1
0
mirror of https://github.com/samba-team/samba.git synced 2025-01-14 19:24:43 +03:00
Volker Lendecke 500a729a55 tdb: Make record deletion circular-chain safe
Before this patch we had 3 loops walking a hash chain to delete
records:

tdb_do_delete() to find the predecessor of the record that was to be
deleted. tdb_count_dead(), the name says it all and tdb_purge_dead()
to give back all dead records from a chain to the freelist.

This patch introduces tdb_trim_dead that walks a hash chain just
once. While it does so it counts the number of dead records, and all
records beyond tdb->max_dead_records are moved to the freelist.

Normal record deletion now works by always marking a record as dead in
step 1 and then calling tdb_trim_dead. This is made safe against
circular chains by doing the slow chain walk only in the case when we
did not delete a dead record during our walk.

It changes our dynamics a bit:

When deleting a record with non-zero max_dead_records, now we always
leave that number of records around when deleting, doing a blocking
lock on the freelist when we found too many dead records.

Previously when exceeding max_dead_records we wiped all dead records
to start accumulating them from scratch, assuming we could lock the
freelist in a nonblocking fashion.

The net effect for an uncontended freelist is the same: In
tdb_allocate() we still completely hand over all dead records to the
freelist when we could lock it, it just happens later than without
this patch.

This means for a lightly loaded system we will potentially leave more
dead records around in databases like locking.tdb. However, on a
heavily loaded system we become more predictable: If the freelist is
so heavily contended that across many deletes we can't get hold of it,
previously we accumulated more dead records than max_dead_records
would allow. This is a really lowlevel tradeoff that is likely hard to
measure, but to me becoming more deterministic without sacrificing too
much parallelism (we keep more dead records around) is worth trying.

Signed-off-by: Volker Lendecke <vl@samba.org>
Reviewed-by: Jeremy Allison <jra@samba.org>

Autobuild-User(master): Jeremy Allison <jra@samba.org>
Autobuild-Date(master): Tue Oct 30 02:48:38 CET 2018 on sn-devel-144
2018-10-30 02:48:38 +01:00

1323 lines
31 KiB
C

/*
Unix SMB/CIFS implementation.
trivial database library
Copyright (C) Andrew Tridgell 1999-2005
Copyright (C) Paul `Rusty' Russell 2000
Copyright (C) Jeremy Allison 2000-2003
** NOTE! The following LGPL license applies to the tdb
** library. This does NOT imply that all of Samba is released
** under the LGPL
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "tdb_private.h"
_PUBLIC_ TDB_DATA tdb_null;
/*
non-blocking increment of the tdb sequence number if the tdb has been opened using
the TDB_SEQNUM flag
*/
_PUBLIC_ void tdb_increment_seqnum_nonblock(struct tdb_context *tdb)
{
tdb_off_t seqnum=0;
if (!(tdb->flags & TDB_SEQNUM)) {
return;
}
/* we ignore errors from this, as we have no sane way of
dealing with them.
*/
tdb_ofs_read(tdb, TDB_SEQNUM_OFS, &seqnum);
seqnum++;
tdb_ofs_write(tdb, TDB_SEQNUM_OFS, &seqnum);
}
/*
increment the tdb sequence number if the tdb has been opened using
the TDB_SEQNUM flag
*/
static void tdb_increment_seqnum(struct tdb_context *tdb)
{
if (!(tdb->flags & TDB_SEQNUM)) {
return;
}
if (tdb->transaction != NULL) {
tdb_increment_seqnum_nonblock(tdb);
return;
}
if (tdb_nest_lock(tdb, TDB_SEQNUM_OFS, F_WRLCK,
TDB_LOCK_WAIT|TDB_LOCK_PROBE) != 0) {
return;
}
tdb_increment_seqnum_nonblock(tdb);
tdb_nest_unlock(tdb, TDB_SEQNUM_OFS, F_WRLCK, false);
}
static int tdb_key_compare(TDB_DATA key, TDB_DATA data, void *private_data)
{
return memcmp(data.dptr, key.dptr, data.dsize);
}
void tdb_chainwalk_init(struct tdb_chainwalk_ctx *ctx, tdb_off_t ptr)
{
*ctx = (struct tdb_chainwalk_ctx) { .slow_ptr = ptr };
}
bool tdb_chainwalk_check(struct tdb_context *tdb,
struct tdb_chainwalk_ctx *ctx,
tdb_off_t next_ptr)
{
int ret;
if (ctx->slow_chase) {
ret = tdb_ofs_read(tdb, ctx->slow_ptr, &ctx->slow_ptr);
if (ret == -1) {
return false;
}
}
ctx->slow_chase = !ctx->slow_chase;
if (next_ptr == ctx->slow_ptr) {
tdb->ecode = TDB_ERR_CORRUPT;
