1
0
mirror of https://github.com/samba-team/samba.git synced 2025-01-26 10:04:02 +03:00
Jeremy Allison c8071c3522 Use the %*s feature of snprintf to remove anothe static fstring.
Jeremy.
(This used to be commit 4ae4b2358688bf289305a2db0ed01b653ac073b2)
2007-12-17 16:20:44 -08:00

1855 lines
50 KiB
C

/*
Unix SMB/CIFS implementation.
Samba memory buffer functions
Copyright (C) Andrew Tridgell 1992-1997
Copyright (C) Luke Kenneth Casson Leighton 1996-1997
Copyright (C) Jeremy Allison 1999
Copyright (C) Andrew Bartlett 2003.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "includes.h"
#undef DBGC_CLASS
#define DBGC_CLASS DBGC_RPC_PARSE
/**
* Dump a prs to a file: from the current location through to the end.
**/
void prs_dump(const char *name, int v, prs_struct *ps)
{
prs_dump_region(name, v, ps, ps->data_offset, ps->buffer_size);
}
/**
* Dump from the start of the prs to the current location.
**/
void prs_dump_before(const char *name, int v, prs_struct *ps)
{
prs_dump_region(name, v, ps, 0, ps->data_offset);
}
/**
* Dump everything from the start of the prs up to the current location.
**/
void prs_dump_region(const char *name, int v, prs_struct *ps,
int from_off, int to_off)
{
int fd, i;
char *fname = NULL;
ssize_t sz;
if (DEBUGLEVEL < 50) return;
for (i=1;i<100;i++) {
if (v != -1) {
if (asprintf(&fname,"/tmp/%s_%d.%d.prs", name, v, i) < 0) {
return;
}
} else {
if (asprintf(&fname,"/tmp/%s.%d.prs", name, i) < 0) {
return;
}
}
fd = open(fname, O_WRONLY|O_CREAT|O_EXCL, 0644);
if (fd != -1 || errno != EEXIST) break;
}
if (fd != -1) {
sz = write(fd, ps->data_p + from_off, to_off - from_off);
i = close(fd);
if ( (sz != to_off-from_off) || (i != 0) ) {
DEBUG(0,("Error writing/closing %s: %ld!=%ld %d\n", fname, (unsigned long)sz, (unsigned long)to_off-from_off, i ));
} else {
DEBUG(0,("created %s\n", fname));
}
}
SAFE_FREE(fname);
}
/*******************************************************************
Debug output for parsing info
XXXX side-effect of this function is to increase the debug depth XXXX.
********************************************************************/
void prs_debug(prs_struct *ps, int depth, const char *desc, const char *fn_name)
{
DEBUG(5+depth, ("%s%06x %s %s\n", tab_depth(5+depth,depth), ps->data_offset, fn_name, desc));
}
/**
* Initialise an expandable parse structure.
*
* @param size Initial buffer size. If >0, a new buffer will be
* created with malloc().
*
* @return False if allocation fails, otherwise True.
**/
bool prs_init(prs_struct *ps, uint32 size, TALLOC_CTX *ctx, bool io)
{
ZERO_STRUCTP(ps);
ps->io = io;
ps->bigendian_data = RPC_LITTLE_ENDIAN;
ps->align = RPC_PARSE_ALIGN;
ps->is_dynamic = False;
ps->data_offset = 0;
ps->buffer_size = 0;
ps->data_p = NULL;
ps->mem_ctx = ctx;
if (size != 0) {
ps->buffer_size = size;
if((ps->data_p = (char *)SMB_MALLOC((size_t)size)) == NULL) {
DEBUG(0,("prs_init: malloc fail for %u bytes.\n", (unsigned int)size));
return False;
}
memset(ps->data_p, '\0', (size_t)size);
ps->is_dynamic = True; /* We own this memory. */
} else if (MARSHALLING(ps)) {
/* If size is zero and we're marshalling we should allocate memory on demand. */
ps->is_dynamic = True;
}
return True;
}
/*******************************************************************
Delete the memory in a parse structure - if we own it.
NOTE: Contrary to the somewhat confusing naming, this function is not
intended for freeing memory allocated by prs_alloc_mem(). That memory
is attached to the talloc context given by ps->mem_ctx.
********************************************************************/
void prs_mem_free(prs_struct *ps)
{
if(ps->is_dynamic)
SAFE_FREE(ps->data_p);
ps->is_dynamic = False;
ps->buffer_size = 0;
ps->data_offset = 0;
}
/*******************************************************************
Clear the memory in a parse structure.
********************************************************************/
void prs_mem_clear(prs_struct *ps)
{
if (ps->buffer_size)
memset(ps->data_p, '\0', (size_t)ps->buffer_size);
}
/*******************************************************************
Allocate memory when unmarshalling... Always zero clears.
********************************************************************/
#if defined(PARANOID_MALLOC_CHECKER)
char *prs_alloc_mem_(prs_struct *ps, size_t size, unsigned int count)
#else
char *prs_alloc_mem(prs_struct *ps, size_t size, unsigned int count)
#endif
{
char *ret = NULL;
if (size && count) {
/* We can't call the type-safe version here. */
ret = (char *)_talloc_zero_array(ps->mem_ctx, size, count,
"parse_prs");
}
return ret;
}
/*******************************************************************
Return the current talloc context we're using.
********************************************************************/
TALLOC_CTX *prs_get_mem_context(prs_struct *ps)
{
return ps->mem_ctx;
}
/*******************************************************************
Hand some already allocated memory to a prs_struct.
********************************************************************/
void prs_give_memory(prs_struct *ps, char *buf, uint32 size, bool is_dynamic)
{
ps->is_dynamic = is_dynamic;
ps->data_p = buf;
ps->buffer_size = size;
}
/*******************************************************************
Take some memory back from a prs_struct.
********************************************************************/
char *prs_take_memory(prs_struct *ps, uint32 *psize)
{
char *ret = ps->data_p;
if(psize)
*psize = ps->buffer_size;
ps->is_dynamic = False;
prs_mem_free(ps);
return ret;
}
/*******************************************************************
Set a prs_struct to exactly a given size. Will grow or tuncate if neccessary.
********************************************************************/
bool prs_set_buffer_size(prs_struct *ps, uint32 newsize)
{
if (newsize > ps->buffer_size)
return prs_force_grow(ps, newsize - ps->buffer_size);
if (newsize < ps->buffer_size) {
ps->buffer_size = newsize;
/* newsize == 0 acts as a free and set pointer to NULL */
if (newsize == 0) {
SAFE_FREE(ps->data_p);
} else {
ps->data_p = (char *)SMB_REALLOC(ps->data_p, newsize);
if (ps->data_p == NULL) {
DEBUG(0,("prs_set_buffer_size: Realloc failure for size %u.\n",
(unsigned int)newsize));
DEBUG(0,("prs_set_buffer_size: Reason %s\n",strerror(errno)));
return False;
}
}
}
return True;
}
/*******************************************************************
Attempt, if needed, to grow a data buffer.
