1
0
mirror of https://github.com/samba-team/samba.git synced 2025-01-06 13:18:07 +03:00
samba-mirror/third_party/resolv_wrapper/resolv_wrapper.c
Andreas Schneider 429bf5ce23 third_party: Update resolv_wrapper to version 1.1.8
res_randomid() is marked as deprecated in newer glibc.

Signed-off-by: Andreas Schneider <asn@samba.org>
Reviewed-by: Jeremy Allison <jra@samba.org>

Autobuild-User(master): Jeremy Allison <jra@samba.org>
Autobuild-Date(master): Wed Dec 21 21:28:42 UTC 2022 on sn-devel-184
2022-12-21 21:28:42 +00:00

2227 lines
50 KiB
C

/*
* Copyright (c) 2014-2018 Andreas Schneider <asn@samba.org>
* Copyright (c) 2014-2016 Jakub Hrozek <jakub.hrozek@posteo.se>
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the author nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "config.h"
#include <errno.h>
#include <arpa/inet.h>
#ifdef HAVE_ARPA_NAMESER_H
#include <arpa/nameser.h>
#endif /* HAVE_ARPA_NAMESER_H */
#include <netinet/in.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <stdarg.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
#include <ctype.h>
#include <resolv.h>
#if defined(HAVE_RES_STATE_U_EXT_NSADDRS) || defined(HAVE_RES_SOCKADDR_UNION_SIN6)
#define HAVE_RESOLV_IPV6_NSADDRS 1
#endif
/* GCC has printf type attribute check. */
#ifdef HAVE_ATTRIBUTE_PRINTF_FORMAT
#define PRINTF_ATTRIBUTE(a,b) __attribute__ ((__format__ (__printf__, a, b)))
#else
#define PRINTF_ATTRIBUTE(a,b)
#endif /* HAVE_ATTRIBUTE_PRINTF_FORMAT */
#ifdef HAVE_DESTRUCTOR_ATTRIBUTE
#define DESTRUCTOR_ATTRIBUTE __attribute__ ((destructor))
#else
#define DESTRUCTOR_ATTRIBUTE
#endif /* HAVE_DESTRUCTOR_ATTRIBUTE */
#ifndef RWRAP_DEFAULT_FAKE_TTL
#define RWRAP_DEFAULT_FAKE_TTL 600
#endif /* RWRAP_DEFAULT_FAKE_TTL */
#ifndef HAVE_NS_NAME_COMPRESS
#define ns_name_compress dn_comp
#endif
#define ns_t_uri 256
enum rwrap_dbglvl_e {
RWRAP_LOG_ERROR = 0,
RWRAP_LOG_WARN,
RWRAP_LOG_NOTICE,
RWRAP_LOG_DEBUG,
RWRAP_LOG_TRACE
};
#ifndef HAVE_GETPROGNAME
static const char *getprogname(void)
{
#if defined(HAVE_PROGRAM_INVOCATION_SHORT_NAME)
return program_invocation_short_name;
#elif defined(HAVE_GETEXECNAME)
return getexecname();
#else
return NULL;
#endif /* HAVE_PROGRAM_INVOCATION_SHORT_NAME */
}
#endif /* HAVE_GETPROGNAME */
static void rwrap_log(enum rwrap_dbglvl_e dbglvl, const char *func, const char *format, ...) PRINTF_ATTRIBUTE(3, 4);
# define RWRAP_LOG(dbglvl, ...) rwrap_log((dbglvl), __func__, __VA_ARGS__)
static void rwrap_log(enum rwrap_dbglvl_e dbglvl,
const char *func,
const char *format, ...)
{
char buffer[1024];
va_list va;
const char *d;
unsigned int lvl = 0;
const char *prefix = NULL;
const char *progname = NULL;
d = getenv("RESOLV_WRAPPER_DEBUGLEVEL");
if (d != NULL) {
lvl = atoi(d);
}
if (lvl < dbglvl) {
return;
}
va_start(va, format);
vsnprintf(buffer, sizeof(buffer), format, va);
va_end(va);
switch (dbglvl) {
case RWRAP_LOG_ERROR:
prefix = "RWRAP_ERROR";
break;
case RWRAP_LOG_WARN:
prefix = "RWRAP_WARN";
break;
case RWRAP_LOG_NOTICE:
prefix = "RWRAP_NOTICE";
break;
case RWRAP_LOG_DEBUG:
prefix = "RWRAP_DEBUG";
break;
case RWRAP_LOG_TRACE:
prefix = "RWRAP_TRACE";
break;
}
progname = getprogname();
if (progname == NULL) {
progname = "<unknown>";
}
fprintf(stderr,
"%s[%s (%u)] - %s: %s\n",
prefix,
progname,
(unsigned int)getpid(),
func,
buffer);
}
#ifndef SAFE_FREE
#define SAFE_FREE(x) do { if ((x) != NULL) {free(x); (x)=NULL;} } while(0)
#endif
#define NEXT_KEY(buf, key) do { \
(key) = (buf) ? strpbrk((buf), " \t") : NULL; \
if ((key) != NULL) { \
(key)[0] = '\0'; \
(key)++; \
} \
while ((key) != NULL \
&& (isblank((int)(key)[0]))) { \
(key)++; \
} \
} while(0);
#define RWRAP_MAX_RECURSION 64
union rwrap_sockaddr {
struct sockaddr sa;
struct sockaddr_in in;
struct sockaddr_in6 in6;
};
/* Priority and weight can be omitted from the hosts file, but need to be part
* of the output
*/
#define DFL_SRV_PRIO 1
#define DFL_SRV_WEIGHT 100
#define DFL_URI_PRIO 1
#define DFL_URI_WEIGHT 100
struct rwrap_srv_rrdata {
uint16_t port;
uint16_t prio;
uint16_t weight;
char hostname[MAXDNAME];
};
struct rwrap_uri_rrdata {
uint16_t prio;
uint16_t weight;
char uri[MAXDNAME];
};
struct rwrap_soa_rrdata {
uint32_t serial;
uint32_t refresh;
uint32_t retry;
uint32_t expire;
uint32_t minimum;
char nameserver[MAXDNAME];
char mailbox[MAXDNAME];
};
struct rwrap_fake_rr {
union fake_rrdata {
struct in_addr a_rec;
struct in6_addr aaaa_rec;
struct rwrap_srv_rrdata srv_rec;
struct rwrap_uri_rrdata uri_rec;
struct rwrap_soa_rrdata soa_rec;
char cname_rec[MAXDNAME];
char ptr_rec[MAXDNAME];
char txt_rec[MAXDNAME];
} rrdata;
char key[MAXDNAME];
int type; /* ns_t_* */
};
static void rwrap_fake_rr_init(struct rwrap_fake_rr *rr, size_t len)
{
size_t i;
for (i = 0; i < len; i++) {
rr[i].type = ns_t_invalid;
}
}
static int rwrap_create_fake_a_rr(const char *key,
const char *value,
struct rwrap_fake_rr *rr)
{
int ok;
ok = inet_pton(AF_INET, value, &rr->rrdata.a_rec);
if (!ok) {
RWRAP_LOG(RWRAP_LOG_ERROR,
"Failed to convert [%s] to binary\n", value);
return -1;
}
memcpy(rr->key, key, strlen(key) + 1);
rr->type = ns_t_a;
return 0;
}
static int rwrap_create_fake_aaaa_rr(const char *key,
const char *value,
struct rwrap_fake_rr *rr)
{
int ok;
ok = inet_pton(AF_INET6, value, &rr->rrdata.aaaa_rec);