TDB_LOG((tdb, TDB_DEBUG_ERROR,
"tdb_chainwalk_check: circular chain\n"));
return false;
}
return true;
}
/* Returns 0 on fail. On success, return offset of record, and fills
in rec */
static tdb_off_t tdb_find(struct tdb_context *tdb, TDB_DATA key, uint32_t hash,
struct tdb_record *r)
{
tdb_off_t rec_ptr;
struct tdb_chainwalk_ctx chainwalk;
/* read in the hash top */
if (tdb_ofs_read(tdb, TDB_HASH_TOP(hash), &rec_ptr) == -1)
return 0;
tdb_chainwalk_init(&chainwalk, rec_ptr);
/* keep looking until we find the right record */
while (rec_ptr) {
bool ok;
if (tdb_rec_read(tdb, rec_ptr, r) == -1)
return 0;
if (!TDB_DEAD(r) && hash==r->full_hash
&& key.dsize==r->key_len
&& tdb_parse_data(tdb, key, rec_ptr + sizeof(*r),
r->key_len, tdb_key_compare,
NULL) == 0) {
return rec_ptr;
}
rec_ptr = r->next;
ok = tdb_chainwalk_check(tdb, &chainwalk, rec_ptr);
if (!ok) {
return 0;
}
}
tdb->ecode = TDB_ERR_NOEXIST;
return 0;
}
/* As tdb_find, but if you succeed, keep the lock */
tdb_off_t tdb_find_lock_hash(struct tdb_context *tdb, TDB_DATA key, uint32_t hash, int locktype,
struct tdb_record *rec)
{
uint32_t rec_ptr;
if (tdb_lock(tdb, BUCKET(hash), locktype) == -1)
return 0;
if (!(rec_ptr = tdb_find(tdb, key, hash, rec)))
tdb_unlock(tdb, BUCKET(hash), locktype);
return rec_ptr;
}
static TDB_DATA _tdb_fetch(struct tdb_context *tdb, TDB_DATA key);
struct tdb_update_hash_state {
const TDB_DATA *dbufs;
int num_dbufs;
tdb_len_t dbufs_len;
};
static int tdb_update_hash_cmp(TDB_DATA key, TDB_DATA data, void *private_data)
{
struct tdb_update_hash_state *state = private_data;
unsigned char *dptr = data.dptr;
int i;
if (state->dbufs_len != data.dsize) {
return -1;
}
for (i=0; i<state->num_dbufs; i++) {
TDB_DATA dbuf = state->dbufs[i];
int ret;
ret = memcmp(dptr, dbuf.dptr, dbuf.dsize);
if (ret != 0) {
return -1;
}
dptr += dbuf.dsize;
}
return 0;
}
/* update an entry in place - this only works if the new data size
is <= the old data size and the key exists.
on failure return -1.
*/
static int tdb_update_hash(struct tdb_context *tdb, TDB_DATA key,
uint32_t hash,
const TDB_DATA *dbufs, int num_dbufs,
tdb_len_t dbufs_len)
{
struct tdb_record rec;
tdb_off_t rec_ptr, ofs;
int i;
/* find entry */
if (!(rec_ptr = tdb_find(tdb, key, hash, &rec)))
return -1;
/* it could be an exact duplicate of what is there - this is
* surprisingly common (eg. with a ldb re-index). */
if (rec.data_len == dbufs_len) {
struct tdb_update_hash_state state = {
.dbufs = dbufs, .num_dbufs = num_dbufs,
.dbufs_len = dbufs_len
};
int ret;
ret = tdb_parse_record(tdb, key, tdb_update_hash_cmp, &state);
if (ret == 0) {
return 0;
}
}
/* must be long enough key, data and tailer */
if (rec.rec_len < key.dsize + dbufs_len + sizeof(tdb_off_t)) {
tdb->ecode = TDB_SUCCESS; /* Not really an error */
return -1;
}
ofs = rec_ptr + sizeof(rec) + rec.key_len;
for (i=0; i<num_dbufs; i++) {
TDB_DATA dbuf = dbufs[i];
int ret;
ret = tdb->methods->tdb_write(tdb, ofs, dbuf.dptr, dbuf.dsize);
if (ret == -1) {
return -1;
}
ofs += dbuf.dsize;
}
if (dbufs_len != rec.data_len) {
/* update size */
rec.data_len = dbufs_len;
return tdb_rec_write(tdb, rec_ptr, &rec);
}
return 0;
}
/* find an entry in the database given a key */
/* If an entry doesn't exist tdb_err will be set to
* TDB_ERR_NOEXIST. If a key has no data attached
* then the TDB_DATA will have zero length but
* a non-zero pointer
*/
static TDB_DATA _tdb_fetch(struct tdb_context *tdb, TDB_DATA key)
{
tdb_off_t rec_ptr;
struct tdb_record rec;
TDB_DATA ret;
uint32_t hash;
/* find which hash bucket it is in */
hash = tdb->hash_fn(&key);
if (!(rec_ptr = tdb_find_lock_hash(tdb,key,hash,F_RDLCK,&rec)))
return tdb_null;
ret.dptr = tdb_alloc_read(tdb, rec_ptr + sizeof(rec) + rec.key_len,
rec.data_len);
ret.dsize = rec.data_len;
tdb_unlock(tdb, BUCKET(rec.full_hash), F_RDLCK);
return ret;
}
_PUBLIC_ TDB_DATA tdb_fetch(struct tdb_context *tdb, TDB_DATA key)
{
TDB_DATA ret = _tdb_fetch(tdb, key);
tdb_trace_1rec_retrec(tdb, "tdb_fetch", key, ret);
return ret;
}
/*
* Find an entry in the database and hand the record's data to a parsing
* function. The parsing function is executed under the chain read lock, so it
* should be fast and should not block on other syscalls.