Also depends on the data stream mode (io).
********************************************************************/
bool prs_grow(prs_struct *ps, uint32 extra_space)
{
uint32 new_size;
ps->grow_size = MAX(ps->grow_size, ps->data_offset + extra_space);
if(ps->data_offset + extra_space <= ps->buffer_size)
return True;
/*
* We cannot grow the buffer if we're not reading
* into the prs_struct, or if we don't own the memory.
*/
if(UNMARSHALLING(ps) || !ps->is_dynamic) {
DEBUG(0,("prs_grow: Buffer overflow - unable to expand buffer by %u bytes.\n",
(unsigned int)extra_space));
return False;
}
/*
* Decide how much extra space we really need.
*/
extra_space -= (ps->buffer_size - ps->data_offset);
if(ps->buffer_size == 0) {
/*
* Ensure we have at least a PDU's length, or extra_space, whichever
* is greater.
*/
new_size = MAX(RPC_MAX_PDU_FRAG_LEN,extra_space);
if((ps->data_p = (char *)SMB_MALLOC(new_size)) == NULL) {
DEBUG(0,("prs_grow: Malloc failure for size %u.\n", (unsigned int)new_size));
return False;
}
memset(ps->data_p, '\0', (size_t)new_size );
} else {
/*
* If the current buffer size is bigger than the space needed, just
* double it, else add extra_space.
*/
new_size = MAX(ps->buffer_size*2, ps->buffer_size + extra_space);
if ((ps->data_p = (char *)SMB_REALLOC(ps->data_p, new_size)) == NULL) {
DEBUG(0,("prs_grow: Realloc failure for size %u.\n",
(unsigned int)new_size));
return False;
}
memset(&ps->data_p[ps->buffer_size], '\0', (size_t)(new_size - ps->buffer_size));
}
ps->buffer_size = new_size;
return True;
}
/*******************************************************************
Attempt to force a data buffer to grow by len bytes.
This is only used when appending more data onto a prs_struct
when reading an rpc reply, before unmarshalling it.
********************************************************************/
bool prs_force_grow(prs_struct *ps, uint32 extra_space)
{
uint32 new_size = ps->buffer_size + extra_space;
if(!UNMARSHALLING(ps) || !ps->is_dynamic) {
DEBUG(0,("prs_force_grow: Buffer overflow - unable to expand buffer by %u bytes.\n",
(unsigned int)extra_space));
return False;
}
if((ps->data_p = (char *)SMB_REALLOC(ps->data_p, new_size)) == NULL) {
DEBUG(0,("prs_force_grow: Realloc failure for size %u.\n",
(unsigned int)new_size));
return False;
}
memset(&ps->data_p[ps->buffer_size], '\0', (size_t)(new_size - ps->buffer_size));
ps->buffer_size = new_size;
return True;
}
/*******************************************************************
Get the data pointer (external interface).
********************************************************************/
char *prs_data_p(prs_struct *ps)
{
return ps->data_p;
}
/*******************************************************************
Get the current data size (external interface).
********************************************************************/
uint32 prs_data_size(prs_struct *ps)
{
return ps->buffer_size;
}
/*******************************************************************
Fetch the current offset (external interface).
********************************************************************/
uint32 prs_offset(prs_struct *ps)
{
return ps->data_offset;
}
/*******************************************************************
Set the current offset (external interface).
********************************************************************/
bool prs_set_offset(prs_struct *ps, uint32 offset)
{
if(offset <= ps->data_offset) {
ps->data_offset = offset;
return True;
}
if(!prs_grow(ps, offset - ps->data_offset))
return False;
ps->data_offset = offset;
return True;
}
/*******************************************************************
Append the data from one parse_struct into another.
********************************************************************/
bool prs_append_prs_data(prs_struct *dst, prs_struct *src)
{
if (prs_offset(src) == 0)
return True;
if(!prs_grow(dst, prs_offset(src)))
return False;
memcpy(&dst->data_p[dst->data_offset], src->data_p, (size_t)prs_offset(src));
dst->data_offset += prs_offset(src);
return True;
}
/*******************************************************************
Append some data from one parse_struct into another.
********************************************************************/
bool prs_append_some_prs_data(prs_struct *dst, prs_struct *src, int32 start, uint32 len)
{
if (len == 0)
return True;
if(!prs_grow(dst, len))
return False;
memcpy(&dst->data_p[dst->data_offset], src->data_p + start, (size_t)len);
dst->data_offset += len;
return True;
}
/*******************************************************************
Append the data from a buffer into a parse_struct.
********************************************************************/
bool prs_copy_data_in(prs_struct *dst, const char *src, uint32 len)
{
if (len == 0)
return True;
if(!prs_grow(dst, len))
return False;
memcpy(&dst->data_p[dst->data_offset], src, (size_t)len);
dst->data_offset += len;
return True;
}
/*******************************************************************
Copy some data from a parse_struct into a buffer.
********************************************************************/
bool prs_copy_data_out(char *dst, prs_struct *src, uint32 len)
{
if (len == 0)
return True;
if(!prs_mem_get(src, len))
return False;
memcpy(dst, &src->data_p[src->data_offset], (size_t)len);
src->data_offset += len;
return True;
}
/*******************************************************************
Copy all the data from a parse_struct into a buffer.
********************************************************************/
bool prs_copy_all_data_out(char *dst, prs_struct *src)
{
uint32 len = prs_offset(src);
if (!len)
return True;
prs_set_offset(src, 0);
return prs_copy_data_out(dst, src, len);
}
/*******************************************************************
Set the data as X-endian (external interface).
********************************************************************/
void prs_set_endian_data(prs_struct *ps, bool endian)
{
ps->bigendian_data = endian;
}
/*******************************************************************
Align a the data_len to a multiple of align bytes - filling with
zeros.
