1
0
mirror of https://github.com/samba-team/samba.git synced 2025-01-21 18:04:06 +03:00
samba-mirror/ctdb/config/ctdb.sysconfig
root 32391ec844 NAT-GW updates. Describe the functionality in the sysconfig file
(This used to be ctdb commit 4c598ab6f8e9b826d437b9ab869c4490f7c4faba)
2009-03-17 07:35:53 +11:00

187 lines
7.3 KiB
Plaintext

# Options to ctdbd. This is read by /etc/init.d/ctdb
# you must specify the location of a shared lock file across all the
# nodes. This must be on shared storage
# there is no default
# CTDB_RECOVERY_LOCK="/some/place/on/shared/storage"
# when doing IP takeover you also may specify what network interface
# to use by default for the public addresses. Otherwise you must
# specify an interface on each line of the public addresses file
# there is no default
# CTDB_PUBLIC_INTERFACE=eth0
# Should ctdb do IP takeover? If it should, then specify a file
# containing the list of public IP addresses that ctdb will manage
# Note that these IPs must be different from those in $NODES above
# there is no default.
# The syntax is one line per public address of the form :
# <ipaddress>/<netmask> <interface>
# Example: 10.1.1.1/24 eth0
#
# CTDB_PUBLIC_ADDRESSES=/etc/ctdb/public_addresses
# Should CTDB present the cluster using a single public ip address to clients
# and multiplex clients across all CONNECTED nodes ?
# This is based on LVS
# When this is enabled, the entire cluster will present one single ip address
# which clients will connect to.
# CTDB_LVS_PUBLIC_IP=10.1.1.1
# IPMUX : OBSOLETE use LVS instead
# Should ctdb implement a single public ip address across the entire cluster
# and multiplex incoming connections across the connected nodes
# When using a single public ip you must also specify the public interface!
# This makes all incoming traffic go through a single ctdb node which
# will then forward the packets out acros the other nodes. This will
# impact performance.
# CTDB_SINGLE_PUBLIC_IP=10.1.1.1
# should ctdb manage starting/stopping the Samba service for you?
# default is to not manage Samba
# CTDB_MANAGES_SAMBA=yes
# If there are very many shares it may not be feasible to check that all
# of them are available during each monitoring interval.
# In that case this check can be disabled
# CTDB_SAMBA_SKIP_SHARE_CHECK=yes
# CTDB_NFS_SKIP_SHARE_CHECK=yes
# specify which ports we should check that there is a daemon listening to
# by default we use testparm and look in smb.conf to figure out.
# CTDB_SAMBA_CHECK_PORTS="445"
# should ctdb manage starting/stopping Winbind service?
# if left comented out then it will be autodetected based on smb.conf
# CTDB_MANAGES_WINBIND=yes
# should ctdb manage starting/stopping the VSFTPD service
# CTDB_MANAGES_VSFTPD=yes
# should ctdb manage starting/stopping the ISCSI service
# CTDB_MANAGES_ISCSI=yes
# should ctdb manage starting/stopping the NFS service
# CTDB_MANAGES_NFS=yes
# you may wish to raise the file descriptor limit for ctdb
# use a ulimit command here. ctdb needs one file descriptor per
# connected client (ie. one per connected client in Samba)
# ulimit -n 10000
# the NODES file must be specified or ctdb won't start
# it should contain a list of IPs that ctdb will use
# it must be exactly the same on all cluster nodes
# defaults to /etc/ctdb/nodes
# CTDB_NODES=/etc/ctdb/nodes
# the directory to put the local ctdb database files in
# defaults to /var/ctdb
# CTDB_DBDIR=/var/ctdb
# the directory to put the local persistent ctdb database files in
# defaults to /var/ctdb/persistent
# CTDB_DBDIR_PERSISTENT=/var/ctdb/persistent
# the directory where service specific event scripts are stored
# defaults to /etc/ctdb/events.d
# CTDB_EVENT_SCRIPT_DIR=/etc/ctdb/events.d
# the location of the local ctdb socket
# defaults to /tmp/ctdb.socket
# CTDB_SOCKET=/tmp/ctdb.socket
# what transport to use. Only tcp is currently supported
# defaults to tcp
# CTDB_TRANSPORT="tcp"
# When set, this variable makes ctdb monitor the amount of free memory
# in the system (the second number in the buffers/cache output from free -m).