*
* DON'T CALL OTHER TDB CALLS FROM THE PARSER, THIS MIGHT LEAD TO SEGFAULTS.
*
* For mmapped tdb's that do not have a transaction open it points the parsing
* function directly at the mmap area, it avoids the malloc/memcpy in this
* case. If a transaction is open or no mmap is available, it has to do
* malloc/read/parse/free.
*
* This is interesting for all readers of potentially large data structures in
* the tdb records, ldb indexes being one example.
*
* Return -1 if the record was not found.
*/
_PUBLIC_ int tdb_parse_record(struct tdb_context *tdb, TDB_DATA key,
int (*parser)(TDB_DATA key, TDB_DATA data,
void *private_data),
void *private_data)
{
tdb_off_t rec_ptr;
struct tdb_record rec;
int ret;
uint32_t hash;
/* find which hash bucket it is in */
hash = tdb->hash_fn(&key);
if (!(rec_ptr = tdb_find_lock_hash(tdb,key,hash,F_RDLCK,&rec))) {
/* record not found */
tdb_trace_1rec_ret(tdb, "tdb_parse_record", key, -1);
tdb->ecode = TDB_ERR_NOEXIST;
return -1;
}
tdb_trace_1rec_ret(tdb, "tdb_parse_record", key, 0);
ret = tdb_parse_data(tdb, key, rec_ptr + sizeof(rec) + rec.key_len,
rec.data_len, parser, private_data);
tdb_unlock(tdb, BUCKET(rec.full_hash), F_RDLCK);
return ret;
}
/* check if an entry in the database exists
note that 1 is returned if the key is found and 0 is returned if not found
this doesn't match the conventions in the rest of this module, but is
compatible with gdbm
*/
static int tdb_exists_hash(struct tdb_context *tdb, TDB_DATA key, uint32_t hash)
{
struct tdb_record rec;
if (tdb_find_lock_hash(tdb, key, hash, F_RDLCK, &rec) == 0)
return 0;
tdb_unlock(tdb, BUCKET(rec.full_hash), F_RDLCK);
return 1;
}
_PUBLIC_ int tdb_exists(struct tdb_context *tdb, TDB_DATA key)
{
uint32_t hash = tdb->hash_fn(&key);
int ret;
ret = tdb_exists_hash(tdb, key, hash);
tdb_trace_1rec_ret(tdb, "tdb_exists", key, ret);
return ret;
}
/*
* Move a dead record to the freelist. The hash chain and freelist
* must be locked.
*/
static int tdb_del_dead(struct tdb_context *tdb,
uint32_t last_ptr,
uint32_t rec_ptr,
struct tdb_record *rec,
bool *deleted)
{
int ret;
ret = tdb_write_lock_record(tdb, rec_ptr);
if (ret == -1) {
/* Someone traversing here: Just leave it dead */
return 0;
}
ret = tdb_write_unlock_record(tdb, rec_ptr);
if (ret == -1) {
return -1;
}
ret = tdb_ofs_write(tdb, last_ptr, &rec->next);
if (ret == -1) {
return -1;
}
*deleted = true;
ret = tdb_free(tdb, rec_ptr, rec);
return ret;
}
/*
* Walk the hash chain and leave tdb->max_dead_records around. Move
* the rest of dead records to the freelist.
*/
int tdb_trim_dead(struct tdb_context *tdb, uint32_t hash)
{
struct tdb_chainwalk_ctx chainwalk;
struct tdb_record rec;
tdb_off_t last_ptr, rec_ptr;
bool locked_freelist = false;
int num_dead = 0;
int ret;
last_ptr = TDB_HASH_TOP(hash);
/*
* Init chainwalk with the pointer to the hash top. It might
* be that the very first record in the chain is a dead one
* that we have to delete.
*/
tdb_chainwalk_init(&chainwalk, last_ptr);
ret = tdb_ofs_read(tdb, last_ptr, &rec_ptr);
if (ret == -1) {
return -1;
}
while (rec_ptr != 0) {
bool deleted = false;
uint32_t next;
ret = tdb_rec_read(tdb, rec_ptr, &rec);
if (ret == -1) {
goto fail;
}
/*
* Make a copy of rec.next: Further down we might
* delete and put the record on the freelist. Make
* sure that modifications in that code path can't
* break the chainwalk here.
*/
next = rec.next;
if (rec.magic == TDB_DEAD_MAGIC) {
num_dead += 1;
if (num_dead > tdb->max_dead_records) {
if (!locked_freelist) {
/*
* Lock the freelist only if
* it's really required.
*/
ret = tdb_lock(tdb, -1, F_WRLCK);
if (ret == -1) {
goto fail;
};
locked_freelist = true;
}
ret = tdb_del_dead(
tdb,
last_ptr,
rec_ptr,
&rec,
&deleted);
if (ret == -1) {
goto fail;
}
}
}
/*
* Don't do the chainwalk check if "rec_ptr" was
* deleted. We reduced the chain, and the chainwalk
* check might catch up early. Imagine a valid chain
* with just dead records: We never can bump the
* "slow" pointer in chainwalk_check, as there isn't
* anything left to jump to and compare.