if (!ok) {
RWRAP_LOG(RWRAP_LOG_ERROR,
"Failed to convert [%s] to binary\n", value);
return -1;
}
memcpy(rr->key, key, strlen(key) + 1);
rr->type = ns_t_aaaa;
return 0;
}
static int rwrap_create_fake_ns_rr(const char *key,
const char *value,
struct rwrap_fake_rr *rr)
{
memcpy(rr->rrdata.srv_rec.hostname, value, strlen(value) + 1);
memcpy(rr->key, key, strlen(key) + 1);
rr->type = ns_t_ns;
return 0;
}
static int rwrap_create_fake_srv_rr(const char *key,
const char *value,
struct rwrap_fake_rr *rr)
{
char *str_prio;
char *str_weight;
char *str_port;
const char *hostname;
/* parse the value into priority, weight, port and hostname
* and check the validity */
hostname = value;
NEXT_KEY(hostname, str_port);
NEXT_KEY(str_port, str_prio);
NEXT_KEY(str_prio, str_weight);
if (str_port == NULL || hostname == NULL) {
RWRAP_LOG(RWRAP_LOG_ERROR,
"Malformed SRV entry [%s]\n", value);
return -1;
}
if (str_prio) {
rr->rrdata.srv_rec.prio = atoi(str_prio);
} else {
rr->rrdata.srv_rec.prio = DFL_SRV_PRIO;
}
if (str_weight) {
rr->rrdata.srv_rec.weight = atoi(str_weight);
} else {
rr->rrdata.srv_rec.weight = DFL_SRV_WEIGHT;
}
rr->rrdata.srv_rec.port = atoi(str_port);
memcpy(rr->rrdata.srv_rec.hostname , hostname, strlen(hostname) + 1);
memcpy(rr->key, key, strlen(key) + 1);
rr->type = ns_t_srv;
return 0;
}
static int rwrap_create_fake_uri_rr(const char *key,
const char *value,
struct rwrap_fake_rr *rr)
{
char *str_prio;
char *str_weight;
const char *uri;
/* parse the value into priority, weight, and uri
* and check the validity */
uri = value;
NEXT_KEY(uri, str_prio);
NEXT_KEY(str_prio, str_weight);
if (uri == NULL) {
RWRAP_LOG(RWRAP_LOG_ERROR,
"Malformed URI entry [<null>]\n");
return -1;
}
if (str_prio) {
rr->rrdata.uri_rec.prio = atoi(str_prio);
} else {
rr->rrdata.uri_rec.prio = DFL_URI_PRIO;
}
if (str_weight) {
rr->rrdata.uri_rec.weight = atoi(str_weight);
} else {
rr->rrdata.uri_rec.weight = DFL_URI_WEIGHT;
}
memcpy(rr->rrdata.uri_rec.uri, uri, strlen(uri) + 1);
memcpy(rr->key, key, strlen(key) + 1);
rr->type = ns_t_uri;
return 0;
}
static int rwrap_create_fake_txt_rr(const char *key,
const char *value,
struct rwrap_fake_rr *rr)
{
memcpy(rr->rrdata.txt_rec, value, strlen(value) + 1);
memcpy(rr->key, key, strlen(key) + 1);
rr->type = ns_t_txt;
return 0;
}
static int rwrap_create_fake_soa_rr(const char *key,
const char *value,
struct rwrap_fake_rr *rr)
{
const char *nameserver;
char *mailbox;
char *str_serial;
char *str_refresh;
char *str_retry;
char *str_expire;
char *str_minimum;
/* parse the value into nameserver, mailbox, serial, refresh,
* retry, expire, minimum and check the validity
*/
nameserver = value;
NEXT_KEY(nameserver, mailbox);
NEXT_KEY(mailbox, str_serial);
NEXT_KEY(str_serial, str_refresh);
NEXT_KEY(str_refresh, str_retry);
NEXT_KEY(str_retry, str_expire);
NEXT_KEY(str_expire, str_minimum);
if (nameserver == NULL || mailbox == NULL || str_serial == NULL ||
str_refresh == NULL || str_retry == NULL || str_expire == NULL ||
str_minimum == NULL) {
RWRAP_LOG(RWRAP_LOG_ERROR,
"Malformed SOA entry [%s]\n", value);
return -1;
}
memcpy(rr->rrdata.soa_rec.nameserver, nameserver, strlen(nameserver)+1);
memcpy(rr->rrdata.soa_rec.mailbox, mailbox, strlen(mailbox)+1);
rr->rrdata.soa_rec.serial = atoi(str_serial);
rr->rrdata.soa_rec.refresh = atoi(str_refresh);
rr->rrdata.soa_rec.retry = atoi(str_retry);
rr->rrdata.soa_rec.expire = atoi(str_expire);
rr->rrdata.soa_rec.minimum = atoi(str_minimum);
memcpy(rr->key, key, strlen(key) + 1);
rr->type = ns_t_soa;
return 0;
}
static int rwrap_create_fake_cname_rr(const char *key,
const char *value,
struct rwrap_fake_rr *rr)
{
memcpy(rr->rrdata.cname_rec , value, strlen(value) + 1);
memcpy(rr->key, key, strlen(key) + 1);
rr->type = ns_t_cname;
return 0;
}
static int rwrap_create_fake_ptr_rr(const char *key,
const char *value,
struct rwrap_fake_rr *rr)
{
memcpy(rr->rrdata.ptr_rec , value, strlen(value) + 1);
memcpy(rr->key, key, strlen(key) + 1);
rr->type = ns_t_ptr;
return 0;
}
#define rwrap_randomid() 0xffff & getpid()
/* Prepares a fake header with a single response. Advances header_blob */
static ssize_t rwrap_fake_header(uint8_t **header_blob, size_t remaining,
size_t ancount, size_t arcount)
{
union {
uint8_t *blob;
HEADER *header;
} h;
if (remaining < NS_HFIXEDSZ) {
RWRAP_LOG(RWRAP_LOG_ERROR, "Buffer too small!\n");
return -1;
}
h.blob = *header_blob;
memset(h.blob, 0, NS_HFIXEDSZ);
h.header->id = rwrap_randomid(); /* random query ID */
h.header->qr = 1; /* response flag */
h.header->rd = 1; /* recursion desired */
h.header->ra = 1; /* recursion available */
h.header->qdcount = htons(1); /* no. of questions */
h.header->ancount = htons(ancount); /* no. of answers */
h.header->arcount = htons(arcount); /* no. of add'tl records */
/* move past the header */
*header_blob = h.blob += NS_HFIXEDSZ;
return NS_HFIXEDSZ;
}
static ssize_t rwrap_fake_question(const char *question,
uint16_t type,
uint8_t **question_ptr,
size_t remaining)
{
uint8_t *qb = *question_ptr;
int n;
n = ns_name_compress(question, qb, remaining, NULL, NULL);
if (n < 0) {
RWRAP_LOG(RWRAP_LOG_ERROR,
"Failed to compress [%s]\n", question);
return -1;
}
qb += n;
remaining -= n;
if (remaining < 2 * sizeof(uint16_t)) {