********************************************************************/
bool prs_align(prs_struct *ps)
{
uint32 mod = ps->data_offset & (ps->align-1);
if (ps->align != 0 && mod != 0) {
uint32 extra_space = (ps->align - mod);
if(!prs_grow(ps, extra_space))
return False;
memset(&ps->data_p[ps->data_offset], '\0', (size_t)extra_space);
ps->data_offset += extra_space;
}
return True;
}
/******************************************************************
Align on a 2 byte boundary
*****************************************************************/
bool prs_align_uint16(prs_struct *ps)
{
bool ret;
uint8 old_align = ps->align;
ps->align = 2;
ret = prs_align(ps);
ps->align = old_align;
return ret;
}
/******************************************************************
Align on a 8 byte boundary
*****************************************************************/
bool prs_align_uint64(prs_struct *ps)
{
bool ret;
uint8 old_align = ps->align;
ps->align = 8;
ret = prs_align(ps);
ps->align = old_align;
return ret;
}
/******************************************************************
Align on a specific byte boundary
*****************************************************************/
bool prs_align_custom(prs_struct *ps, uint8 boundary)
{
bool ret;
uint8 old_align = ps->align;
ps->align = boundary;
ret = prs_align(ps);
ps->align = old_align;
return ret;
}
/*******************************************************************
Align only if required (for the unistr2 string mainly)
********************************************************************/
bool prs_align_needed(prs_struct *ps, uint32 needed)
{
if (needed==0)
return True;
else
return prs_align(ps);
}
/*******************************************************************
Ensure we can read/write to a given offset.
********************************************************************/
char *prs_mem_get(prs_struct *ps, uint32 extra_size)
{
if(UNMARSHALLING(ps)) {
/*
* If reading, ensure that we can read the requested size item.
*/
if (ps->data_offset + extra_size > ps->buffer_size) {
DEBUG(0,("prs_mem_get: reading data of size %u would overrun "
"buffer by %u bytes.\n",
(unsigned int)extra_size,
(unsigned int)(ps->data_offset + extra_size - ps->buffer_size) ));
return NULL;
}
} else {
/*
* Writing - grow the buffer if needed.
*/
if(!prs_grow(ps, extra_size))
return NULL;
}
return &ps->data_p[ps->data_offset];
}
/*******************************************************************
Change the struct type.
********************************************************************/
void prs_switch_type(prs_struct *ps, bool io)
{
if ((ps->io ^ io) == True)
ps->io=io;
}
/*******************************************************************
Force a prs_struct to be dynamic even when it's size is 0.
********************************************************************/
void prs_force_dynamic(prs_struct *ps)
{
ps->is_dynamic=True;
}
/*******************************************************************
Associate a session key with a parse struct.
********************************************************************/
void prs_set_session_key(prs_struct *ps, const char sess_key[16])
{
ps->sess_key = sess_key;
}
/*******************************************************************
Stream a uint8.
********************************************************************/
bool prs_uint8(const char *name, prs_struct *ps, int depth, uint8 *data8)
{
char *q = prs_mem_get(ps, 1);
if (q == NULL)
return False;
if (UNMARSHALLING(ps))
*data8 = CVAL(q,0);
else
SCVAL(q,0,*data8);
DEBUG(5,("%s%04x %s: %02x\n", tab_depth(5,depth), ps->data_offset, name, *data8));
ps->data_offset += 1;
return True;
}
/*******************************************************************
Stream a uint16* (allocate memory if unmarshalling)
********************************************************************/
bool prs_pointer( const char *name, prs_struct *ps, int depth,
void *dta, size_t data_size,
bool (*prs_fn)(const char*, prs_struct*, int, void*) )
{
void ** data = (void **)dta;
uint32 data_p;
/* output f000baaa to stream if the pointer is non-zero. */
data_p = *data ? 0xf000baaa : 0;
if ( !prs_uint32("ptr", ps, depth, &data_p ))
return False;
/* we're done if there is no data */
if ( !data_p )
return True;
if (UNMARSHALLING(ps)) {
if (data_size) {
if ( !(*data = PRS_ALLOC_MEM(ps, char, data_size)) )
return False;
} else {
*data = NULL;
}
}
return prs_fn(name, ps, depth, *data);
}
/*******************************************************************
Stream a uint16.
********************************************************************/
bool prs_uint16(const char *name, prs_struct *ps, int depth, uint16 *data16)
{
char *q = prs_mem_get(ps, sizeof(uint16));
if (q == NULL)
return False;
if (UNMARSHALLING(ps)) {
if (ps->bigendian_data)
*data16 = RSVAL(q,0);
else
*data16 = SVAL(q,0);
} else {
if (ps->bigendian_data)
RSSVAL(q,0,*data16);
else
SSVAL(q,0,*data16);
}
DEBUG(5,("%s%04x %s: %04x\n", tab_depth(5,depth), ps->data_offset, name, *data16));
ps->data_offset += sizeof(uint16);
return True;
}
/*******************************************************************
Stream a uint32.
********************************************************************/
bool prs_uint32(const char *name, prs_struct *ps, int depth, uint32 *data32)
{
char *q = prs_mem_get(ps, sizeof(uint32));
if (q == NULL)
return False;
if (UNMARSHALLING(ps)) {
if (ps->bigendian_data)
*data32 = RIVAL(q,0);
else
*data32 = IVAL(q,0);
} else {
if (ps->bigendian_data)
RSIVAL(q,0,*data32);
else
SIVAL(q,0,*data32);
}
DEBUG(5,("%s%04x %s: %08x\n", tab_depth(5,depth), ps->data_offset, name, *data32));
ps->data_offset += sizeof(uint32);
return True;
}
/*******************************************************************
Stream an int32.
