,
sizeof(fixed_out),
out2,
talloc_get_size(out2));
assert_int_not_equal(c_size, -1);
assert_int_equal(c_size, strlen(fixed_data));
assert_memory_equal(out2, fixed_data, c_size);
talloc_free(tmp_ctx);
}
static void test_lzxpress3(void **state)
{
/*
* Use a series of 31 literals, followed by a single minimum-length
* match (and a terminating literal), to test setting indic_pos when the
* 32-bit flags value overflows after a match.
*/
TALLOC_CTX *tmp_ctx = talloc_new(NULL);
const char *fixed_data = "abcdefghijklmnopqrstuvwxyz01234abca";
const uint8_t fixed_out[] = {
0x01, 0x00, 0x00, 0x00, 0x61, 0x62, 0x63, 0x64,
0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c,
0x6d, 0x6e, 0x6f, 0x70, 0x71, 0x72, 0x73, 0x74,
0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x30, 0x31,
0x32, 0x33, 0x34, 0xf0, 0x00, 0xff, 0xff, 0xff,
0x7f, 0x61};
ssize_t c_size;
uint8_t *out, *out2;
out = talloc_size(tmp_ctx, 2048);
memset(out, 0x42, talloc_get_size(out));
c_size = lzxpress_compress((const uint8_t *)fixed_data,
strlen(fixed_data),
out,
talloc_get_size(out));
assert_int_not_equal(c_size, -1);
assert_int_equal(c_size, sizeof(fixed_out));
assert_memory_equal(out, fixed_out, c_size);
out2 = talloc_size(tmp_ctx, strlen(fixed_data));
c_size = lzxpress_decompress(out,
sizeof(fixed_out),
out2,
talloc_get_size(out2));
assert_int_not_equal(c_size, -1);
assert_int_equal(c_size, strlen(fixed_data));
assert_memory_equal(out2, fixed_data, c_size);
talloc_free(tmp_ctx);
}
static void test_lzxpress4(void **state)
{
/*
* Use a series of 31 literals, followed by a single minimum-length
* match, to test that the final set of 32-bit flags is written
* correctly when it is empty.
*/
TALLOC_CTX *tmp_ctx = talloc_new(NULL);
const char *fixed_data = "abcdefghijklmnopqrstuvwxyz01234abc";
const uint8_t fixed_out[] = {
0x01, 0x00, 0x00, 0x00, 0x61, 0x62, 0x63, 0x64,
0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c,
0x6d, 0x6e, 0x6f, 0x70, 0x71, 0x72, 0x73, 0x74,
0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x30, 0x31,
0x32, 0x33, 0x34, 0xf0, 0x00, 0xff, 0xff, 0xff,
0xff};
ssize_t c_size;
uint8_t *out, *out2;
out = talloc_size(tmp_ctx, 2048);
memset(out, 0x42, talloc_get_size(out));
c_size = lzxpress_compress((const uint8_t *)fixed_data,
strlen(fixed_data),
out,
talloc_get_size(out));
assert_int_not_equal(c_size, -1);
assert_int_equal(c_size, sizeof(fixed_out));
assert_memory_equal(out, fixed_out, c_size);
out2 = talloc_size(tmp_ctx, strlen(fixed_data));
c_size = lzxpress_decompress(out,
sizeof(fixed_out),
out2,
talloc_get_size(out2));
assert_int_not_equal(c_size, -1);
assert_int_equal(c_size, strlen(fixed_data));
assert_memory_equal(out2, fixed_data, c_size);
talloc_free(tmp_ctx);
}
static void test_lzxpress_many_zeros(void **state)
{
/*
* Repeated values (zero is convenient but not special) will lead to
* very long substring searches in compression, which can be very slow
* if we're not careful.
*
* This test makes a very loose assertion about how long it should
* take to compress a million zeros.
*
* Wall clock time *should* be < 0.1 seconds with the fix and around a
* minute without it. We try for CLOCK_THREAD_CPUTIME_ID which should
* filter out some noise on the machine, and set the threshold at 5
* seconds.