RWRAP_LOG(RWRAP_LOG_ERROR, "Buffer too small!\n");
return -1;
}
NS_PUT16(type, qb);
NS_PUT16(ns_c_in, qb);
*question_ptr = qb;
return n + 2 * sizeof(uint16_t);
}
static ssize_t rwrap_fake_rdata_common(uint16_t type,
size_t rdata_size,
const char *key,
size_t remaining,
uint8_t **rdata_ptr)
{
uint8_t *rd = *rdata_ptr;
ssize_t written = 0;
written = ns_name_compress(key, rd, remaining, NULL, NULL);
if (written < 0) {
RWRAP_LOG(RWRAP_LOG_ERROR,
"Failed to compress [%s]\n", key);
return -1;
}
rd += written;
remaining -= written;
if (remaining < 3 * sizeof(uint16_t) + sizeof(uint32_t)) {
RWRAP_LOG(RWRAP_LOG_ERROR, "Buffer too small\n");
return -1;
}
NS_PUT16(type, rd);
NS_PUT16(ns_c_in, rd);
NS_PUT32(RWRAP_DEFAULT_FAKE_TTL, rd);
NS_PUT16(rdata_size, rd);
if (remaining < rdata_size) {
RWRAP_LOG(RWRAP_LOG_ERROR, "Buffer too small\n");
return -1;
}
*rdata_ptr = rd;
return written + 3 * sizeof(uint16_t) + sizeof(uint32_t) + rdata_size;
}
static ssize_t rwrap_fake_a(struct rwrap_fake_rr *rr,
uint8_t *answer_ptr,
size_t anslen)
{
uint8_t *a = answer_ptr;
ssize_t resp_size;
if (rr->type != ns_t_a) {
RWRAP_LOG(RWRAP_LOG_ERROR, "Wrong type!\n");
return -1;
}
RWRAP_LOG(RWRAP_LOG_TRACE, "Adding A RR");
resp_size = rwrap_fake_rdata_common(ns_t_a, sizeof(struct in_addr), rr->key,
anslen, &a);
if (resp_size < 0) {
return -1;
}
memcpy(a, &rr->rrdata.a_rec, sizeof(struct in_addr));
return resp_size;
}
static ssize_t rwrap_fake_aaaa(struct rwrap_fake_rr *rr,
uint8_t *answer,
size_t anslen)
{
uint8_t *a = answer;
ssize_t resp_size;
if (rr->type != ns_t_aaaa) {
RWRAP_LOG(RWRAP_LOG_ERROR, "Wrong type!\n");
return -1;
}
RWRAP_LOG(RWRAP_LOG_TRACE, "Adding AAAA RR");
resp_size = rwrap_fake_rdata_common(ns_t_aaaa, sizeof(struct in6_addr),
rr->key, anslen, &a);
if (resp_size < 0) {
return -1;
}
memcpy(a, &rr->rrdata.aaaa_rec, sizeof(struct in6_addr));
return resp_size;
}
static ssize_t rwrap_fake_ns(struct rwrap_fake_rr *rr,
uint8_t *answer,
size_t anslen)
{
uint8_t *a = answer;
ssize_t resp_size = 0;
size_t rdata_size;
unsigned char hostname_compressed[MAXDNAME];
ssize_t compressed_len;
if (rr->type != ns_t_ns) {
RWRAP_LOG(RWRAP_LOG_ERROR, "Wrong type!\n");
return -1;
}
RWRAP_LOG(RWRAP_LOG_TRACE, "Adding NS RR");
/* Prepare the data to write */
compressed_len = ns_name_compress(rr->rrdata.srv_rec.hostname,
hostname_compressed,
MAXDNAME,
NULL,
NULL);
if (compressed_len < 0) {
return -1;
}
/* Is this enough? */
rdata_size = compressed_len;
resp_size = rwrap_fake_rdata_common(ns_t_ns, rdata_size,
rr->key, anslen, &a);
if (resp_size < 0) {
return -1;
}
memcpy(a, hostname_compressed, compressed_len);
return resp_size;
}
static ssize_t rwrap_fake_srv(struct rwrap_fake_rr *rr,
uint8_t *answer,
size_t anslen)
{
uint8_t *a = answer;
ssize_t resp_size;
size_t rdata_size;
unsigned char hostname_compressed[MAXDNAME];
ssize_t compressed_len;
if (rr->type != ns_t_srv) {
RWRAP_LOG(RWRAP_LOG_ERROR, "Wrong type!\n");
return -1;
}
RWRAP_LOG(RWRAP_LOG_TRACE, "Adding SRV RR");
rdata_size = 3 * sizeof(uint16_t);
/* Prepare the data to write */
compressed_len = ns_name_compress(rr->rrdata.srv_rec.hostname,
hostname_compressed, MAXDNAME,
NULL, NULL);
if (compressed_len < 0) {
return -1;
}
rdata_size += compressed_len;
resp_size = rwrap_fake_rdata_common(ns_t_srv, rdata_size,
rr->key, anslen, &a);
if (resp_size < 0) {
return -1;
}
NS_PUT16(rr->rrdata.srv_rec.prio, a);
NS_PUT16(rr->rrdata.srv_rec.weight, a);
NS_PUT16(rr->rrdata.srv_rec.port, a);
memcpy(a, hostname_compressed, compressed_len);
return resp_size;
}
static ssize_t rwrap_fake_uri(struct rwrap_fake_rr *rr,
uint8_t *answer,
size_t anslen)
{
uint8_t *a = answer;
ssize_t resp_size;
size_t rdata_size;
size_t uri_len;
if (rr->type != ns_t_uri) {
RWRAP_LOG(RWRAP_LOG_ERROR, "Wrong type!\n");
return -1;
}
RWRAP_LOG(RWRAP_LOG_TRACE, "Adding URI RR");
rdata_size = 3 * sizeof(uint16_t);
uri_len = strlen(rr->rrdata.uri_rec.uri) + 1;
rdata_size += uri_len;
resp_size = rwrap_fake_rdata_common(ns_t_uri, rdata_size,
rr->key, anslen, &a);
if (resp_size < 0) {
return -1;
}
NS_PUT16(rr->rrdata.uri_rec.prio, a);
NS_PUT16(rr->rrdata.uri_rec.weight, a);
memcpy(a, rr->rrdata.uri_rec.uri, uri_len);
return resp_size;
}
static ssize_t rwrap_fake_txt(struct rwrap_fake_rr *rr,
uint8_t *answer,
size_t anslen)
{
uint8_t *a = answer;
ssize_t resp_size;
size_t rdata_size;
size_t txt_len;
if (rr->type != ns_t_txt) {
RWRAP_LOG(RWRAP_LOG_ERROR, "Wrong type!\n");
return -1;
}
RWRAP_LOG(RWRAP_LOG_TRACE, "Adding TXT RR");
txt_len = strlen(rr->rrdata.txt_rec) + 1;
rdata_size = txt_len;
resp_size = rwrap_fake_rdata_common(ns_t_txt, rdata_size,
rr->key, anslen, &a);
if (resp_size < 0) {
return -1;
}
memcpy(a, rr->rrdata.txt_rec, txt_len);
return resp_size;
}
static ssize_t rwrap_fake_soa(struct rwrap_fake_rr *rr,
uint8_t *answer,
size_t anslen)
{
uint8_t *a = answer;
ssize_t resp_size;
size_t rdata_size;
unsigned char nameser_compressed[MAXDNAME];
ssize_t compressed_ns_len;
unsigned char mailbox_compressed[MAXDNAME];
ssize_t compressed_mb_len;
if (rr->type != ns_t_soa) {
RWRAP_LOG(RWRAP_LOG_ERROR, "Wrong type!\n");
return -1;
}
RWRAP_LOG(RWRAP_LOG_TRACE, "Adding SOA RR");
rdata_size = 5 * sizeof(uint16_t);
compressed_ns_len = ns_name_compress(rr->rrdata.soa_rec.nameserver,