********************************************************************/
bool prs_int32(const char *name, prs_struct *ps, int depth, int32 *data32)
{
char *q = prs_mem_get(ps, sizeof(int32));
if (q == NULL)
return False;
if (UNMARSHALLING(ps)) {
if (ps->bigendian_data)
*data32 = RIVALS(q,0);
else
*data32 = IVALS(q,0);
} else {
if (ps->bigendian_data)
RSIVALS(q,0,*data32);
else
SIVALS(q,0,*data32);
}
DEBUG(5,("%s%04x %s: %08x\n", tab_depth(5,depth), ps->data_offset, name, *data32));
ps->data_offset += sizeof(int32);
return True;
}
/*******************************************************************
Stream a NTSTATUS
********************************************************************/
bool prs_ntstatus(const char *name, prs_struct *ps, int depth, NTSTATUS *status)
{
char *q = prs_mem_get(ps, sizeof(uint32));
if (q == NULL)
return False;
if (UNMARSHALLING(ps)) {
if (ps->bigendian_data)
*status = NT_STATUS(RIVAL(q,0));
else
*status = NT_STATUS(IVAL(q,0));
} else {
if (ps->bigendian_data)
RSIVAL(q,0,NT_STATUS_V(*status));
else
SIVAL(q,0,NT_STATUS_V(*status));
}
DEBUG(5,("%s%04x %s: %s\n", tab_depth(5,depth), ps->data_offset, name,
nt_errstr(*status)));
ps->data_offset += sizeof(uint32);
return True;
}
/*******************************************************************
Stream a DCE error code
********************************************************************/
bool prs_dcerpc_status(const char *name, prs_struct *ps, int depth, NTSTATUS *status)
{
char *q = prs_mem_get(ps, sizeof(uint32));
if (q == NULL)
return False;
if (UNMARSHALLING(ps)) {
if (ps->bigendian_data)
*status = NT_STATUS(RIVAL(q,0));
else
*status = NT_STATUS(IVAL(q,0));
} else {
if (ps->bigendian_data)
RSIVAL(q,0,NT_STATUS_V(*status));
else
SIVAL(q,0,NT_STATUS_V(*status));
}
DEBUG(5,("%s%04x %s: %s\n", tab_depth(5,depth), ps->data_offset, name,
dcerpc_errstr(NT_STATUS_V(*status))));
ps->data_offset += sizeof(uint32);
return True;
}
/*******************************************************************
Stream a WERROR
********************************************************************/
bool prs_werror(const char *name, prs_struct *ps, int depth, WERROR *status)
{
char *q = prs_mem_get(ps, sizeof(uint32));
if (q == NULL)
return False;
if (UNMARSHALLING(ps)) {
if (ps->bigendian_data)
*status = W_ERROR(RIVAL(q,0));
else
*status = W_ERROR(IVAL(q,0));
} else {
if (ps->bigendian_data)
RSIVAL(q,0,W_ERROR_V(*status));
else
SIVAL(q,0,W_ERROR_V(*status));
}
DEBUG(5,("%s%04x %s: %s\n", tab_depth(5,depth), ps->data_offset, name,
dos_errstr(*status)));
ps->data_offset += sizeof(uint32);
return True;
}
/******************************************************************
Stream an array of uint8s. Length is number of uint8s.
********************************************************************/
bool prs_uint8s(bool charmode, const char *name, prs_struct *ps, int depth, uint8 *data8s, int len)
{
int i;
char *q = prs_mem_get(ps, len);
if (q == NULL)
return False;
if (UNMARSHALLING(ps)) {
for (i = 0; i < len; i++)
data8s[i] = CVAL(q,i);
} else {
for (i = 0; i < len; i++)
SCVAL(q, i, data8s[i]);
}
DEBUG(5,("%s%04x %s: ", tab_depth(5,depth), ps->data_offset ,name));
if (charmode)
print_asc(5, (unsigned char*)data8s, len);
else {
for (i = 0; i < len; i++)
DEBUG(5,("%02x ", data8s[i]));
}
DEBUG(5,("\n"));
ps->data_offset += len;
return True;
}
/******************************************************************
Stream an array of uint16s. Length is number of uint16s.
********************************************************************/
bool prs_uint16s(bool charmode, const char *name, prs_struct *ps, int depth, uint16 *data16s, int len)
{
int i;
char *q = prs_mem_get(ps, len * sizeof(uint16));
if (q == NULL)
return False;
if (UNMARSHALLING(ps)) {
if (ps->bigendian_data) {
for (i = 0; i < len; i++)
data16s[i] = RSVAL(q, 2*i);
} else {
for (i = 0; i < len; i++)
data16s[i] = SVAL(q, 2*i);
}
} else {
if (ps->bigendian_data) {
for (i = 0; i < len; i++)
RSSVAL(q, 2*i, data16s[i]);
} else {
for (i = 0; i < len; i++)
SSVAL(q, 2*i, data16s[i]);
}
}
DEBUG(5,("%s%04x %s: ", tab_depth(5,depth), ps->data_offset, name));
if (charmode)
print_asc(5, (unsigned char*)data16s, 2*len);
else {
for (i = 0; i < len; i++)
DEBUG(5,("%04x ", data16s[i]));
}
DEBUG(5,("\n"));
ps->data_offset += (len * sizeof(uint16));
return True;
}
/******************************************************************
Start using a function for streaming unicode chars. If unmarshalling,
output must be little-endian, if marshalling, input must be little-endian.
********************************************************************/
static void dbg_rw_punival(bool charmode, const char *name, int depth, prs_struct *ps,
char *in_buf, char *out_buf, int len)
{
int i;
if (UNMARSHALLING(ps)) {
if (ps->bigendian_data) {
for (i = 0; i < len; i++)
SSVAL(out_buf,2*i,RSVAL(in_buf, 2*i));
} else {
for (i = 0; i < len; i++)
SSVAL(out_buf, 2*i, SVAL(in_buf, 2*i));
}
} else {
if (ps->bigendian_data) {
for (i = 0; i < len; i++)
RSSVAL(in_buf, 2*i, SVAL(out_buf,2*i));
} else {
for (i = 0; i < len; i++)
SSVAL(in_buf, 2*i, SVAL(out_buf,2*i));
}
}
DEBUG(5,("%s%04x %s: ", tab_depth(5,depth), ps->data_offset, name));
if (charmode)
print_asc(5, (unsigned char*)out_buf, 2*len);
else {
for (i = 0; i < len; i++)
DEBUG(5,("%04x ", out_buf[i]));
}
DEBUG(5,("\n"));
}
/******************************************************************
Stream a unistr. Always little endian.
********************************************************************/
bool prs_uint16uni(bool charmode, const char *name, prs_struct *ps, int depth, uint16 *data16s, int len)
{
char *q = prs_mem_get(ps, len * sizeof(uint16));
if (q == NULL)
return False;
dbg_rw_punival(charmode, name, depth, ps, q, (char *)data16s, len);
ps->data_offset += (len * sizeof(uint16));
return True;
}
/******************************************************************
Stream an array of uint32s. Length is number of uint32s.
********************************************************************/
bool prs_uint32s(bool charmode, const char *name, prs_struct *ps, int depth, uint32 *data32s, int len)
{
int i;
char *q = prs_mem_get(ps, len * sizeof(uint32));
if (q == NULL)
return False;
if (UNMARSHALLING(ps)) {
if (ps->bigendian_data) {
for (i = 0; i < len; i++)
data32s[i] = RIVAL(q, 4*i);
} else {
for (i = 0; i < len; i++)
data32s[i] = IVAL(q, 4*i);
}
} else {
if (ps->bigendian_data) {
for (i = 0; i < len; i++)
RSIVAL(q, 4*i, data32s[i]);
} else {
for (i = 0; i < len; i++)
SIVAL(q, 4*i, data32s[i]);
}
}
DEBUG(5,("%s%04x %s: ", tab_depth(5,depth), ps->data_offset, name));
if (charmode)
print_asc(5, (unsigned char*)data32s, 4*len);
else {
for (i = 0; i < len; i++)
DEBUG(5,("%08x ", data32s[i]));
}
DEBUG(5,("\n"));
ps->data_offset += (len * sizeof(uint32));
return True;
}
/******************************************************************
Stream an array of unicode string, length/buffer specified separately,
in uint16 chars. The unicode string is already in little-endian format.