*/
TALLOC_CTX *tmp_ctx = talloc_new(NULL);
const size_t N_ZEROS = 1000000;
const uint8_t *zeros = talloc_zero_size(tmp_ctx, N_ZEROS);
const ssize_t expected_c_size_max = 120;
const ssize_t expected_c_size_min = 93;
ssize_t c_size;
uint8_t *comp, *decomp;
static struct timespec t_start, t_end;
uint64_t elapsed_ns;
if (clock_gettime(CLOCK_THREAD_CPUTIME_ID, &t_start) != 0) {
if (clock_gettime(CUSTOM_CLOCK_MONOTONIC, &t_start) != 0) {
clock_gettime(CLOCK_REALTIME, &t_start);
}
}
comp = talloc_zero_size(tmp_ctx, 2048);
c_size = lzxpress_compress(zeros,
N_ZEROS,
comp,
talloc_get_size(comp));
/*
* Because our compression depends on heuristics, we don't insist on
* an exact size in this case.
*/
assert_true(c_size <= expected_c_size_max);
assert_true(c_size >= expected_c_size_min);
decomp = talloc_size(tmp_ctx, N_ZEROS * 2);
c_size = lzxpress_decompress(comp,
c_size,
decomp,
N_ZEROS * 2);
if (clock_gettime(CLOCK_THREAD_CPUTIME_ID, &t_end) != 0) {
if (clock_gettime(CUSTOM_CLOCK_MONOTONIC, &t_end) != 0) {
clock_gettime(CLOCK_REALTIME, &t_end);
}
}
elapsed_ns = (
(t_end.tv_sec - t_start.tv_sec) * 1000U * 1000U * 1000U) +
(t_end.tv_nsec - t_start.tv_nsec);
print_message("round-trip time: %"PRIu64" ns\n", elapsed_ns);
assert_true(elapsed_ns < 3 * 1000U * 1000U * 1000U);
assert_memory_equal(decomp, zeros, N_ZEROS);
talloc_free(tmp_ctx);
}
static void test_lzxpress_round_trip(void **state)
{
/*
* Examples found using via fuzzing.
*/
TALLOC_CTX *tmp_ctx = talloc_new(NULL);
size_t i;
struct b64_pair {
const char *uncompressed;
const char *compressed;
} pairs[] = {
{ /* this results in a trailing flags block */
"AAICAmq/EKdP785YU2Ddh7d4vUtdlQyLeHV09LHpUBw=",
"AAAAAAACAgJqvxCnT+/OWFNg3Ye3eL1LXZUMi3h1dPSx6VAc/////w==",
},
{ /* empty string compresses to empty string */
"", ""
},
};
const size_t alloc_size = 1000;
uint8_t *data = talloc_array(tmp_ctx, uint8_t, alloc_size);
for (i = 0; i < ARRAY_SIZE(pairs); i++) {
ssize_t len;
DATA_BLOB uncomp = base64_decode_data_blob_talloc(
tmp_ctx,
pairs[i].uncompressed);
DATA_BLOB comp = base64_decode_data_blob_talloc(
tmp_ctx,
pairs[i].compressed);
len = lzxpress_compress(uncomp.data,
uncomp.length,
data,
alloc_size);
assert_int_not_equal(len, -1);
assert_int_equal(len, comp.length);
assert_memory_equal(comp.data, data, len);
len = lzxpress_decompress(comp.data,
comp.length,
data,
alloc_size);
assert_int_not_equal(len, -1);
assert_int_equal(len, uncomp.length);
assert_memory_equal(uncomp.data, data, len);
}
talloc_free(tmp_ctx);
}
int main(void)
{
const struct CMUnitTest tests[] = {
cmocka_unit_test(test_lzxpress_plain_decompress_files),
cmocka_unit_test(test_lzxpress_plain_decompress_more_compressed_files),
cmocka_unit_test(test_lzxpress_plain_round_trip_files),
cmocka_unit_test(test_lzxpress_plain_long_gpl_round_trip),
cmocka_unit_test(test_lzxpress_plain_long_random_graph_round_trip),
cmocka_unit_test(test_lzxpress_plain_chaos_graph_round_trip),
cmocka_unit_test(test_lzxpress_plain_sparse_random_graph_round_trip),
cmocka_unit_test(test_lzxpress_plain_long_random_graph_round_trip),
cmocka_unit_test(test_lzxpress_plain_random_noise_round_trip),
cmocka_unit_test(test_lzxpress),
cmocka_unit_test(test_msft_data1),
cmocka_unit_test(test_msft_data2),
cmocka_unit_test(test_lzxpress2),
cmocka_unit_test(test_lzxpress3),
cmocka_unit_test(test_lzxpress4),
cmocka_unit_test(test_lzxpress_many_zeros),
cmocka_unit_test(test_lzxpress_round_trip),
};
if (!isatty(1)) {
cmocka_set_message_output(CM_OUTPUT_SUBUNIT);
}
return cmocka_run_group_tests(tests, NULL, NULL);
}