*/
if (!deleted) {
bool ok;
last_ptr = rec_ptr;
ok = tdb_chainwalk_check(tdb, &chainwalk, next);
if (!ok) {
ret = -1;
goto fail;
}
}
rec_ptr = next;
}
ret = 0;
fail:
if (locked_freelist) {
tdb_unlock(tdb, -1, F_WRLCK);
}
return ret;
}
/* delete an entry in the database given a key */
static int tdb_delete_hash(struct tdb_context *tdb, TDB_DATA key, uint32_t hash)
{
tdb_off_t rec_ptr;
struct tdb_record rec;
int ret;
if (tdb->read_only || tdb->traverse_read) {
tdb->ecode = TDB_ERR_RDONLY;
return -1;
}
rec_ptr = tdb_find_lock_hash(tdb, key, hash, F_WRLCK, &rec);
if (rec_ptr == 0) {
return -1;
}
/*
* Mark the record dead
*/
rec.magic = TDB_DEAD_MAGIC;
ret = tdb_rec_write(tdb, rec_ptr, &rec);
if (ret == -1) {
goto done;
}
tdb_increment_seqnum(tdb);
ret = tdb_trim_dead(tdb, hash);
done:
if (tdb_unlock(tdb, BUCKET(hash), F_WRLCK) != 0)
TDB_LOG((tdb, TDB_DEBUG_WARNING, "tdb_delete: WARNING tdb_unlock failed!\n"));
return ret;
}
_PUBLIC_ int tdb_delete(struct tdb_context *tdb, TDB_DATA key)
{
uint32_t hash = tdb->hash_fn(&key);
int ret;
ret = tdb_delete_hash(tdb, key, hash);
tdb_trace_1rec_ret(tdb, "tdb_delete", key, ret);
return ret;
}
/*
* See if we have a dead record around with enough space
*/
tdb_off_t tdb_find_dead(struct tdb_context *tdb, uint32_t hash,
struct tdb_record *r, tdb_len_t length,
tdb_off_t *p_last_ptr)
{
tdb_off_t rec_ptr, last_ptr;
struct tdb_chainwalk_ctx chainwalk;
tdb_off_t best_rec_ptr = 0;
tdb_off_t best_last_ptr = 0;
struct tdb_record best = { .rec_len = UINT32_MAX };
length += sizeof(tdb_off_t); /* tailer */
last_ptr = TDB_HASH_TOP(hash);
/* read in the hash top */
if (tdb_ofs_read(tdb, last_ptr, &rec_ptr) == -1)
return 0;
tdb_chainwalk_init(&chainwalk, rec_ptr);
/* keep looking until we find the right record */
while (rec_ptr) {
bool ok;
if (tdb_rec_read(tdb, rec_ptr, r) == -1)
return 0;
if (TDB_DEAD(r) && (r->rec_len >= length) &&
(r->rec_len < best.rec_len)) {
best_rec_ptr = rec_ptr;
best_last_ptr = last_ptr;
best = *r;
}
last_ptr = rec_ptr;
rec_ptr = r->next;
ok = tdb_chainwalk_check(tdb, &chainwalk, rec_ptr);
if (!ok) {
return 0;
}
}
if (best.rec_len == UINT32_MAX) {
return 0;
}
*r = best;
*p_last_ptr = best_last_ptr;
return best_rec_ptr;
}
static int _tdb_storev(struct tdb_context *tdb, TDB_DATA key,
const TDB_DATA *dbufs, int num_dbufs,
int flag, uint32_t hash)
{
struct tdb_record rec;
tdb_off_t rec_ptr, ofs;
tdb_len_t rec_len, dbufs_len;
int i;
int ret = -1;
dbufs_len = 0;
for (i=0; i<num_dbufs; i++) {
size_t dsize = dbufs[i].dsize;
if ((dsize != 0) && (dbufs[i].dptr == NULL)) {
tdb->ecode = TDB_ERR_EINVAL;
goto fail;
}
dbufs_len += dsize;
if (dbufs_len < dsize) {
tdb->ecode = TDB_ERR_OOM;
goto fail;
}
}
rec_len = key.dsize + dbufs_len;
if ((rec_len < key.dsize) || (rec_len < dbufs_len)) {
tdb->ecode = TDB_ERR_OOM;
goto fail;
}
/* check for it existing, on insert. */
if (flag == TDB_INSERT) {
if (tdb_exists_hash(tdb, key, hash)) {
tdb->ecode = TDB_ERR_EXISTS;
goto fail;
}
} else {
/* first try in-place update, on modify or replace. */
if (tdb_update_hash(tdb, key, hash, dbufs, num_dbufs,
dbufs_len) == 0) {
goto done;
}
if (tdb->ecode == TDB_ERR_NOEXIST &&
flag == TDB_MODIFY) {
/* if the record doesn't exist and we are in TDB_MODIFY mode then
we should fail the store */
goto fail;
}
}
/* reset the error code potentially set by the tdb_update_hash() */
tdb->ecode = TDB_SUCCESS;
/* delete any existing record - if it doesn't exist we don't
care. Doing this first reduces fragmentation, and avoids
coalescing with `allocated' block before it's updated. */
if (flag != TDB_INSERT)
tdb_delete_hash(tdb, key, hash);
/* we have to allocate some space */
rec_ptr = tdb_allocate(tdb, hash, rec_len, &rec);
if (rec_ptr == 0) {
goto fail;
}
/* Read hash top into next ptr */
if (tdb_ofs_read(tdb, TDB_HASH_TOP(hash), &rec.next) == -1)