********************************************************************/
bool prs_buffer5(bool charmode, const char *name, prs_struct *ps, int depth, BUFFER5 *str)
{
char *p;
char *q = prs_mem_get(ps, str->buf_len * sizeof(uint16));
if (q == NULL)
return False;
/* If the string is empty, we don't have anything to stream */
if (str->buf_len==0)
return True;
if (UNMARSHALLING(ps)) {
str->buffer = PRS_ALLOC_MEM(ps,uint16,str->buf_len);
if (str->buffer == NULL)
return False;
}
p = (char *)str->buffer;
dbg_rw_punival(charmode, name, depth, ps, q, p, str->buf_len);
ps->data_offset += (str->buf_len * sizeof(uint16));
return True;
}
/******************************************************************
Stream a "not" unicode string, length/buffer specified separately,
in byte chars. String is in little-endian format.
********************************************************************/
bool prs_regval_buffer(bool charmode, const char *name, prs_struct *ps, int depth, REGVAL_BUFFER *buf)
{
char *p;
char *q = prs_mem_get(ps, buf->buf_len);
if (q == NULL)
return False;
if (UNMARSHALLING(ps)) {
if (buf->buf_len > buf->buf_max_len) {
return False;
}
if ( buf->buf_max_len ) {
buf->buffer = PRS_ALLOC_MEM(ps, uint16, buf->buf_max_len);
if ( buf->buffer == NULL )
return False;
} else {
buf->buffer = NULL;
}
}
p = (char *)buf->buffer;
dbg_rw_punival(charmode, name, depth, ps, q, p, buf->buf_len/2);
ps->data_offset += buf->buf_len;
return True;
}
/******************************************************************
Stream a string, length/buffer specified separately,
in uint8 chars.
********************************************************************/
bool prs_string2(bool charmode, const char *name, prs_struct *ps, int depth, STRING2 *str)
{
unsigned int i;
char *q = prs_mem_get(ps, str->str_str_len);
if (q == NULL)
return False;
if (UNMARSHALLING(ps)) {
if (str->str_str_len > str->str_max_len) {
return False;
}
if (str->str_max_len) {
str->buffer = PRS_ALLOC_MEM(ps,unsigned char, str->str_max_len);
if (str->buffer == NULL)
return False;
} else {
str->buffer = NULL;
/* Return early to ensure Coverity isn't confused. */
DEBUG(5,("%s%04x %s: \n", tab_depth(5,depth), ps->data_offset, name));
return True;
}
}
if (UNMARSHALLING(ps)) {
for (i = 0; i < str->str_str_len; i++)
str->buffer[i] = CVAL(q,i);
} else {
for (i = 0; i < str->str_str_len; i++)
SCVAL(q, i, str->buffer[i]);
}
DEBUG(5,("%s%04x %s: ", tab_depth(5,depth), ps->data_offset, name));
if (charmode)
print_asc(5, (unsigned char*)str->buffer, str->str_str_len);
else {
for (i = 0; i < str->str_str_len; i++)
DEBUG(5,("%02x ", str->buffer[i]));
}
DEBUG(5,("\n"));
ps->data_offset += str->str_str_len;
return True;
}
/******************************************************************
Stream a unicode string, length/buffer specified separately,
in uint16 chars. The unicode string is already in little-endian format.
********************************************************************/
bool prs_unistr2(bool charmode, const char *name, prs_struct *ps, int depth, UNISTR2 *str)
{
char *p;
char *q = prs_mem_get(ps, str->uni_str_len * sizeof(uint16));
if (q == NULL)
return False;
/* If the string is empty, we don't have anything to stream */
if (str->uni_str_len==0)
return True;
if (UNMARSHALLING(ps)) {
if (str->uni_str_len > str->uni_max_len) {
return False;
}
if (str->uni_max_len) {
str->buffer = PRS_ALLOC_MEM(ps,uint16,str->uni_max_len);
if (str->buffer == NULL)
return False;
} else {
str->buffer = NULL;
}
}
p = (char *)str->buffer;
dbg_rw_punival(charmode, name, depth, ps, q, p, str->uni_str_len);
ps->data_offset += (str->uni_str_len * sizeof(uint16));
return True;
}
/******************************************************************
Stream a unicode string, length/buffer specified separately,
in uint16 chars. The unicode string is already in little-endian format.
********************************************************************/
bool prs_unistr3(bool charmode, const char *name, UNISTR3 *str, prs_struct *ps, int depth)
{
char *p;
char *q = prs_mem_get(ps, str->uni_str_len * sizeof(uint16));
if (q == NULL)
return False;
if (UNMARSHALLING(ps)) {
if (str->uni_str_len) {
str->str.buffer = PRS_ALLOC_MEM(ps,uint16,str->uni_str_len);
if (str->str.buffer == NULL)
return False;
} else {
str->str.buffer = NULL;
}
}
p = (char *)str->str.buffer;
dbg_rw_punival(charmode, name, depth, ps, q, p, str->uni_str_len);
ps->data_offset += (str->uni_str_len * sizeof(uint16));
return True;
}
/*******************************************************************
Stream a unicode null-terminated string. As the string is already
in little-endian format then do it as a stream of bytes.
********************************************************************/
bool prs_unistr(const char *name, prs_struct *ps, int depth, UNISTR *str)
{
unsigned int len = 0;
unsigned char *p = (unsigned char *)str->buffer;
uint8 *start;
char *q;
uint32 max_len;
uint16* ptr;
if (MARSHALLING(ps)) {
for(len = 0; str->buffer[len] != 0; len++)
;
q = prs_mem_get(ps, (len+1)*2);
if (q == NULL)
return False;
start = (uint8*)q;
for(len = 0; str->buffer[len] != 0; len++) {
if(ps->bigendian_data) {
/* swap bytes - p is little endian, q is big endian. */
q[0] = (char)p[1];
q[1] = (char)p[0];
p += 2;
q += 2;
}
else
{
q[0] = (char)p[0];
q[1] = (char)p[1];
p += 2;
q += 2;
}
}
/*
* even if the string is 'empty' (only an \0 char)
* at this point the leading \0 hasn't been parsed.