nameser_compressed,
MAXDNAME, NULL, NULL);
if (compressed_ns_len < 0) {
return -1;
}
rdata_size += compressed_ns_len;
compressed_mb_len = ns_name_compress(rr->rrdata.soa_rec.mailbox,
mailbox_compressed,
MAXDNAME, NULL, NULL);
if (compressed_mb_len < 0) {
return -1;
}
rdata_size += compressed_mb_len;
resp_size = rwrap_fake_rdata_common(ns_t_soa, rdata_size,
rr->key, anslen, &a);
if (resp_size < 0) {
return -1;
}
memcpy(a, nameser_compressed, compressed_ns_len);
a += compressed_ns_len;
memcpy(a, mailbox_compressed, compressed_mb_len);
a += compressed_mb_len;
NS_PUT32(rr->rrdata.soa_rec.serial, a);
NS_PUT32(rr->rrdata.soa_rec.refresh, a);
NS_PUT32(rr->rrdata.soa_rec.retry, a);
NS_PUT32(rr->rrdata.soa_rec.expire, a);
NS_PUT32(rr->rrdata.soa_rec.minimum, a);
return resp_size;
}
static ssize_t rwrap_fake_cname(struct rwrap_fake_rr *rr,
uint8_t *answer,
size_t anslen)
{
uint8_t *a = answer;
ssize_t resp_size;
unsigned char hostname_compressed[MAXDNAME];
ssize_t rdata_size;
if (rr->type != ns_t_cname) {
RWRAP_LOG(RWRAP_LOG_ERROR, "Wrong type!\n");
return -1;
}
RWRAP_LOG(RWRAP_LOG_TRACE, "Adding CNAME RR");
/* Prepare the data to write */
rdata_size = ns_name_compress(rr->rrdata.cname_rec,
hostname_compressed, MAXDNAME,
NULL, NULL);
if (rdata_size < 0) {
return -1;
}
resp_size = rwrap_fake_rdata_common(ns_t_cname, rdata_size,
rr->key, anslen, &a);
if (resp_size < 0) {
return -1;
}
memcpy(a, hostname_compressed, rdata_size);
return resp_size;
}
static ssize_t rwrap_fake_ptr(struct rwrap_fake_rr *rr,
uint8_t *answer,
size_t anslen)
{
uint8_t *a = answer;
ssize_t rdata_size;
ssize_t resp_size;
unsigned char hostname_compressed[MAXDNAME];
if (rr->type != ns_t_ptr) {
RWRAP_LOG(RWRAP_LOG_ERROR, "Wrong type!\n");
return -1;
}
RWRAP_LOG(RWRAP_LOG_TRACE, "Adding PTR RR");
/* Prepare the data to write */
rdata_size = ns_name_compress(rr->rrdata.ptr_rec,
hostname_compressed, MAXDNAME,
NULL, NULL);
if (rdata_size < 0) {
return -1;
}
resp_size = rwrap_fake_rdata_common(ns_t_ptr, rdata_size,
rr->key, anslen, &a);
if (resp_size < 0) {
return -1;
}
memcpy(a, hostname_compressed, rdata_size);
return resp_size;
}
#define RESOLV_MATCH(line, name) \
(strncmp(line, name, sizeof(name) - 1) == 0 && \
(line[sizeof(name) - 1] == ' ' || \
line[sizeof(name) - 1] == '\t'))
#define TYPE_MATCH(type, ns_type, rec_type, str_type, key, query) \
((type) == (ns_type) && \
(strncmp((rec_type), (str_type), sizeof(str_type)) == 0) && \
(strcasecmp(key, query)) == 0)
static int rwrap_get_record(const char *hostfile, unsigned recursion,
const char *query, int type,
struct rwrap_fake_rr *rr);
static int rwrap_uri_recurse(const char *hostfile, unsigned recursion,
const char *query, struct rwrap_fake_rr *rr)
{
int rc;
rc = rwrap_get_record(hostfile, recursion, query, ns_t_uri, rr);
if (rc == ENOENT) {
rc = 0;
}
return rc;
}
static int rwrap_srv_recurse(const char *hostfile, unsigned recursion,
const char *query, struct rwrap_fake_rr *rr)
{
int rc;
rc = rwrap_get_record(hostfile, recursion, query, ns_t_a, rr);
if (rc == 0) return 0;
rc = rwrap_get_record(hostfile, recursion, query, ns_t_aaaa, rr);
if (rc == ENOENT) rc = 0;
return rc;
}
static int rwrap_cname_recurse(const char *hostfile, unsigned recursion,
const char *query, struct rwrap_fake_rr *rr)
{
int rc;
rc = rwrap_get_record(hostfile, recursion, query, ns_t_a, rr);
if (rc == 0) return 0;
rc = rwrap_get_record(hostfile, recursion, query, ns_t_aaaa, rr);
if (rc == 0) return 0;
rc = rwrap_get_record(hostfile, recursion, query, ns_t_cname, rr);
if (rc == ENOENT) rc = 0;
return rc;
}
static int rwrap_get_record(const char *hostfile, unsigned recursion,
const char *query, int type,
struct rwrap_fake_rr *rr)
{
FILE *fp = NULL;
char buf[BUFSIZ];
char *key = NULL;
char *value = NULL;
int rc = ENOENT;
unsigned num_uris = 0;
if (recursion >= RWRAP_MAX_RECURSION) {
RWRAP_LOG(RWRAP_LOG_ERROR, "Recursed too deep!\n");
return -1;
}
RWRAP_LOG(RWRAP_LOG_TRACE,
"Searching in fake hosts file %s for %s:%d\n", hostfile,
query, type);
fp = fopen(hostfile, "r");
if (fp == NULL) {
RWRAP_LOG(RWRAP_LOG_WARN,
"Opening %s failed: %s",
hostfile, strerror(errno));
return -1;
}
while (fgets(buf, sizeof(buf), fp) != NULL) {
char *rec_type;
char *q;
rec_type = buf;
key = value = NULL;
NEXT_KEY(rec_type, key);
NEXT_KEY(key, value);
if (key == NULL || value == NULL) {
RWRAP_LOG(RWRAP_LOG_WARN,
"Malformed line: not enough parts, use \"rec_type key data\n"
"For example \"A cwrap.org 10.10.10.10\"");
continue;
}
q = value;
while(q[0] != '\n' && q[0] != '\0') {
q++;
}
q[0] = '\0';
if (type == ns_t_uri && recursion > 0) {
/* Skip non-URI records. */
if (!TYPE_MATCH(type, ns_t_uri, rec_type, "URI", key, query)) {
continue;
}
/* Skip previous records based on the recurse depth. */
num_uris++;
if (num_uris <= recursion) {
continue;
}
}
if (TYPE_MATCH(type, ns_t_a, rec_type, "A", key, query)) {
rc = rwrap_create_fake_a_rr(key, value, rr);
break;
} else if (TYPE_MATCH(type, ns_t_aaaa,
rec_type, "AAAA", key, query)) {
rc = rwrap_create_fake_aaaa_rr(key, value, rr);
break;
} else if (TYPE_MATCH(type, ns_t_ns,
rec_type, "NS", key, query)) {
rc = rwrap_create_fake_ns_rr(key, value, rr);
break;
} else if (TYPE_MATCH(type, ns_t_srv,
rec_type, "SRV", key, query)) {