goto fail;
rec.key_len = key.dsize;
rec.data_len = dbufs_len;
rec.full_hash = hash;
rec.magic = TDB_MAGIC;
ofs = rec_ptr;
/* write out and point the top of the hash chain at it */
ret = tdb_rec_write(tdb, ofs, &rec);
if (ret == -1) {
goto fail;
}
ofs += sizeof(rec);
ret = tdb->methods->tdb_write(tdb, ofs, key.dptr, key.dsize);
if (ret == -1) {
goto fail;
}
ofs += key.dsize;
for (i=0; i<num_dbufs; i++) {
if (dbufs[i].dsize == 0) {
continue;
}
ret = tdb->methods->tdb_write(tdb, ofs, dbufs[i].dptr,
dbufs[i].dsize);
if (ret == -1) {
goto fail;
}
ofs += dbufs[i].dsize;
}
ret = tdb_ofs_write(tdb, TDB_HASH_TOP(hash), &rec_ptr);
if (ret == -1) {
/* Need to tdb_unallocate() here */
goto fail;
}
done:
ret = 0;
fail:
if (ret == 0) {
tdb_increment_seqnum(tdb);
}
return ret;
}
static int _tdb_store(struct tdb_context *tdb, TDB_DATA key,
TDB_DATA dbuf, int flag, uint32_t hash)
{
return _tdb_storev(tdb, key, &dbuf, 1, flag, hash);
}
/* store an element in the database, replacing any existing element
with the same key
return 0 on success, -1 on failure
*/
_PUBLIC_ int tdb_store(struct tdb_context *tdb, TDB_DATA key, TDB_DATA dbuf, int flag)
{
uint32_t hash;
int ret;
if (tdb->read_only || tdb->traverse_read) {
tdb->ecode = TDB_ERR_RDONLY;
tdb_trace_2rec_flag_ret(tdb, "tdb_store", key, dbuf, flag, -1);
return -1;
}
/* find which hash bucket it is in */
hash = tdb->hash_fn(&key);
if (tdb_lock(tdb, BUCKET(hash), F_WRLCK) == -1)
return -1;
ret = _tdb_store(tdb, key, dbuf, flag, hash);
tdb_trace_2rec_flag_ret(tdb, "tdb_store", key, dbuf, flag, ret);
tdb_unlock(tdb, BUCKET(hash), F_WRLCK);
return ret;
}
_PUBLIC_ int tdb_storev(struct tdb_context *tdb, TDB_DATA key,
const TDB_DATA *dbufs, int num_dbufs, int flag)
{
uint32_t hash;
int ret;
if (tdb->read_only || tdb->traverse_read) {
tdb->ecode = TDB_ERR_RDONLY;
tdb_trace_1plusn_rec_flag_ret(tdb, "tdb_storev", key,
dbufs, num_dbufs, flag, -1);
return -1;
}
/* find which hash bucket it is in */
hash = tdb->hash_fn(&key);
if (tdb_lock(tdb, BUCKET(hash), F_WRLCK) == -1)
return -1;
ret = _tdb_storev(tdb, key, dbufs, num_dbufs, flag, hash);
tdb_trace_1plusn_rec_flag_ret(tdb, "tdb_storev", key,
dbufs, num_dbufs, flag, -1);
tdb_unlock(tdb, BUCKET(hash), F_WRLCK);
return ret;
}
/* Append to an entry. Create if not exist. */
_PUBLIC_ int tdb_append(struct tdb_context *tdb, TDB_DATA key, TDB_DATA new_dbuf)
{
uint32_t hash;
TDB_DATA dbufs[2];
int ret = -1;
/* find which hash bucket it is in */
hash = tdb->hash_fn(&key);
if (tdb_lock(tdb, BUCKET(hash), F_WRLCK) == -1)
return -1;
dbufs[0] = _tdb_fetch(tdb, key);
dbufs[1] = new_dbuf;
ret = _tdb_storev(tdb, key, dbufs, 2, 0, hash);
tdb_trace_2rec_retrec(tdb, "tdb_append", key, dbufs[0], dbufs[1]);
tdb_unlock(tdb, BUCKET(hash), F_WRLCK);
SAFE_FREE(dbufs[0].dptr);
return ret;
}
/*
return the name of the current tdb file
useful for external logging functions
*/
_PUBLIC_ const char *tdb_name(struct tdb_context *tdb)
{
return tdb->name;
}
/*
return the underlying file descriptor being used by tdb, or -1
useful for external routines that want to check the device/inode
of the fd
*/
_PUBLIC_ int tdb_fd(struct tdb_context *tdb)
{
return tdb->fd;
}
/*
return the current logging function
useful for external tdb routines that wish to log tdb errors
*/
_PUBLIC_ tdb_log_func tdb_log_fn(struct tdb_context *tdb)
{
return tdb->log.log_fn;
}
/*
get the tdb sequence number. Only makes sense if the writers opened
with TDB_SEQNUM set. Note that this sequence number will wrap quite
quickly, so it should only be used for a 'has something changed'
test, not for code that relies on the count of the number of changes
made. If you want a counter then use a tdb record.
The aim of this sequence number is to allow for a very lightweight
test of a possible tdb change.