* so parse it now
*/
q[0] = 0;
q[1] = 0;
q += 2;
len++;
DEBUG(5,("%s%04x %s: ", tab_depth(5,depth), ps->data_offset, name));
print_asc(5, (unsigned char*)start, 2*len);
DEBUG(5, ("\n"));
}
else { /* unmarshalling */
uint32 alloc_len = 0;
q = ps->data_p + prs_offset(ps);
/*
* Work out how much space we need and talloc it.
*/
max_len = (ps->buffer_size - ps->data_offset)/sizeof(uint16);
/* the test of the value of *ptr helps to catch the circumstance
where we have an emtpty (non-existent) string in the buffer */
for ( ptr = (uint16 *)q; *ptr++ && (alloc_len <= max_len); alloc_len++)
/* do nothing */
;
if (alloc_len < max_len)
alloc_len += 1;
/* should we allocate anything at all? */
str->buffer = PRS_ALLOC_MEM(ps,uint16,alloc_len);
if ((str->buffer == NULL) && (alloc_len > 0))
return False;
p = (unsigned char *)str->buffer;
len = 0;
/* the (len < alloc_len) test is to prevent us from overwriting
memory that is not ours...if we get that far, we have a non-null
terminated string in the buffer and have messed up somewhere */
while ((len < alloc_len) && (*(uint16 *)q != 0)) {
if(ps->bigendian_data)
{
/* swap bytes - q is big endian, p is little endian. */
p[0] = (unsigned char)q[1];
p[1] = (unsigned char)q[0];
p += 2;
q += 2;
} else {
p[0] = (unsigned char)q[0];
p[1] = (unsigned char)q[1];
p += 2;
q += 2;
}
len++;
}
if (len < alloc_len) {
/* NULL terminate the UNISTR */
str->buffer[len++] = '\0';
}
DEBUG(5,("%s%04x %s: ", tab_depth(5,depth), ps->data_offset, name));
print_asc(5, (unsigned char*)str->buffer, 2*len);
DEBUG(5, ("\n"));
}
/* set the offset in the prs_struct; 'len' points to the
terminiating NULL in the UNISTR so we need to go one more
uint16 */
ps->data_offset += (len)*2;
return True;
}
/*******************************************************************
Stream a null-terminated string. len is strlen, and therefore does
not include the null-termination character.
********************************************************************/
bool prs_string(const char *name, prs_struct *ps, int depth, char *str, int max_buf_size)
{
char *q;
int i;
int len;
if (UNMARSHALLING(ps))
len = strlen(&ps->data_p[ps->data_offset]);
else
len = strlen(str);
len = MIN(len, (max_buf_size-1));
q = prs_mem_get(ps, len+1);
if (q == NULL)
return False;
for(i = 0; i < len; i++) {
if (UNMARSHALLING(ps))
str[i] = q[i];
else
q[i] = str[i];
}
/* The terminating null. */
str[i] = '\0';
if (MARSHALLING(ps)) {
q[i] = '\0';
}
ps->data_offset += len+1;
dump_data(5+depth, (uint8 *)q, len);
return True;
}
bool prs_string_alloc(const char *name, prs_struct *ps, int depth, const char **str)
{
size_t len;
char *tmp_str;
if (UNMARSHALLING(ps)) {
len = strlen(&ps->data_p[ps->data_offset]);
} else {
len = strlen(*str);
}
tmp_str = PRS_ALLOC_MEM(ps, char, len+1);
if (tmp_str == NULL) {
return False;
}
if (MARSHALLING(ps)) {
strncpy(tmp_str, *str, len);
}
if (!prs_string(name, ps, depth, tmp_str, len+1)) {
return False;
}
*str = tmp_str;
return True;
}
/*******************************************************************
prs_uint16 wrapper. Call this and it sets up a pointer to where the
uint16 should be stored, or gets the size if reading.
********************************************************************/
bool prs_uint16_pre(const char *name, prs_struct *ps, int depth, uint16 *data16, uint32 *offset)
{
*offset = ps->data_offset;
if (UNMARSHALLING(ps)) {
/* reading. */
return prs_uint16(name, ps, depth, data16);
} else {
char *q = prs_mem_get(ps, sizeof(uint16));
if(q ==NULL)
return False;
ps->data_offset += sizeof(uint16);
}
return True;
}
/*******************************************************************
prs_uint16 wrapper. call this and it retrospectively stores the size.
does nothing on reading, as that is already handled by ...._pre()
********************************************************************/
bool prs_uint16_post(const char *name, prs_struct *ps, int depth, uint16 *data16,
uint32 ptr_uint16, uint32 start_offset)
{
if (MARSHALLING(ps)) {
/*
* Writing - temporarily move the offset pointer.
*/
uint16 data_size = ps->data_offset - start_offset;
uint32 old_offset = ps->data_offset;
ps->data_offset = ptr_uint16;
if(!prs_uint16(name, ps, depth, &data_size)) {
ps->data_offset = old_offset;
return False;
}
ps->data_offset = old_offset;
} else {
ps->data_offset = start_offset + (uint32)(*data16);
}
return True;
}
/*******************************************************************
prs_uint32 wrapper. Call this and it sets up a pointer to where the
uint32 should be stored, or gets the size if reading.
********************************************************************/
bool prs_uint32_pre(const char *name, prs_struct *ps, int depth, uint32 *data32, uint32 *offset)
{
*offset = ps->data_offset;
if (UNMARSHALLING(ps) && (data32 != NULL)) {
/* reading. */
return prs_uint32(name, ps, depth, data32);
} else {
ps->data_offset += sizeof(uint32);
}
return True;
}
/*******************************************************************
prs_uint32 wrapper. call this and it retrospectively stores the size.
does nothing on reading, as that is already handled by ...._pre()
********************************************************************/
bool prs_uint32_post(const char *name, prs_struct *ps, int depth, uint32 *data32,
uint32 ptr_uint32, uint32 data_size)
{
if (MARSHALLING(ps)) {
/*
* Writing - temporarily move the offset pointer.
*/
uint32 old_offset = ps->data_offset;
ps->data_offset = ptr_uint32;
if(!prs_uint32(name, ps, depth, &data_size)) {
ps->data_offset = old_offset;
return False;
}
ps->data_offset = old_offset;
}
return True;
}
/* useful function to store a structure in rpc wire format */
int tdb_prs_store(TDB_CONTEXT *tdb, TDB_DATA kbuf, prs_struct *ps)
{
TDB_DATA dbuf;
dbuf.dptr = (uint8 *)ps->data_p;
dbuf.dsize = prs_offset(ps);
return tdb_trans_store(tdb, kbuf, dbuf, TDB_REPLACE);
}
/* useful function to fetch a structure into rpc wire format */
int tdb_prs_fetch(TDB_CONTEXT *tdb, TDB_DATA kbuf, prs_struct *ps, TALLOC_CTX *mem_ctx)
{
TDB_DATA dbuf;
prs_init(ps, 0, mem_ctx, UNMARSHALL);
dbuf = tdb_fetch(tdb, kbuf);
if (!dbuf.dptr)
return -1;
prs_give_memory(ps, (char *)dbuf.dptr, dbuf.dsize, True);
return 0;
}
/*******************************************************************
hash a stream.