rc = rwrap_create_fake_srv_rr(key, value, rr);
if (rc == 0) {
rc = rwrap_srv_recurse(hostfile, recursion+1,
rr->rrdata.srv_rec.hostname,
rr + 1);
}
break;
} else if (TYPE_MATCH(type, ns_t_uri,
rec_type, "URI", key, query)) {
rc = rwrap_create_fake_uri_rr(key, value, rr);
if (rc == 0) {
/* Recurse to collect multiple URI answers under a single key. */
rc = rwrap_uri_recurse(hostfile, recursion + 1, key, rr + 1);
}
break;
} else if (TYPE_MATCH(type, ns_t_soa,
rec_type, "SOA", key, query)) {
rc = rwrap_create_fake_soa_rr(key, value, rr);
break;
} else if (TYPE_MATCH(type, ns_t_cname,
rec_type, "CNAME", key, query)) {
rc = rwrap_create_fake_cname_rr(key, value, rr);
if (rc == 0) {
rc = rwrap_cname_recurse(hostfile, recursion+1,
value, rr + 1);
}
break;
} else if (TYPE_MATCH(type, ns_t_a, rec_type, "CNAME", key, query)) {
rc = rwrap_create_fake_cname_rr(key, value, rr);
if (rc == 0) {
rc = rwrap_cname_recurse(hostfile, recursion+1,
value, rr + 1);
}
break;
} else if (TYPE_MATCH(type, ns_t_ptr,
rec_type, "PTR", key, query)) {
rc = rwrap_create_fake_ptr_rr(key, value, rr);
break;
}
else if (TYPE_MATCH(type, ns_t_txt,
rec_type, "TXT", key, query)) {
rc = rwrap_create_fake_txt_rr(key, value, rr);
break;
}
}
if (rc == ENOENT && recursion == 0 && key != NULL) {
RWRAP_LOG(RWRAP_LOG_TRACE, "Record for [%s] not found\n", query);
memcpy(rr->key, key, strlen(key) + 1);
}
fclose(fp);
return rc;
}
static ssize_t rwrap_fake_empty(int type,
const char *question,
uint8_t *answer,
size_t anslen)
{
ssize_t resp_data;
size_t remaining = anslen;
resp_data = rwrap_fake_header(&answer, remaining, 0, 0);
if (resp_data < 0) {
return -1;
}
remaining -= resp_data;
resp_data += rwrap_fake_question(question, type, &answer, remaining);
if (resp_data < 0) {
return -1;
}
remaining -= resp_data;
resp_data += rwrap_fake_rdata_common(type, 0, question,
remaining, &answer);
if (resp_data < 0) {
return -1;
}
return resp_data;
}
static inline bool rwrap_known_type(int type)
{
switch (type) {
case ns_t_a:
case ns_t_aaaa:
case ns_t_ns:
case ns_t_srv:
case ns_t_uri:
case ns_t_soa:
case ns_t_cname:
case ns_t_ptr:
case ns_t_txt:
return true;
}
return false;
}
static int rwrap_ancount(struct rwrap_fake_rr *rrs, int qtype)
{
int i;
int ancount = 0;
/* For URI return the number of URIs. */
if (qtype == ns_t_uri) {
for (i = 0; i < RWRAP_MAX_RECURSION; i++) {
if (rwrap_known_type(rrs[i].type) &&
rrs[i].type == qtype) {
ancount++;
}
}
return ancount;
}
/* Include all RRs in the stack until the sought type
* in the answer section. This is the case i.e. when looking
* up an A record but the name points to a CNAME
*/
for (i = 0; i < RWRAP_MAX_RECURSION; i++) {
ancount++;
if (rwrap_known_type(rrs[i].type) &&
rrs[i].type == qtype) {
break;
}
}
/* Return 0 records if the sought type wasn't in the stack */
return i < RWRAP_MAX_RECURSION ? ancount : 0;
}
static int rwrap_arcount(struct rwrap_fake_rr *rrs, int ancount)
{
int i;
int arcount = 0;
/* start from index ancount */
for (i = ancount; i < RWRAP_MAX_RECURSION; i++) {
if (rwrap_known_type(rrs[i].type)) {
arcount++;
}
}
return arcount;
}
static ssize_t rwrap_add_rr(struct rwrap_fake_rr *rr,
uint8_t *answer,
size_t anslen)
{
ssize_t resp_data;
if (rr == NULL) {
RWRAP_LOG(RWRAP_LOG_ERROR, "Internal error!\n");
return -1;
}
switch (rr->type) {
case ns_t_a:
resp_data = rwrap_fake_a(rr, answer, anslen);
break;
case ns_t_aaaa:
resp_data = rwrap_fake_aaaa(rr, answer, anslen);
break;
case ns_t_ns:
resp_data = rwrap_fake_ns(rr, answer, anslen);
break;
case ns_t_srv:
resp_data = rwrap_fake_srv(rr, answer, anslen);
break;
case ns_t_uri:
resp_data = rwrap_fake_uri(rr, answer, anslen);
break;
case ns_t_soa:
resp_data = rwrap_fake_soa(rr, answer, anslen);
break;
case ns_t_cname:
resp_data = rwrap_fake_cname(rr, answer, anslen);
break;
case ns_t_ptr:
resp_data = rwrap_fake_ptr(rr, answer, anslen);
break;
case ns_t_txt:
resp_data = rwrap_fake_txt(rr, answer, anslen);
break;
default:
return -1;
}
return resp_data;
}
static ssize_t rwrap_fake_answer(struct rwrap_fake_rr *rrs,
int type,
uint8_t *answer,
size_t anslen)
{
ssize_t resp_data;
ssize_t rrlen;
size_t remaining = anslen;
int ancount;
int arcount;
int i;
ancount = rwrap_ancount(rrs, type);
arcount = rwrap_arcount(rrs, ancount);
RWRAP_LOG(RWRAP_LOG_TRACE,
"Got %d answers and %d additional records\n", ancount, arcount);
resp_data = rwrap_fake_header(&answer, remaining, ancount, arcount);
if (resp_data < 0) {
return -1;
}
remaining -= resp_data;
resp_data += rwrap_fake_question(rrs->key, rrs->type, &answer, remaining);
if (resp_data < 0) {
return -1;
}
remaining -= resp_data;
/* answer */
for (i = 0; i < ancount; i++) {
rrlen = rwrap_add_rr(&rrs[i], answer, remaining);
if (rrlen < 0) {
return -1;
}
remaining -= rrlen;
answer += rrlen;
resp_data += rrlen;
}
/* add authoritative NS here? */
/* additional records */
for (i = ancount; i < ancount + arcount; i++) {
rrlen = rwrap_add_rr(&rrs[i], answer, remaining);
if (rrlen < 0) {
return -1;
}
remaining -= rrlen;
answer += rrlen;
resp_data += rrlen;
}
return resp_data;
}
/* Reads in a file in the following format:
* TYPE RDATA
*
* Malformed entries are silently skipped.
* Allocates answer buffer of size anslen that has to be freed after use.