*/
_PUBLIC_ int tdb_get_seqnum(struct tdb_context *tdb)
{
tdb_off_t seqnum=0;
tdb_ofs_read(tdb, TDB_SEQNUM_OFS, &seqnum);
return seqnum;
}
_PUBLIC_ int tdb_hash_size(struct tdb_context *tdb)
{
return tdb->hash_size;
}
_PUBLIC_ size_t tdb_map_size(struct tdb_context *tdb)
{
return tdb->map_size;
}
_PUBLIC_ int tdb_get_flags(struct tdb_context *tdb)
{
return tdb->flags;
}
_PUBLIC_ void tdb_add_flags(struct tdb_context *tdb, unsigned flags)
{
if ((flags & TDB_ALLOW_NESTING) &&
(flags & TDB_DISALLOW_NESTING)) {
tdb->ecode = TDB_ERR_NESTING;
TDB_LOG((tdb, TDB_DEBUG_FATAL, "tdb_add_flags: "
"allow_nesting and disallow_nesting are not allowed together!"));
return;
}
if (flags & TDB_ALLOW_NESTING) {
tdb->flags &= ~TDB_DISALLOW_NESTING;
}
if (flags & TDB_DISALLOW_NESTING) {
tdb->flags &= ~TDB_ALLOW_NESTING;
}
tdb->flags |= flags;
}
_PUBLIC_ void tdb_remove_flags(struct tdb_context *tdb, unsigned flags)
{
if ((flags & TDB_ALLOW_NESTING) &&
(flags & TDB_DISALLOW_NESTING)) {
tdb->ecode = TDB_ERR_NESTING;
TDB_LOG((tdb, TDB_DEBUG_FATAL, "tdb_remove_flags: "
"allow_nesting and disallow_nesting are not allowed together!"));
return;
}
if ((flags & TDB_NOLOCK) &&
(tdb->feature_flags & TDB_FEATURE_FLAG_MUTEX) &&
(tdb->mutexes == NULL)) {
tdb->ecode = TDB_ERR_LOCK;
TDB_LOG((tdb, TDB_DEBUG_FATAL, "tdb_remove_flags: "
"Can not remove NOLOCK flag on mutexed databases"));
return;
}
if (flags & TDB_ALLOW_NESTING) {
tdb->flags |= TDB_DISALLOW_NESTING;
}
if (flags & TDB_DISALLOW_NESTING) {
tdb->flags |= TDB_ALLOW_NESTING;
}
tdb->flags &= ~flags;
}
/*
enable sequence number handling on an open tdb
*/
_PUBLIC_ void tdb_enable_seqnum(struct tdb_context *tdb)
{
tdb->flags |= TDB_SEQNUM;
}
/*
add a region of the file to the freelist. Length is the size of the region in bytes,
which includes the free list header that needs to be added
*/
static int tdb_free_region(struct tdb_context *tdb, tdb_off_t offset, ssize_t length)
{
struct tdb_record rec;
if (length <= sizeof(rec)) {
/* the region is not worth adding */
return 0;
}
if (length + offset > tdb->map_size) {
TDB_LOG((tdb, TDB_DEBUG_FATAL,"tdb_free_region: adding region beyond end of file\n"));
return -1;
}
memset(&rec,'\0',sizeof(rec));
rec.rec_len = length - sizeof(rec);
if (tdb_free(tdb, offset, &rec) == -1) {
TDB_LOG((tdb, TDB_DEBUG_FATAL,"tdb_free_region: failed to add free record\n"));
return -1;
}
return 0;
}
/*
wipe the entire database, deleting all records. This can be done
very fast by using a allrecord lock. The entire data portion of the
file becomes a single entry in the freelist.
This code carefully steps around the recovery area, leaving it alone
*/
_PUBLIC_ int tdb_wipe_all(struct tdb_context *tdb)
{
uint32_t i;
tdb_off_t offset = 0;
ssize_t data_len;
tdb_off_t recovery_head;
tdb_len_t recovery_size = 0;
if (tdb_lockall(tdb) != 0) {
return -1;
}
tdb_trace(tdb, "tdb_wipe_all");
/* see if the tdb has a recovery area, and remember its size
if so. We don't want to lose this as otherwise each
tdb_wipe_all() in a transaction will increase the size of
the tdb by the size of the recovery area */
if (tdb_ofs_read(tdb, TDB_RECOVERY_HEAD, &recovery_head) == -1) {
TDB_LOG((tdb, TDB_DEBUG_FATAL, "tdb_wipe_all: failed to read recovery head\n"));
goto failed;
}
if (recovery_head != 0) {
struct tdb_record rec;
if (tdb->methods->tdb_read(tdb, recovery_head, &rec, sizeof(rec), DOCONV()) == -1) {
TDB_LOG((tdb, TDB_DEBUG_FATAL, "tdb_wipe_all: failed to read recovery record\n"));
return -1;
}
recovery_size = rec.rec_len + sizeof(rec);
}
/* wipe the hashes */
for (i=0;i<tdb->hash_size;i++) {
if (tdb_ofs_write(tdb, TDB_HASH_TOP(i), &offset) == -1) {
TDB_LOG((tdb, TDB_DEBUG_FATAL,"tdb_wipe_all: failed to write hash %d\n", i));
goto failed;
}
}
/* wipe the freelist */
if (tdb_ofs_write(tdb, FREELIST_TOP, &offset) == -1) {