********************************************************************/
bool prs_hash1(prs_struct *ps, uint32 offset, int len)
{
char *q;
q = ps->data_p;
q = &q[offset];
#ifdef DEBUG_PASSWORD
DEBUG(100, ("prs_hash1\n"));
dump_data(100, (uint8 *)ps->sess_key, 16);
dump_data(100, (uint8 *)q, len);
#endif
SamOEMhash((uchar *) q, (const unsigned char *)ps->sess_key, len);
#ifdef DEBUG_PASSWORD
dump_data(100, (uint8 *)q, len);
#endif
return True;
}
/*******************************************************************
Create a digest over the entire packet (including the data), and
MD5 it with the session key.
********************************************************************/
static void schannel_digest(struct schannel_auth_struct *a,
enum pipe_auth_level auth_level,
RPC_AUTH_SCHANNEL_CHK * verf,
char *data, size_t data_len,
uchar digest_final[16])
{
uchar whole_packet_digest[16];
static const uchar zeros[4] = { 0, };
struct MD5Context ctx3;
/* verfiy the signature on the packet by MD5 over various bits */
MD5Init(&ctx3);
/* use our sequence number, which ensures the packet is not
out of order */
MD5Update(&ctx3, zeros, sizeof(zeros));
MD5Update(&ctx3, verf->sig, sizeof(verf->sig));
if (auth_level == PIPE_AUTH_LEVEL_PRIVACY) {
MD5Update(&ctx3, verf->confounder, sizeof(verf->confounder));
}
MD5Update(&ctx3, (const unsigned char *)data, data_len);
MD5Final(whole_packet_digest, &ctx3);
dump_data_pw("whole_packet_digest:\n", whole_packet_digest, sizeof(whole_packet_digest));
/* MD5 this result and the session key, to prove that
only a valid client could had produced this */
hmac_md5(a->sess_key, whole_packet_digest, sizeof(whole_packet_digest), digest_final);
}
/*******************************************************************
Calculate the key with which to encode the data payload
********************************************************************/
static void schannel_get_sealing_key(struct schannel_auth_struct *a,
RPC_AUTH_SCHANNEL_CHK *verf,
uchar sealing_key[16])
{
static const uchar zeros[4] = { 0, };
uchar digest2[16];
uchar sess_kf0[16];
int i;
for (i = 0; i < sizeof(sess_kf0); i++) {
sess_kf0[i] = a->sess_key[i] ^ 0xf0;
}
dump_data_pw("sess_kf0:\n", sess_kf0, sizeof(sess_kf0));
/* MD5 of sess_kf0 and 4 zero bytes */
hmac_md5(sess_kf0, zeros, 0x4, digest2);
dump_data_pw("digest2:\n", digest2, sizeof(digest2));
/* MD5 of the above result, plus 8 bytes of sequence number */
hmac_md5(digest2, verf->seq_num, sizeof(verf->seq_num), sealing_key);
dump_data_pw("sealing_key:\n", sealing_key, 16);
}
/*******************************************************************
Encode or Decode the sequence number (which is symmetric)
********************************************************************/
static void schannel_deal_with_seq_num(struct schannel_auth_struct *a,
RPC_AUTH_SCHANNEL_CHK *verf)
{
static const uchar zeros[4] = { 0, };
uchar sequence_key[16];
uchar digest1[16];
hmac_md5(a->sess_key, zeros, sizeof(zeros), digest1);
dump_data_pw("(sequence key) digest1:\n", digest1, sizeof(digest1));
hmac_md5(digest1, verf->packet_digest, 8, sequence_key);
dump_data_pw("sequence_key:\n", sequence_key, sizeof(sequence_key));
dump_data_pw("seq_num (before):\n", verf->seq_num, sizeof(verf->seq_num));
SamOEMhash(verf->seq_num, sequence_key, 8);
dump_data_pw("seq_num (after):\n", verf->seq_num, sizeof(verf->seq_num));
}
/*******************************************************************
creates an RPC_AUTH_SCHANNEL_CHK structure.
********************************************************************/
static bool init_rpc_auth_schannel_chk(RPC_AUTH_SCHANNEL_CHK * chk,
const uchar sig[8],
const uchar packet_digest[8],
const uchar seq_num[8], const uchar confounder[8])
{
if (chk == NULL)
return False;
memcpy(chk->sig, sig, sizeof(chk->sig));
memcpy(chk->packet_digest, packet_digest, sizeof(chk->packet_digest));
memcpy(chk->seq_num, seq_num, sizeof(chk->seq_num));
memcpy(chk->confounder, confounder, sizeof(chk->confounder));
return True;
}
/*******************************************************************
Encode a blob of data using the schannel alogrithm, also produceing
a checksum over the original data. We currently only support
signing and sealing togeather - the signing-only code is close, but not
quite compatible with what MS does.