*/
static int rwrap_res_fake_hosts(const char *hostfile,
const char *query,
int type,
unsigned char *answer,
size_t anslen)
{
int rc = ENOENT;
char *query_name = NULL;
size_t qlen = strlen(query);
struct rwrap_fake_rr rrs[RWRAP_MAX_RECURSION];
ssize_t resp_size;
RWRAP_LOG(RWRAP_LOG_TRACE,
"Searching in fake hosts file %s\n", hostfile);
if (qlen > 0 && query[qlen-1] == '.') {
qlen--;
}
query_name = strndup(query, qlen);
if (query_name == NULL) {
return -1;
}
rwrap_fake_rr_init(rrs, RWRAP_MAX_RECURSION);
rc = rwrap_get_record(hostfile, 0, query_name, type, rrs);
switch (rc) {
case 0:
RWRAP_LOG(RWRAP_LOG_TRACE,
"Found record for [%s]\n", query_name);
resp_size = rwrap_fake_answer(rrs, type, answer, anslen);
break;
case ENOENT:
RWRAP_LOG(RWRAP_LOG_TRACE,
"No record for [%s]\n", query_name);
resp_size = rwrap_fake_empty(type, rrs->key, answer, anslen);
break;
default:
RWRAP_LOG(RWRAP_LOG_NOTICE,
"Searching for [%s] did not return any results\n",
query_name);
free(query_name);
return -1;
}
switch (resp_size) {
case -1:
RWRAP_LOG(RWRAP_LOG_ERROR,
"Error faking answer for [%s]\n", query_name);
break;
default:
RWRAP_LOG(RWRAP_LOG_TRACE,
"Successfully faked answer for [%s]\n",
query_name);
break;
}
free(query_name);
return resp_size;
}
/*********************************************************
* RWRAP LOADING LIBC FUNCTIONS
*********************************************************/
#include <dlfcn.h>
typedef int (*__libc_res_ninit)(struct __res_state *state);
typedef int (*__libc___res_ninit)(struct __res_state *state);
typedef void (*__libc_res_nclose)(struct __res_state *state);
typedef void (*__libc___res_nclose)(struct __res_state *state);
typedef int (*__libc_res_nquery)(struct __res_state *state,
const char *dname,
int class,
int type,
unsigned char *answer,
int anslen);
typedef int (*__libc___res_nquery)(struct __res_state *state,
const char *dname,
int class,
int type,
unsigned char *answer,
int anslen);
typedef int (*__libc_res_nsearch)(struct __res_state *state,
const char *dname,
int class,
int type,
unsigned char *answer,
int anslen);
typedef int (*__libc___res_nsearch)(struct __res_state *state,
const char *dname,
int class,
int type,
unsigned char *answer,
int anslen);
#define RWRAP_SYMBOL_ENTRY(i) \
union { \
__libc_##i f; \
void *obj; \
} _libc_##i
struct rwrap_libc_symbols {
RWRAP_SYMBOL_ENTRY(res_ninit);
RWRAP_SYMBOL_ENTRY(__res_ninit);
RWRAP_SYMBOL_ENTRY(res_nclose);
RWRAP_SYMBOL_ENTRY(__res_nclose);
RWRAP_SYMBOL_ENTRY(res_nquery);
RWRAP_SYMBOL_ENTRY(__res_nquery);
RWRAP_SYMBOL_ENTRY(res_nsearch);
RWRAP_SYMBOL_ENTRY(__res_nsearch);
};
#undef RWRAP_SYMBOL_ENTRY
struct rwrap {
struct {
void *handle;
struct rwrap_libc_symbols symbols;
} libc;
struct {
void *handle;
struct rwrap_libc_symbols symbols;
} libresolv;
bool initialised;
bool enabled;
char *socket_dir;
};
static struct rwrap rwrap;
enum rwrap_lib {
RWRAP_LIBC,
RWRAP_LIBRESOLV
};
static const char *rwrap_str_lib(enum rwrap_lib lib)
{
switch (lib) {
case RWRAP_LIBC:
return "libc";
case RWRAP_LIBRESOLV:
return "libresolv";
}
/* Compiler would warn us about unhandled enum value if we get here */
return "unknown";
}
static void *rwrap_load_lib_handle(enum rwrap_lib lib)
{
int flags = RTLD_LAZY;
void *handle = NULL;
int i;
#ifdef RTLD_DEEPBIND
const char *env_preload = getenv("LD_PRELOAD");
const char *env_deepbind = getenv("RESOLV_WRAPPER_DISABLE_DEEPBIND");
bool enable_deepbind = true;
/* Don't do a deepbind if we run with libasan */
if (env_preload != NULL && strlen(env_preload) < 1024) {
const char *p = strstr(env_preload, "libasan.so");
if (p != NULL) {
enable_deepbind = false;
}
}
if (env_deepbind != NULL && strlen(env_deepbind) >= 1) {
enable_deepbind = false;
}
if (enable_deepbind) {
flags |= RTLD_DEEPBIND;
}
#endif
switch (lib) {
case RWRAP_LIBRESOLV:
#ifdef HAVE_LIBRESOLV
handle = rwrap.libresolv.handle;
if (handle == NULL) {
for (i = 10; i >= 0; i--) {
char soname[256] = {0};
snprintf(soname, sizeof(soname), "libresolv.so.%d", i);
handle = dlopen(soname, flags);
if (handle != NULL) {
break;
}
}
rwrap.libresolv.handle = handle;
}
break;
#endif
/* FALL TROUGH */
case RWRAP_LIBC:
handle = rwrap.libc.handle;
#ifdef LIBC_SO
if (handle == NULL) {
handle = dlopen(LIBC_SO, flags);
rwrap.libc.handle = handle;
}
#endif
if (handle == NULL) {
for (i = 10; i >= 0; i--) {
char soname[256] = {0};
snprintf(soname, sizeof(soname), "libc.so.%d", i);
handle = dlopen(soname, flags);
if (handle != NULL) {
break;
}
}
rwrap.libc.handle = handle;
}
break;
}
if (handle == NULL) {
#ifdef RTLD_NEXT
handle = rwrap.libc.handle = rwrap.libresolv.handle = RTLD_NEXT;
#else
RWRAP_LOG(RWRAP_LOG_ERROR,
"Failed to dlopen library: %s\n",
dlerror());
exit(-1);
#endif
}
return handle;
}
static void *_rwrap_bind_symbol(enum rwrap_lib lib, const char *fn_name)
{
void *handle;
void *func;
handle = rwrap_load_lib_handle(lib);
func = dlsym(handle, fn_name);
if (func == NULL) {
RWRAP_LOG(RWRAP_LOG_ERROR,
"Failed to find %s: %s\n",
fn_name, dlerror());
exit(-1);
}
RWRAP_LOG(RWRAP_LOG_TRACE,
"Loaded %s from %s",
fn_name, rwrap_str_lib(lib));
return func;
}
#define rwrap_bind_symbol_libc(sym_name) \
if (rwrap.libc.symbols._libc_##sym_name.obj == NULL) { \
rwrap.libc.symbols._libc_##sym_name.obj = \
_rwrap_bind_symbol(RWRAP_LIBC, #sym_name); \
}
#define rwrap_bind_symbol_libresolv(sym_name) \
if (rwrap.libresolv.symbols._libc_##sym_name.obj == NULL) { \
rwrap.libresolv.symbols._libc_##sym_name.obj = \
_rwrap_bind_symbol(RWRAP_LIBRESOLV, #sym_name); \
}
/*
* IMPORTANT
*
* Functions especially from libc need to be loaded individually, you can't load
* all at once or gdb will segfault at startup. The same applies to valgrind and
* has probably something todo with with the linker.
* So we need load each function at the point it is called the first time.
*/
static int libc_res_ninit(struct __res_state *state)
{
#if !defined(res_ninit) && defined(HAVE_RES_NINIT)
rwrap_bind_symbol_libresolv(res_ninit);
return rwrap.libresolv.symbols._libc_res_ninit.f(state);
#elif defined(HAVE___RES_NINIT)
rwrap_bind_symbol_libresolv(__res_ninit);