TDB_LOG((tdb, TDB_DEBUG_FATAL,"tdb_wipe_all: failed to write freelist\n"));
goto failed;
}
/* add all the rest of the file to the freelist, possibly leaving a gap
for the recovery area */
if (recovery_size == 0) {
/* the simple case - the whole file can be used as a freelist */
data_len = (tdb->map_size - TDB_DATA_START(tdb->hash_size));
if (tdb_free_region(tdb, TDB_DATA_START(tdb->hash_size), data_len) != 0) {
goto failed;
}
} else {
/* we need to add two freelist entries - one on either
side of the recovery area
Note that we cannot shift the recovery area during
this operation. Only the transaction.c code may
move the recovery area or we risk subtle data
corruption
*/
data_len = (recovery_head - TDB_DATA_START(tdb->hash_size));
if (tdb_free_region(tdb, TDB_DATA_START(tdb->hash_size), data_len) != 0) {
goto failed;
}
/* and the 2nd free list entry after the recovery area - if any */
data_len = tdb->map_size - (recovery_head+recovery_size);
if (tdb_free_region(tdb, recovery_head+recovery_size, data_len) != 0) {
goto failed;
}
}
tdb_increment_seqnum_nonblock(tdb);
if (tdb_unlockall(tdb) != 0) {
TDB_LOG((tdb, TDB_DEBUG_FATAL,"tdb_wipe_all: failed to unlock\n"));
goto failed;
}
return 0;
failed:
tdb_unlockall(tdb);
return -1;
}
struct traverse_state {
bool error;
struct tdb_context *dest_db;
};
/*
traverse function for repacking
*/
static int repack_traverse(struct tdb_context *tdb, TDB_DATA key, TDB_DATA data, void *private_data)
{
struct traverse_state *state = (struct traverse_state *)private_data;
if (tdb_store(state->dest_db, key, data, TDB_INSERT) != 0) {
state->error = true;
return -1;
}
return 0;
}
/*
repack a tdb
*/
_PUBLIC_ int tdb_repack(struct tdb_context *tdb)
{
struct tdb_context *tmp_db;
struct traverse_state state;
tdb_trace(tdb, "tdb_repack");
if (tdb_transaction_start(tdb) != 0) {
TDB_LOG((tdb, TDB_DEBUG_FATAL, __location__ " Failed to start transaction\n"));
return -1;
}
tmp_db = tdb_open("tmpdb", tdb_hash_size(tdb), TDB_INTERNAL, O_RDWR|O_CREAT, 0);
if (tmp_db == NULL) {
TDB_LOG((tdb, TDB_DEBUG_FATAL, __location__ " Failed to create tmp_db\n"));
tdb_transaction_cancel(tdb);
return -1;
}
state.error = false;
state.dest_db = tmp_db;
if (tdb_traverse_read(tdb, repack_traverse, &state) == -1) {
TDB_LOG((tdb, TDB_DEBUG_FATAL, __location__ " Failed to traverse copying out\n"));
tdb_transaction_cancel(tdb);
tdb_close(tmp_db);
return -1;
}
if (state.error) {
TDB_LOG((tdb, TDB_DEBUG_FATAL, __location__ " Error during traversal\n"));
tdb_transaction_cancel(tdb);
tdb_close(tmp_db);
return -1;
}
if (tdb_wipe_all(tdb) != 0) {
TDB_LOG((tdb, TDB_DEBUG_FATAL, __location__ " Failed to wipe database\n"));
tdb_transaction_cancel(tdb);
tdb_close(tmp_db);
return -1;
}
state.error = false;
state.dest_db = tdb;
if (tdb_traverse_read(tmp_db, repack_traverse, &state) == -1) {
TDB_LOG((tdb, TDB_DEBUG_FATAL, __location__ " Failed to traverse copying back\n"));
tdb_transaction_cancel(tdb);
tdb_close(tmp_db);
return -1;
}
if (state.error) {
TDB_LOG((tdb, TDB_DEBUG_FATAL, __location__ " Error during second traversal\n"));
tdb_transaction_cancel(tdb);
tdb_close(tmp_db);
return -1;
}
tdb_close(tmp_db);
if (tdb_transaction_commit(tdb) != 0) {
TDB_LOG((tdb, TDB_DEBUG_FATAL, __location__ " Failed to commit\n"));
return -1;
}
return 0;
}
/* Even on files, we can get partial writes due to signals. */
bool tdb_write_all(int fd, const void *buf, size_t count)
{
while (count) {
ssize_t ret;
ret = write(fd, buf, count);
if (ret < 0)
return false;
buf = (const char *)buf + ret;
count -= ret;
}
return true;
}
bool tdb_add_off_t(tdb_off_t a, tdb_off_t b, tdb_off_t *pret)
{
tdb_off_t ret = a + b;
if ((ret < a) || (ret < b)) {
return false;
}
*pret = ret;
return true;
}
#ifdef TDB_TRACE
static void tdb_trace_write(struct tdb_context *tdb, const char *str)