# If the amount of free memory drops below this treshold the node will become
# unhealthy and ctdb and all managed services will be shutdown.
# Once this occurs, the administrator needs to find the reason for the OOM
# situation, rectify it and restart ctdb with "service ctdb start"
# The unit is MByte
# CTDB_MONITOR_FREE_MEMORY=100
# When set to yes, the CTDB node will start in DISABLED mode and not host
# any public ip addresses. The administrator needs to explicitely enable
# the node with "ctdb enable"
# CTDB_START_AS_DISABLED="yes"
# LMASTER and RECMASTER capabilities.
# By default all nodes are capable of both being LMASTER for records and
# also for taking the RECMASTER role and perform recovery.
# These parameters can be used to disable these two roles on a node.
# Note: If there are NO available nodes left in a cluster that can perform
# the RECMASTER role, the cluster will not be able to recover from a failure
# and will remain in RECOVERY mode until an RECMASTER capable node becomes
# available. Same for LMASTER.
# These parametersd are useful for scenarios where you have one "remote" node
# in a cluster and you do not want the remote node to be fully participating
# in the cluster and slow things down.
# For that case, set both roles to "no" for the remote node on the remote site
# but leave the roles default to "yes" on the primary nodes in the central
# datacentre.
# CTDB_CAPABILITY_RECMASTER=yes
# CTDB_CAPABILITY_LMASTER=yes
# NAT-GW configuration
# Some services running on nthe CTDB node may need to originate traffic to
# remote servers before the node is assigned any IP addresses,
# This is problematic since before the node has public addresses the node might
# not be able to route traffic to the public networks.
# One solution is to have static public addresses assigned with routing
# in addition to the public address interfaces, thus guaranteeing that
# a node always can route traffic to the external network.
# This is the most simple solution but it uses up a large number of
# additional ip addresses.
#
# A more complex solution is NAT-GW.
# In this mode we only need one additional ip address for the cluster from
# the exsternal public network.
# One of the nodes in the cluster is elected to be hosting this ip address
# so it can reach the external services. This node is also configured
# to use NAT MASQUERADING for all traffic from the internal private network
# to the external network. This node is the NAT-GW node.
#
# All other nodes are set up with policy routing so that all traffic with
# a source address of the private network and a destination outside of
# the private network are instead routed through the NAT-GW node.
#
# The effect of this is that only when a node does not have a public address
# or a route to the external network will the node use the private address
# as the source address and only then will it use the policy routing
# through the NAT-GW.
# As long as a node has a public address and can route to the external network
# the node will always pick the public address as the source address and NAT-GW
# routing will not be used.
#NATGW_PUBLIC_IP=10.0.0.227/24
#NATGW_PUBLIC_IFACE=eth0
#NATGW_DEFAULT_GATEWAY=10.0.0.1
#NATGW_PRIVATE_IFACE=eth0
#NATGW_PRIVATE_NETWORK=10.0.0.0/24
# where to log messages
# the default is /var/log/log.ctdb
# CTDB_LOGFILE=/var/log/log.ctdb
# what debug level to run at. Higher means more verbose
# the default is 2
CTDB_DEBUGLEVEL=2
# set any default tuning options for ctdb
# use CTDB_SET_XXXX=value where XXXX is the name of the tuning
# variable
# for example
# CTDB_SET_TRAVERSETIMEOUT=60
# you can get a list of variables using "ctdb listvars"
# any other options you might want. Run ctdbd --help for a list
# CTDB_OPTIONS=