return rwrap.libresolv.symbols._libc___res_ninit.f(state);
#else
#error "No res_ninit function"
#endif
}
static void libc_res_nclose(struct __res_state *state)
{
#if !defined(res_close) && defined(HAVE_RES_NCLOSE)
rwrap_bind_symbol_libresolv(res_nclose);
rwrap.libresolv.symbols._libc_res_nclose.f(state);
return;
#elif defined(HAVE___RES_NCLOSE)
rwrap_bind_symbol_libresolv(__res_nclose);
rwrap.libresolv.symbols._libc___res_nclose.f(state);
#else
#error "No res_nclose function"
#endif
}
static int libc_res_nquery(struct __res_state *state,
const char *dname,
int class,
int type,
unsigned char *answer,
int anslen)
{
#if !defined(res_nquery) && defined(HAVE_RES_NQUERY)
rwrap_bind_symbol_libresolv(res_nquery);
return rwrap.libresolv.symbols._libc_res_nquery.f(state,
dname,
class,
type,
answer,
anslen);
#elif defined(HAVE___RES_NQUERY)
rwrap_bind_symbol_libresolv(__res_nquery);
return rwrap.libresolv.symbols._libc___res_nquery.f(state,
dname,
class,
type,
answer,
anslen);
#else
#error "No res_nquery function"
#endif
}
static int libc_res_nsearch(struct __res_state *state,
const char *dname,
int class,
int type,
unsigned char *answer,
int anslen)
{
#if !defined(res_nsearch) && defined(HAVE_RES_NSEARCH)
rwrap_bind_symbol_libresolv(res_nsearch);
return rwrap.libresolv.symbols._libc_res_nsearch.f(state,
dname,
class,
type,
answer,
anslen);
#elif defined(HAVE___RES_NSEARCH)
rwrap_bind_symbol_libresolv(__res_nsearch);
return rwrap.libresolv.symbols._libc___res_nsearch.f(state,
dname,
class,
type,
answer,
anslen);
#else
#error "No res_nsearch function"
#endif
}
/****************************************************************************
* RES_HELPER
***************************************************************************/
static size_t rwrap_get_nameservers(struct __res_state *state,
size_t nserv,
union rwrap_sockaddr *nsaddrs)
{
#ifdef HAVE_RES_SOCKADDR_UNION_SIN
union res_sockaddr_union set[MAXNS];
size_t i;
int rc;
memset(set, 0, sizeof(set));
memset(nsaddrs, 0, sizeof(*nsaddrs) * nserv);
if (nserv > MAXNS) {
nserv = MAXNS;
}
rc = res_getservers(state, set, nserv);
if (rc <= 0) {
return 0;
}
if (rc < nserv) {
nserv = rc;
}
for (i = 0; i < nserv; i++) {
switch (set[i].sin.sin_family) {
case AF_INET:
nsaddrs[i] = (union rwrap_sockaddr) {
.in = set[i].sin,
};
break;
#ifdef HAVE_RES_SOCKADDR_UNION_SIN6
case AF_INET6:
nsaddrs[i] = (union rwrap_sockaddr) {
.in6 = set[i].sin6,
};
break;
#endif
}
}
return nserv;
#else /* ! HAVE_RES_SOCKADDR_UNION_SIN */
size_t i;
memset(nsaddrs, 0, sizeof(*nsaddrs) * nserv);
if (nserv > (size_t)state->nscount) {
nserv = (size_t)state->nscount;
}
for (i = 0; i < nserv; i++) {
#ifdef HAVE_RES_STATE_U_EXT_NSADDRS
if (state->_u._ext.nsaddrs[i] != NULL) {
nsaddrs[i] = (union rwrap_sockaddr) {
.in6 = *state->_u._ext.nsaddrs[i],
};
} else
#endif /* HAVE_RES_STATE_U_EXT_NSADDRS */
{
nsaddrs[i] = (union rwrap_sockaddr) {
.in = state->nsaddr_list[i],
};
}
}
return nserv;
#endif /* ! HAVE_RES_SOCKADDR_UNION_SIN */
}
static void rwrap_log_nameservers(enum rwrap_dbglvl_e dbglvl,
const char *func,
struct __res_state *state)
{
union rwrap_sockaddr nsaddrs[MAXNS];
size_t nserv = MAXNS;
size_t i;
memset(nsaddrs, 0, sizeof(nsaddrs));
nserv = rwrap_get_nameservers(state, nserv, nsaddrs);
for (i = 0; i < nserv; i++) {
char ip[INET6_ADDRSTRLEN];
switch (nsaddrs[i].sa.sa_family) {
case AF_INET:
inet_ntop(AF_INET, &(nsaddrs[i].in.sin_addr),
ip, sizeof(ip));
break;
case AF_INET6:
inet_ntop(AF_INET6, &(nsaddrs[i].in6.sin6_addr),
ip, sizeof(ip));
break;
default:
snprintf(ip, sizeof(ip), "<unknown sa_family=%d",
nsaddrs[i].sa.sa_family);
break;
}
rwrap_log(dbglvl, func,
" nameserver: %s",
ip);
}
}
static void rwrap_reset_nameservers(struct __res_state *state)
{
#ifdef HAVE_RES_SOCKADDR_UNION_SIN
res_setservers(state, NULL, 0);
#else /* ! HAVE_RES_SOCKADDR_UNION_SIN */
#ifdef HAVE_RES_STATE_U_EXT_NSADDRS
size_t i;
for (i = 0; i < (size_t)state->nscount; i++) {
if (state->_u._ext.nssocks[i] != -1) {
close(state->_u._ext.nssocks[i]);
state->_u._ext.nssocks[i] = -1;
}
SAFE_FREE(state->_u._ext.nsaddrs[i]);
}
memset(&state->_u._ext, 0, sizeof(state->_u._ext));
for (i = 0; i < MAXNS; i++) {
state->_u._ext.nssocks[i] = -1;
state->_u._ext.nsmap[i] = MAXNS + 1;
}
state->ipv6_unavail = false;
#endif
memset(state->nsaddr_list, 0, sizeof(state->nsaddr_list));
state->nscount = 0;
#endif /* ! HAVE_RES_SOCKADDR_UNION_SIN */
}
static int rwrap_set_nameservers(struct __res_state *state,
size_t nserv,
const union rwrap_sockaddr *nsaddrs)
{
#ifdef HAVE_RES_SOCKADDR_UNION_SIN
union res_sockaddr_union set[MAXNS];
size_t i;
memset(set, 0, sizeof(set));
if (nserv > MAXNS) {
nserv = MAXNS;
}
rwrap_reset_nameservers(state);
for (i = 0; i < nserv; i++) {
switch (nsaddrs[i].sa.sa_family) {
case AF_INET:
set[i] = (union res_sockaddr_union) {
.sin = nsaddrs[i].in,
};
break;
#ifdef HAVE_RES_SOCKADDR_UNION_SIN6
case AF_INET6:
set[i] = (union res_sockaddr_union) {
.sin6 = nsaddrs[i].in6,
};
break;
#endif
default:
RWRAP_LOG(RWRAP_LOG_ERROR,
"Internal error unhandled sa_family=%d",
nsaddrs[i].sa.sa_family);
errno = ENOSYS;
return -1;
}
}
res_setservers(state, set, nserv);
return 0;
#else /* ! HAVE_RES_SOCKADDR_UNION_SIN */
size_t i;
if (nserv > MAXNS) {
nserv = MAXNS;
}
rwrap_reset_nameservers(state);
for (i = 0; i < nserv; i++) {
switch (nsaddrs[i].sa.sa_family) {
case AF_INET:
state->nsaddr_list[i] = nsaddrs[i].in;
break;
#ifdef HAVE_RES_STATE_U_EXT_NSADDRS
case AF_INET6:
state->_u._ext.nsaddrs[i] = malloc(sizeof(nsaddrs[i].in6));
if (state->_u._ext.nsaddrs[i] == NULL) {
rwrap_reset_nameservers(state);
errno = ENOMEM;
return -1;
}
*state->_u._ext.nsaddrs[i] = nsaddrs[i].in6;
state->_u._ext.nssocks[i] = -1;
state->_u._ext.nsmap[i] = MAXNS + 1;
state->_u._ext.nscount6++;
break;
#endif
default:
RWRAP_LOG(RWRAP_LOG_ERROR,
"Internal error unhandled sa_family=%d",
nsaddrs[i].sa.sa_family);
rwrap_reset_nameservers(state);
errno = ENOSYS;
return -1;
}
}
/*
* note that state->_u._ext.nscount is left as 0,
* this matches glibc and allows resolv wrapper
* to work with most (maybe all) glibc versions.