{
if (!tdb_write_all(tdb->tracefd, str, strlen(str))) {
close(tdb->tracefd);
tdb->tracefd = -1;
}
}
static void tdb_trace_start(struct tdb_context *tdb)
{
tdb_off_t seqnum=0;
char msg[sizeof(tdb_off_t) * 4 + 1];
tdb_ofs_read(tdb, TDB_SEQNUM_OFS, &seqnum);
snprintf(msg, sizeof(msg), "%u ", seqnum);
tdb_trace_write(tdb, msg);
}
static void tdb_trace_end(struct tdb_context *tdb)
{
tdb_trace_write(tdb, "\n");
}
static void tdb_trace_end_ret(struct tdb_context *tdb, int ret)
{
char msg[sizeof(ret) * 4 + 4];
snprintf(msg, sizeof(msg), " = %i\n", ret);
tdb_trace_write(tdb, msg);
}
static void tdb_trace_record(struct tdb_context *tdb, TDB_DATA rec)
{
char msg[20 + rec.dsize*2], *p;
unsigned int i;
/* We differentiate zero-length records from non-existent ones. */
if (rec.dptr == NULL) {
tdb_trace_write(tdb, " NULL");
return;
}
/* snprintf here is purely cargo-cult programming. */
p = msg;
p += snprintf(p, sizeof(msg), " %zu:", rec.dsize);
for (i = 0; i < rec.dsize; i++)
p += snprintf(p, 2, "%02x", rec.dptr[i]);
tdb_trace_write(tdb, msg);
}
void tdb_trace(struct tdb_context *tdb, const char *op)
{
tdb_trace_start(tdb);
tdb_trace_write(tdb, op);
tdb_trace_end(tdb);
}
void tdb_trace_seqnum(struct tdb_context *tdb, uint32_t seqnum, const char *op)
{
char msg[sizeof(tdb_off_t) * 4 + 1];
snprintf(msg, sizeof(msg), "%u ", seqnum);
tdb_trace_write(tdb, msg);
tdb_trace_write(tdb, op);
tdb_trace_end(tdb);
}
void tdb_trace_open(struct tdb_context *tdb, const char *op,
unsigned hash_size, unsigned tdb_flags, unsigned open_flags)
{
char msg[128];
snprintf(msg, sizeof(msg),
"%s %u 0x%x 0x%x", op, hash_size, tdb_flags, open_flags);
tdb_trace_start(tdb);
tdb_trace_write(tdb, msg);
tdb_trace_end(tdb);
}
void tdb_trace_ret(struct tdb_context *tdb, const char *op, int ret)
{
tdb_trace_start(tdb);
tdb_trace_write(tdb, op);
tdb_trace_end_ret(tdb, ret);
}
void tdb_trace_retrec(struct tdb_context *tdb, const char *op, TDB_DATA ret)
{
tdb_trace_start(tdb);
tdb_trace_write(tdb, op);
tdb_trace_write(tdb, " =");
tdb_trace_record(tdb, ret);
tdb_trace_end(tdb);
}
void tdb_trace_1rec(struct tdb_context *tdb, const char *op,
TDB_DATA rec)
{
tdb_trace_start(tdb);
tdb_trace_write(tdb, op);
tdb_trace_record(tdb, rec);
tdb_trace_end(tdb);
}
void tdb_trace_1rec_ret(struct tdb_context *tdb, const char *op,
TDB_DATA rec, int ret)
{
tdb_trace_start(tdb);
tdb_trace_write(tdb, op);
tdb_trace_record(tdb, rec);
tdb_trace_end_ret(tdb, ret);
}
void tdb_trace_1rec_retrec(struct tdb_context *tdb, const char *op,
TDB_DATA rec, TDB_DATA ret)
{
tdb_trace_start(tdb);
tdb_trace_write(tdb, op);
tdb_trace_record(tdb, rec);
tdb_trace_write(tdb, " =");
tdb_trace_record(tdb, ret);
tdb_trace_end(tdb);
}
void tdb_trace_2rec_flag_ret(struct tdb_context *tdb, const char *op,
TDB_DATA rec1, TDB_DATA rec2, unsigned flag,
int ret)
{
char msg[1 + sizeof(ret) * 4];
snprintf(msg, sizeof(msg), " %#x", flag);
tdb_trace_start(tdb);
tdb_trace_write(tdb, op);
tdb_trace_record(tdb, rec1);
tdb_trace_record(tdb, rec2);
tdb_trace_write(tdb, msg);
tdb_trace_end_ret(tdb, ret);
}
void tdb_trace_1plusn_rec_flag_ret(struct tdb_context *tdb, const char *op,
TDB_DATA rec,
const TDB_DATA *recs, int num_recs,
unsigned flag, int ret)
{
char msg[1 + sizeof(ret) * 4];
int i;
snprintf(msg, sizeof(msg), " %#x", flag);
tdb_trace_start(tdb);
tdb_trace_write(tdb, op);
tdb_trace_record(tdb, rec);
for (i=0; i<num_recs; i++) {
tdb_trace_record(tdb, recs[i]);
}
tdb_trace_write(tdb, msg);
tdb_trace_end_ret(tdb, ret);
}
void tdb_trace_2rec_retrec(struct tdb_context *tdb, const char *op,
TDB_DATA rec1, TDB_DATA rec2, TDB_DATA ret)
{
tdb_trace_start(tdb);
tdb_trace_write(tdb, op);
tdb_trace_record(tdb, rec1);
tdb_trace_record(tdb, rec2);
tdb_trace_write(tdb, " =");
tdb_trace_record(tdb, ret);
tdb_trace_end(tdb);
}
#endif