********************************************************************/
void schannel_encode(struct schannel_auth_struct *a, enum pipe_auth_level auth_level,
enum schannel_direction direction,
RPC_AUTH_SCHANNEL_CHK * verf,
char *data, size_t data_len)
{
uchar digest_final[16];
uchar confounder[8];
uchar seq_num[8];
static const uchar nullbytes[8] = { 0, };
static const uchar schannel_seal_sig[8] = SCHANNEL_SEAL_SIGNATURE;
static const uchar schannel_sign_sig[8] = SCHANNEL_SIGN_SIGNATURE;
const uchar *schannel_sig = NULL;
DEBUG(10,("SCHANNEL: schannel_encode seq_num=%d data_len=%lu\n", a->seq_num, (unsigned long)data_len));
if (auth_level == PIPE_AUTH_LEVEL_PRIVACY) {
schannel_sig = schannel_seal_sig;
} else {
schannel_sig = schannel_sign_sig;
}
/* fill the 'confounder' with random data */
generate_random_buffer(confounder, sizeof(confounder));
dump_data_pw("a->sess_key:\n", a->sess_key, sizeof(a->sess_key));
RSIVAL(seq_num, 0, a->seq_num);
switch (direction) {
case SENDER_IS_INITIATOR:
SIVAL(seq_num, 4, 0x80);
break;
case SENDER_IS_ACCEPTOR:
SIVAL(seq_num, 4, 0x0);
break;
}
dump_data_pw("verf->seq_num:\n", seq_num, sizeof(verf->seq_num));
init_rpc_auth_schannel_chk(verf, schannel_sig, nullbytes,
seq_num, confounder);
/* produce a digest of the packet to prove it's legit (before we seal it) */
schannel_digest(a, auth_level, verf, data, data_len, digest_final);
memcpy(verf->packet_digest, digest_final, sizeof(verf->packet_digest));
if (auth_level == PIPE_AUTH_LEVEL_PRIVACY) {
uchar sealing_key[16];
/* get the key to encode the data with */
schannel_get_sealing_key(a, verf, sealing_key);
/* encode the verification data */
dump_data_pw("verf->confounder:\n", verf->confounder, sizeof(verf->confounder));
SamOEMhash(verf->confounder, sealing_key, 8);
dump_data_pw("verf->confounder_enc:\n", verf->confounder, sizeof(verf->confounder));
/* encode the packet payload */
dump_data_pw("data:\n", (const unsigned char *)data, data_len);
SamOEMhash((unsigned char *)data, sealing_key, data_len);
dump_data_pw("data_enc:\n", (const unsigned char *)data, data_len);
}
/* encode the sequence number (key based on packet digest) */
/* needs to be done after the sealing, as the original version
is used in the sealing stuff... */
schannel_deal_with_seq_num(a, verf);
return;
}
/*******************************************************************
Decode a blob of data using the schannel alogrithm, also verifiying
a checksum over the original data. We currently can verify signed messages,
as well as decode sealed messages
********************************************************************/
bool schannel_decode(struct schannel_auth_struct *a, enum pipe_auth_level auth_level,
enum schannel_direction direction,
RPC_AUTH_SCHANNEL_CHK * verf, char *data, size_t data_len)
{
uchar digest_final[16];
static const uchar schannel_seal_sig[8] = SCHANNEL_SEAL_SIGNATURE;
static const uchar schannel_sign_sig[8] = SCHANNEL_SIGN_SIGNATURE;
const uchar *schannel_sig = NULL;
uchar seq_num[8];
DEBUG(10,("SCHANNEL: schannel_decode seq_num=%d data_len=%lu\n", a->seq_num, (unsigned long)data_len));
if (auth_level == PIPE_AUTH_LEVEL_PRIVACY) {
schannel_sig = schannel_seal_sig;
} else {
schannel_sig = schannel_sign_sig;
}
/* Create the expected sequence number for comparison */
RSIVAL(seq_num, 0, a->seq_num);
switch (direction) {
case SENDER_IS_INITIATOR:
SIVAL(seq_num, 4, 0x80);
break;
case SENDER_IS_ACCEPTOR:
SIVAL(seq_num, 4, 0x0);
break;
}
DEBUG(10,("SCHANNEL: schannel_decode seq_num=%d data_len=%lu\n", a->seq_num, (unsigned long)data_len));
dump_data_pw("a->sess_key:\n", a->sess_key, sizeof(a->sess_key));
dump_data_pw("seq_num:\n", seq_num, sizeof(seq_num));
/* extract the sequence number (key based on supplied packet digest) */
/* needs to be done before the sealing, as the original version
is used in the sealing stuff... */
schannel_deal_with_seq_num(a, verf);
if (memcmp(verf->seq_num, seq_num, sizeof(seq_num))) {
/* don't even bother with the below if the sequence number is out */
/* The sequence number is MD5'ed with a key based on the whole-packet
digest, as supplied by the client. We check that it's a valid
checksum after the decode, below
*/
DEBUG(2, ("schannel_decode: FAILED: packet sequence number:\n"));
dump_data(2, verf->seq_num, sizeof(verf->seq_num));
DEBUG(2, ("should be:\n"));
dump_data(2, seq_num, sizeof(seq_num));
return False;
}
if (memcmp(verf->sig, schannel_sig, sizeof(verf->sig))) {
/* Validate that the other end sent the expected header */
DEBUG(2, ("schannel_decode: FAILED: packet header:\n"));
dump_data(2, verf->sig, sizeof(verf->sig));
DEBUG(2, ("should be:\n"));
dump_data(2, schannel_sig, sizeof(schannel_sig));
return False;
}
if (auth_level == PIPE_AUTH_LEVEL_PRIVACY) {
uchar sealing_key[16];
/* get the key to extract the data with */
schannel_get_sealing_key(a, verf, sealing_key);
/* extract the verification data */
dump_data_pw("verf->confounder:\n", verf->confounder,
sizeof(verf->confounder));
SamOEMhash(verf->confounder, sealing_key, 8);
dump_data_pw("verf->confounder_dec:\n", verf->confounder,
sizeof(verf->confounder));
/* extract the packet payload */
dump_data_pw("data :\n", (const unsigned char *)data, data_len);
SamOEMhash((unsigned char *)data, sealing_key, data_len);
dump_data_pw("datadec:\n", (const unsigned char *)data, data_len);
}
/* digest includes 'data' after unsealing */
schannel_digest(a, auth_level, verf, data, data_len, digest_final);
dump_data_pw("Calculated digest:\n", digest_final,
sizeof(digest_final));
dump_data_pw("verf->packet_digest:\n", verf->packet_digest,
sizeof(verf->packet_digest));
/* compare - if the client got the same result as us, then
it must know the session key */
return (memcmp(digest_final, verf->packet_digest,
sizeof(verf->packet_digest)) == 0);
}
/*******************************************************************
creates a new prs_struct containing a DATA_BLOB
********************************************************************/
bool prs_init_data_blob(prs_struct *prs, DATA_BLOB *blob, TALLOC_CTX *mem_ctx)
{
if (!prs_init( prs, RPC_MAX_PDU_FRAG_LEN, mem_ctx, MARSHALL ))
return False;
if (!prs_copy_data_in(prs, (char *)blob->data, blob->length))
return False;
return True;
}
/*******************************************************************
return the contents of a prs_struct in a DATA_BLOB
********************************************************************/
bool prs_data_blob(prs_struct *prs, DATA_BLOB *blob, TALLOC_CTX *mem_ctx)
{
blob->length = prs_data_size(prs);
blob->data = (uint8 *)TALLOC_ZERO_SIZE(mem_ctx, blob->length);
/* set the pointer at the end of the buffer */
prs_set_offset( prs, prs_data_size(prs) );
if (!prs_copy_all_data_out((char *)blob->data, prs))
return False;
return True;
}