*/
state->nscount = i;
return 0;
#endif /* ! HAVE_RES_SOCKADDR_UNION_SIN */
}
static int rwrap_parse_resolv_conf(struct __res_state *state,
const char *resolv_conf)
{
FILE *fp;
char buf[BUFSIZ];
size_t nserv = 0;
union rwrap_sockaddr nsaddrs[MAXNS];
memset(nsaddrs, 0, sizeof(nsaddrs));
fp = fopen(resolv_conf, "r");
if (fp == NULL) {
RWRAP_LOG(RWRAP_LOG_WARN,
"Opening %s failed: %s",
resolv_conf, strerror(errno));
return -1;
}
while(fgets(buf, sizeof(buf), fp) != NULL) {
char *p;
/* Ignore comments */
if (buf[0] == '#' || buf[0] == ';') {
continue;
}
if (RESOLV_MATCH(buf, "nameserver") && nserv < MAXNS) {
struct in_addr a;
struct in6_addr a6;
char *q;
int ok;
p = buf + strlen("nameserver");
/* Skip spaces and tabs */
while(isblank((int)p[0])) {
p++;
}
q = p;
while(q[0] != '\n' && q[0] != '\0') {
q++;
}
q[0] = '\0';
ok = inet_pton(AF_INET, p, &a);
if (ok) {
nsaddrs[nserv] = (union rwrap_sockaddr) {
.in = {
.sin_family = AF_INET,
.sin_addr = a,
.sin_port = htons(53),
.sin_zero = { 0 },
},
};
nserv++;
continue;
}
ok = inet_pton(AF_INET6, p, &a6);
if (ok) {
#ifdef HAVE_RESOLV_IPV6_NSADDRS
nsaddrs[nserv] = (union rwrap_sockaddr) {
.in6 = {
.sin6_family = AF_INET6,
.sin6_port = htons(53),
.sin6_flowinfo = 0,
.sin6_addr = a6,
},
};
nserv++;
continue;
#else /* !HAVE_RESOLV_IPV6_NSADDRS */
RWRAP_LOG(RWRAP_LOG_WARN,
"resolve_wrapper does not support "
"IPv6 on this platform");
continue;
#endif
}
RWRAP_LOG(RWRAP_LOG_ERROR, "Malformed DNS server[%s]", p);
continue;
} /* TODO: match other keywords */
}
if (ferror(fp)) {
RWRAP_LOG(RWRAP_LOG_ERROR,
"Reading from %s failed",
resolv_conf);
fclose(fp);
return -1;
}
fclose(fp);
if (nserv == 0) {
RWRAP_LOG(RWRAP_LOG_WARN,
"No usable nameservers found in %s",
resolv_conf);
errno = ESRCH;
return -1;
}
return rwrap_set_nameservers(state, nserv, nsaddrs);
}
/****************************************************************************
* RES_NINIT
***************************************************************************/
static int rwrap_res_ninit(struct __res_state *state)
{
int rc;
rc = libc_res_ninit(state);
if (rc == 0) {
const char *resolv_conf = getenv("RESOLV_WRAPPER_CONF");
if (resolv_conf != NULL) {
rc = rwrap_parse_resolv_conf(state, resolv_conf);
}
}
return rc;
}
#if !defined(res_ninit) && defined(HAVE_RES_NINIT)
int res_ninit(struct __res_state *state)
#elif defined(HAVE___RES_NINIT)
int __res_ninit(struct __res_state *state)
#endif
{
return rwrap_res_ninit(state);
}
/****************************************************************************
* RES_INIT
***************************************************************************/
static struct __res_state rwrap_res_state;
static int rwrap_res_init(void)
{
int rc;
rc = rwrap_res_ninit(&rwrap_res_state);
return rc;
}
#if !defined(res_ninit) && defined(HAVE_RES_INIT)
int res_init(void)
#elif defined(HAVE___RES_INIT)
int __res_init(void)
#endif
{
return rwrap_res_init();
}
/****************************************************************************
* RES_NCLOSE
***************************************************************************/
static void rwrap_res_nclose(struct __res_state *state)
{
rwrap_reset_nameservers(state);
libc_res_nclose(state);
}
#if !defined(res_nclose) && defined(HAVE_RES_NCLOSE)
void res_nclose(struct __res_state *state)
#elif defined(HAVE___RES_NCLOSE)
void __res_nclose(struct __res_state *state)
#endif
{
rwrap_res_nclose(state);
}
/****************************************************************************
* RES_CLOSE
***************************************************************************/
static void rwrap_res_close(void)
{
rwrap_res_nclose(&rwrap_res_state);
}
#if defined(HAVE_RES_CLOSE)
void res_close(void)
#elif defined(HAVE___RES_CLOSE)
void __res_close(void)
#endif
{
rwrap_res_close();
}
/****************************************************************************
* RES_NQUERY
***************************************************************************/
static int rwrap_res_nquery(struct __res_state *state,
const char *dname,
int class,
int type,
unsigned char *answer,
int anslen)
{
int rc;
const char *fake_hosts;
RWRAP_LOG(RWRAP_LOG_TRACE,
"Resolve the domain name [%s] - class=%d, type=%d",
dname, class, type);
rwrap_log_nameservers(RWRAP_LOG_TRACE, __func__, state);
fake_hosts = getenv("RESOLV_WRAPPER_HOSTS");
if (fake_hosts != NULL) {
rc = rwrap_res_fake_hosts(fake_hosts, dname, type, answer, anslen);
} else {
rc = libc_res_nquery(state, dname, class, type, answer, anslen);
}
RWRAP_LOG(RWRAP_LOG_TRACE,
"The returned response length is: %d",
rc);
return rc;
}
#if !defined(res_nquery) && defined(HAVE_RES_NQUERY)
int res_nquery(struct __res_state *state,
const char *dname,
int class,
int type,
unsigned char *answer,
int anslen)
#elif defined(HAVE___RES_NQUERY)
int __res_nquery(struct __res_state *state,
const char *dname,
int class,
int type,
unsigned char *answer,
int anslen)
#endif
{
return rwrap_res_nquery(state, dname, class, type, answer, anslen);
}
/****************************************************************************
* RES_QUERY
***************************************************************************/
static int rwrap_res_query(const char *dname,
int class,
int type,
unsigned char *answer,
int anslen)
{
int rc;
rc = rwrap_res_ninit(&rwrap_res_state);
if (rc != 0) {
return rc;
}
rc = rwrap_res_nquery(&rwrap_res_state,
dname,
class,
type,
answer,
anslen);
return rc;
}
#if !defined(res_query) && defined(HAVE_RES_QUERY)
int res_query(const char *dname,
int class,
int type,
unsigned char *answer,
int anslen)
#elif defined(HAVE___RES_QUERY)
int __res_query(const char *dname,
int class,
int type,
unsigned char *answer,
int anslen)
#endif
{
return rwrap_res_query(dname, class, type, answer, anslen);
}
/****************************************************************************
* RES_NSEARCH
***************************************************************************/
static int rwrap_res_nsearch(struct __res_state *state,
const char *dname,
int class,
int type,
unsigned char *answer,
int anslen)
{
int rc;
const char *fake_hosts;
RWRAP_LOG(RWRAP_LOG_TRACE,
"Resolve the domain name [%s] - class=%d, type=%d",
dname, class, type);
rwrap_log_nameservers(RWRAP_LOG_TRACE, __func__, state);
fake_hosts = getenv("RESOLV_WRAPPER_HOSTS");
if (fake_hosts != NULL) {
rc = rwrap_res_fake_hosts(fake_hosts, dname, type, answer, anslen);
} else {
rc = libc_res_nsearch(state, dname, class, type, answer, anslen);
}
RWRAP_LOG(RWRAP_LOG_TRACE,
"The returned response length is: %d",
rc);
return rc;
}
#if !defined(res_nsearch) && defined(HAVE_RES_NSEARCH)
int res_nsearch(struct __res_state *state,
const char *dname,
int class,
int type,
unsigned char *answer,
int anslen)
#elif defined(HAVE___RES_NSEARCH)
int __res_nsearch(struct __res_state *state,
const char *dname,
int class,
int type,
unsigned char *answer,
int anslen)
#endif
{
return rwrap_res_nsearch(state, dname, class, type, answer, anslen);
}
/****************************************************************************
* RES_SEARCH
***************************************************************************/
static int rwrap_res_search(const char *dname,
int class,
int type,
unsigned char *answer,
int anslen)
{
int rc;
rc = rwrap_res_ninit(&rwrap_res_state);
if (rc != 0) {
return rc;
}
rc = rwrap_res_nsearch(&rwrap_res_state,
dname,
class,
type,
answer,
anslen);
return rc;
}
#if !defined(res_search) && defined(HAVE_RES_SEARCH)
int res_search(const char *dname,
int class,
int type,
unsigned char *answer,
int anslen)
#elif defined(HAVE___RES_SEARCH)
int __res_search(const char *dname,
int class,
int type,
unsigned char *answer,
int anslen)
#endif
{
return rwrap_res_search(dname, class, type, answer, anslen);
}